Supplemental material

In this supplemental material, we give more details about algorithms and exper-
iments, implemented systems as well as a note on removing versus debugging
and a derivation of the Hasse diagrams.

A. Note about removing versus debugging
B. Normalization algorithm

C. Algorithms for combination strategies
D. Experiment - data

E. Experiment - results

F. Implemented systems

G: Derivation of Hasse diagrams

A. Note about removing versus debugging

We note that in this paper we deal with removing axioms with the assumption
that when they are removed, they cannot be derived from the TBox representing
the ontology anymore. This is not the full debugging problem, for which the
combination with weakening and completing is left for future work. Removing
can be seen as a simple kind of debugging, or as the second step of the debugging
process. As an example, assume a TBox with axioms A C B, BC C,and A C
C. Assume that A C B and A C C are wrong axioms. In full debugging it would
be possible to set W = {A C C}. The system would then compute that A C C
as well as one of A C B and B C C need to be removed. A domain expert may
then choose to remove A C B and A C C. In our problem statement it is not
possible that W = {A C C} as, when removing A C C, it still can be derived
from the remaining axioms. We thus assume that a first debugging step has been
performed, e.g., using traditional methods, and then start with W = {4A C C, A
C B}. Combining full debugging, weakening and completing will add additional
complexity to the already complex problem we describe in this paper.

B. Normalization algorithm

Algorithm 1 rewrites an axiom into one of the allowed forms.

Algorithm 1 Normalize(sb C sp)

Input: Axiom sb C sp
Output: A set of axioms in normalized form
1: if sp € N, then
2 return { sb C sp }
3: else if sp is of the form P M Q then
4 return { sSbC P, sbC Q }
5: else if sp is of the form Jr.P then
6 if sb € N, then
7 return { sbC sp }
8 else if sb is of the form 3r.Q) then

9: Introduce new concept Z

10: return { IrQC Z, ZLC Ir.Q, Z C sp}

11: else if sb is of the form Js.Q) then

12: Introduce new concept Z

13: return { 3s.Q C Z, Z C 35.Q, Z C sp}

14: else if sb is of the form M R then

15: Introduce new concept Z

16: return { QM RC Z, ZCQ,ZC R, ZCsp}
17: end if

18: end if

C. Algorithms for combination strategies

In this part, we give more details about the different algorithms used in the exper-
iments. We show all our algorithms for combining different removing, weakening
and completing strategies including the ones that were presented in the paper
earlier. A brief description of each algorithm is shown in Table 1.

Algorithm C1 Weaken one at a time, add weakened axiom sets and remove all
wrong at end

Input: TBox 7, Oracle Or, set of unwanted axioms W
Output: A repaired TBox
: for each « C g € W do
T + Remove-axioms(7, {a C S})
warCp + weakened-axiom-set(a C 3, Tr, Or)
end for
: Tr + Add-axioms(7,U,cp wacs)
return Remove-axioms(7,,W)

DG whe

Algorithm C2 Remove/weaken/add weakened axiom sets one at a time

Input: TBox 7, Oracle Or, set of unwanted axioms W
Output: A repaired TBox
T T
: for each « C € W do
T + Remove-axioms(7,, {a C 8})
warp + weakened-axiom-set(a C 3, Tr, Or)
T + Add-axioms(7,,wacg)
end for
return 7,

NS T @

Algorithm C3 Remove all wrong, weaken all and add weakened axiom sets at
end
Input: TBox 7, Oracle Or, set of unwanted axioms W
Output: A repaired TBox
: Tr < Remove-axioms(7, W)
: for each « C g € W do
wac weakened-axiom-set(a C 3, Ty, Or)
: end for
: return Add-axioms(7r,U,cp wacs)

CU k= W b =

Algorithm C4 Remove all wrong, weaken/add weakened axiom sets one at a
time
Input: TBox 7, Oracle Or, set of unwanted axioms W
Output: A repaired TBox
1: 7, < Remove-axioms(7, W)
2: for each a C 8 € W do
3 wacp weakened-axiom-set(a C 3, Ty, Or)
4 Tr <+ Add-axioms(7r,wacg)
5
6

: end for
: return 7,

Algorithm C5 Weaken one at a time, complete one at a time, add completed
axiom set and remove all wrong at end

Input: TBox 7, Oracle Or, set of unwanted axioms W
Output: A repaired TBox
: for each « C € W do
T + Remove-axioms(7T, {a C })
warp + weakened-axiom-set(a C 3, T, Or)
end for
: for each o C 5 € W do
CalCpB 0
for each sb C sp € wacpg do
CsvCsp < completed-axiom-set(sb C sp, T,O0r)
CaCp ¢ CaCp U Csbsp
end for
: end for
¢ Tr = Add-axioms(7,U,cp cacs)
: return Remove-axioms(7,,W)

NI R

= = =
[SU e

Algorithm C6 Weaken/complete/add completed axiom sets one at a time,

remove all wrong at end
Input: TBox 7, Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each a C g € W do

2 T < Remove-axioms(T, {a C 8})

3 warc s + weakened-axiom-set(a C 3, Tr, Or)

4 CaCpB 1]

5 for each sb C sp € wacp do

6: CsbCsp < completed-axiom-set(sb C sp, T, Or)

7

8

9

0

T + Add-axioms(7, csbcsp)
end for
: end for
: return Remove-axioms(7,W)

Algorithm C7 Remove/weaken/complete/add completed axiom sets one at a
time

Input: TBox 7, Oracle Or, set of unwanted axioms W

Output: A repaired TBox
1: T, <« T
2: for each a C 8 € W do
3 T: + Remove-axioms(7,, {a C S})
4 warp ¢ weakened-axiom-set(a C 3, Ty, Or)
5: CalCpB (Z)
6
7
8
9

for each sb C sp € wacg do
csvCsp < completed-axiom-set(sb C sp, T, Or)
T, + Add-axioms(7r, csbesp)

end for
10: end for
11: return 7.

Algorithm C8 Weaken/complete one at a time, add completed axiom sets and
remove all wrong axioms at end

Input: TBox 7, Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each o« C g € W do

2: Tr < Remove-axioms(7, {« C 8})

3 wacp weakened-axiom-set(a C 3, Ty, Or)

4. CaC B < @

5: for each sb C sp € wacp do

6 CsvCsp < completed-axiom-set(sb C sp, T,O0r)

7 CaCp ¢ CaCp U CsbTsp

8 end for

9: end for

10: T; + Add-axioms(7,U,cp cacs)

1: return Remove-axioms(7,,W)

[

Algorithm C9 Weaken one at a time, remove all wrong, complete one at a

time, then add completed axiom sets at end

== =
WO Y

PP Wy

Input: TBox 7, Oracle Or, set of unwanted axioms W
Output: A repaired TBox

: for each o« C g € W do

T + Remove-axioms(7, {a C S})

warp < weakened-axiom-set(a C 3, Tr, Or)
end for
Tr < Remove-axioms(7, W)

: for each o C 5 € W do

cacp 0

for each sb C sp € wacp do
CsvCsp < completed-axiom-set(sb C sp, T, Or)
CaCp ¢ Calp U CsbCsp

end for

: end for
T — Add—axioms(TT,Uazﬂ CaCp)
: return 7, a

Algorithm C10 Weaken one at a time, remove all wrong, complete/add com-

pleted axiom sets one at a time

PP

= = =
w»—tp.ﬂ?

Input: TBox 7T, Oracle Or, set of unwanted axioms W
Output: A repaired TBox

: for each o C 5 € W do

T + Remove-axioms(7, {a C S})

wacp weakened-axiom-set(a C 8, Ty, Or)
end for
T + Remove-axioms(7, W)

: for each « C € W do

for each sb C sp € wacp do
csvCsp < completed-axiom-set(sb C sp, Tr, Or)
T « Add-axioms(7r,cspCsp)

end for

: end for
: return 7,

Algorithm C11 Remove/Weaken one at a time, add the wrong axiom and then
complete/add completed axiom sets one at a time, remove all wrong at end
Input: TBox 7, Oracle Or, set of unwanted axioms W
Output: A repaired TBox
: for each « C € W do
T + Remove-axioms(T, {a C })
warp < weakened-axiom-set(a C 3, T, Or)
end for
: for each o C 5 € W do
T + Remove-axioms(7, {a C S})
for each sb C sp € wacpg do
CsvCsp < completed-axiom-set(sb C sp, T, Or)
T + Add-axioms(7,cspCsp)
10: end for
11: end for
12: return Remove-axioms(7,W)

SN I R ol

©

Algorithm C12 Remove all wrong, weaken all, complete all, add completed
axiom sets at end
Input: TBox 7, Oracle Or, set of unwanted axioms W
Output: A repaired TBox
: Tr < Remove-axioms(7, W)
: for each o C 5 € W do
wars + weakened-axiom-set(a C 3, Tr, Or)
end for
: for each o C 5 € W do
caCp 0
for each sb T sp € wacp do
CsvCsp < completed-axiom-set(sb C sp, T, Or)
CaLp ¢ CaCp U CstCsp
10: end for
11: end for
12: return Add-axioms(7-,U,cps cacs)

P DT W

@

Algorithm C13 Remove all wrong, weaken/complete/add completed axiom

sets one at a time
Input: TBox T, Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: T, < Remove-axioms(7, W)

2: for each o C 5 € W do

3 wac weakened-axiom-set(a C 3, Ty, Or)

4 for each sb C sp € wacp do

¥ cspCsp < completed-axiom-set(sb C sp, Tr, Or)

6

7

8

9

T « Add-axioms(7r,cspCsp)
end for
: end for
: return 7,

Table 1. Algorithms.

Algorithm | Description

C1 Weaken one at a time, add weakened axiom sets and remove all wrong at end

C2 Remove/weaken/add weakened axiom sets one at a time

C3 Remove all wrong, weaken one at a time, add weakened axiom sets at end

C4 Remove all wrong, weaken/add weakened axiom sets one at a time

C5 Weaken one at a time, complete one at a time, add completed axiom sets and remove all
wrong at end

C6 Weaken /complete/add completed axiom sets one at a time, remove all wrong at end

c7 Remove/weaken/complete/add completed axiom sets one at a time

C8 Weaken/complete one at a time, add completed axiom sets and remove all wrong at end

C9 Weaken one at a time, remove all wrong, complete one at a time, then add
completed axiom sets at end

C10 Weaken one at a time, remove all wrong, complete/add completed axiom sets one at a time

C11 Weaken one at a time, complete/add completed axiom sets one at a time, remove all wrong
at end

C12 Remove all wrong, weaken all, complete all, add completed axiom sets at end

C13 Remove all wrong, weaken/complete/add completed axiom sets one at a time

D. Experiment - data

The Mini-GALEN ontology

We repeat here the Min-GALEN ontology that is used in the main paper (Figure
1) and give a visualization (Figure 2).

N¢ = {GPr (GranulomaProcess), NPr (NonNormalProcess),
PPh (PathologicalPhenomenon), F(Fracture), E (Endocarditis),
IPr (InflammationProcess), PPr (PathologicalProcess),

C (Carditis), CVD (CardioVascularDisease) };

Ngr = { hAPr (hasAssociatedProcess) }

T ={ CVD C PPh, F C PPh, ShAPr.PPr C PPh, E C C,

E C 3hAPr.IPr, GPr C NPr, PPr C IPr, IPr C GPr, E C PPr };
W = { E C PPr, PPr C IPr, IPr C GPr }

Or returns true for:

GPr C IPr, GPr C PPr, GPr C NPr, IPr C PPr, IPr C NPr,
PPr C NPr, CVD C PPh, F C PPh, E C PPh, E C C,

E C CVD, C C PPh, C C CVD, S3hAPr.PPr C PPh,
ShAPr.IPr C PPh, E C 3hAPr.IPr, E C ShAPr.PPh.

Note that for an oracle that does not make mistakes,

if Or(P C Q) = true, then also Or(3r.P C 3r.Q)=true and
Or(P N O C Q)=true.

For other axioms P C Q with P, Q € N¢, Or(P C Q) = false.

Fig. 1. Mini-GALEN; same as in main paper. (Visualized in Figure 2.)

PathologicalPhenomenon NonNormalProcess <—
TN
CardioVascularDisease Fracture PathologicalProcess
T
F

JhasAssociatedProcess.PathologicalProcess T

Carditis InflammationProcess

JhasAssociatedProcess.InflammationProcess F
T /
T

F GranulomaProcess —

Endocarditis

Fig. 2. Visualization of the Mini-GALEN ontology in Figure 1. The axioms in the TBox
are represented with black arrows except for the wrong axioms which are represented
in red. The oracle’s knowledge about the axioms in the ontology is marked with T
(true) or F (false) at the arrows.

Characteristics of the 6 ontologies in the experiments

In order to compare the use of the different combinations of strategies, we run
experiments on several ontologies: Mini-GALEN, PACO, NCI, EKAW, OFSMR
and Pizza ontology. Mini-GALEN is an example inspired by the GALEN (from
https://bioportal.bioontology.org/) ontology; PACO, NCI, OFSMR are
available at https://bioportal.bioontology.org/, EKAW from the confer-
ence track of http://oaei.ontologymatching.org/ and the Pizza ontology is
available at https://github.com/owlcs/pizza-ontology. We made the ver-
sions of the ontologies that we used available at https://figshare.com/s/
£3b9472a7e5dd69237dc. We have used the parts of these ontologies that are
expressible in £L in the sense that we removed the parts of axioms that used
constructors not in £L.

An overview of the numbers of concepts, roles and axioms in these ontologies
is given in Table 2.

Table 2. Ontologies

Mini- | Pizza | EKAW | OFSMR | PACO | NCI

GALEN
Concepts 9 74 100 159 224 | 3304
Roles 1 33 8 2 23 1

Axioms 20 341 801 1517 1153 | 30364

E. Experiment - results

In this part, we give the full results of the comparative experiments run in
different ontologies.

Table 3 lists the wrong axioms we introduced in each test ontology for ex-
periments. These wrong axioms were generated by replacing existing axioms
with axioms where their left/right-hand side concepts were changed. Figure 2
visualizes the structure of the Mini-Galen ontology in Figure 1.

The full results of the experiments are listed in Tables 4-26. Table 5 shows
the sizes of the sub-and super-concepts sets for weakening when removing wrong
axioms one at a time in different orders using Algorithm C2. Tables 6-10 show
the sizes of the super- and sub-concepts sets for weakening different ontologies
using Algorithms C1-C4.

When the completion is added, we can reduce the amounts of concepts in the
completed axiom sets by only showing combinations that would not introduce
equivalence between concepts in the ontology. This means that in the imple-
mented version of the completing algorithm, sp should belong to sup(a,T) \
sup(B,T) (sup(ca, T) in the original algorithm) and sb to sub(8,T) \ sub(«a, T)
(sub(B,T) in the original algorithm). These new sets of super- and sub-concepts
are called source and target. We ran several comparative experiments showing the
difference between the sizes of source/target sets and the sizes of Sup(«,T)/Sub(5,T)
sets for the Mini-GALEN ontology and the NCI ontology. Tables 11-18 list the
relevant completing results using Algorithms C5-C13. For the remaining ontolo-
gies, in order to not introduce equivalence between concepts in the ontology, we
only choose the concepts in the source and target sets to generate the completed
axioms and Tables 19-26 show the results of the sizes of the source and target
sets when completing different ontologies using Algorithms C5-C13.

Table 3. Wrong axioms in each ontology.

Ontology | Wrong axioms
Mini- PathologicalProcessCInflammationProcess,
GALEN InflammationProcessC GranulomaProcess,
EndocarditisCPathologicalProcess
PACO Polish__carCHome__improvement__maintenance,
Washing windowsCHome__improvement__maintenance,
ModerateCSpeed, Washing carCHome__improvement__maintenance,
WalkingC Daily_living_activity, Per_weekCBy_ duration
EKAW Camera_ Ready_ PaperC JwrittenBy.Student, Tutorial EConference,
Invited Talk AbstractCPaper, Programme BrochureCFlyer
NCI Tooth__tissueCTooth, Red_ fiberCConnective_ tissue_ fiber, Eye_lidCCheek
Pizza PineKernelsC VegetableTopping, PeperoniSausageToppingCPeperonataTopping,
IceCreamC JhasTopping.Fruit Topping, RosemaryToppingC VegetableTopping
OFSMR BeverageCFood, BreadCProcesed_ fruit__and_ vegetables,

PastaCProcesed_ fruit_and_ vegetables

Table 4. Weakening for Mini-GALEN using Algorithms C1-C4. Three wrong axioms
give 3 sup/sub-sets per algorithm.

C1 C2 C3 C4
Sup(B8,7) | 324 322 121 121
Sub(a,T) 231 211 111 111
Weakened | PPr C NPr | PPr C NPr | IPr C NPr | IPr C NPr
IPr C NPr | IPr C NPr

Table 5. Removing wrong axioms in different order for Mini-GALEN by Algorithm
C2. Wrong axioms: OPPrCIPr, @IPrCGPr, @ECPPr.

Wrong Axiom | D—-@—@ | D—-0—@ | @—D—=0 | @—3—0 | @—-@—-0 | ®—-D—-O
Sup(3,7) 322 322 322 223 224 324
Sub(a,’T) 211 211 213 131 121 111

Table 6. Weakening the PACO ontology using Algorithms C1-C4. Six wrong axioms
give 6 sup/sub-sets per algorithm.

C1 C2 C3 C4
Sup(B,7)|444343|1444343(444343|444343
Sub(e,7)|111611|111611|111611|111611

Table 7. Weakening the EKAW ontology using Algorithms C1-C4. Four wrong axioms

give 4 sup/sub-sets per algorithm.

Table 8. Weakening the NCI ontology using Algorithms C1-C4. Three wrong axioms

C1

C2 C3

C4

Sup(f,7T)
Sub(a,T)

111

3433

3433
111111

3433
1111

11

3433

11

give 3 sup/sub-sets per algorithm.

Table 9. Weakening the Pizza ontology using Algorithms C1-C4. Four wrong axioms

Cl C2 C3 c4
Sup(B,7) | 13158 | 13158 | 13158 | 13 15 8
Sub(a,7)| 713| 713| 713| 713

give 4 sup/sub-sets per algorithm.

Table 10. Weakening the OFSMR ontology using Algorithms C1-C4. Three wrong

C1

C2 C3

C4

Sup(5,7)
Sub(a,T)

111

4848

4848
111111

4848
1111

11

4848

11

axioms give 3 sup/sub-sets per algorithm.

C1 C2 C3

C4

Sup(8,T)

244

2441244

244

Sub(a,7T) | 2

111211211211

Table 11. Completing the Mini-GALEN ontology using Algorithms C5-C7.

C5 C6 Cc7
Weakened | PPrCNPr, IPrENPr | PPrENPr, IPrCNPr | PPrCNPr, IPrCNPr
Source 11 11 11
Target 32 32 34
Completed | PPrCNPr, IPrCNPr | PPrCENPr, IPrENPr | PPrENPr, IPrCPPr

Table 12. Completing the Mini-GALEN ontology using Algorithms C5-C7.

C5 C6 Cc7
Weakened | PPrENPr, IPrENPr | PPrENPr, IPrCNPr | PPrCNPr, IPrCNPr
Sup(e,T) 11 11 11
Sub(3,T) 32 34 34
Completed | PPrCNPr, IPrCNPr | PPrCENPr, IPrCPPr | PPrCNPr, IPrCPPr

Table 13. Completing the Mini-GALEN ontology using Algorithms C8-C13.

C8 C9 C10 Cl11 C12 C13
Weakened | PPrCNPr, | PPrCNPr, | PPrCNPr, | PPrCENPr, | IPrCNPr | IPrENPr
IPrCNPr | IPrCNPr | IPrCNPr | IPrCNPr
Source 32 11 11 11 1 1
Target 32 22 23 32 2 2
Completed | GPrCIPr, | PPrCNPr, | PPrCENPr,| PPrENPr, | IPrCNPr | IPrCNPr
PPrCNPr, | IPrENPr | IPrCPPr | IPrENPr
IPrCNPr

Table 14. Completing the Mini-GALEN ontology using Algorithms C8-C13.

C8 C9 C10 Cl11 C12 C13
Weakened | PPrCNPr, | PPrCNPr, | PPrCNPr, | PPrCNPr, | IPrCNPr | IPrCNPr
IPrCNPr | IPrCNPr | IPrCNPr | IPrCNPr
Sup(a,7) |43 11 11 11 1 1
Sub(8,7) |55 22 23 34 2 2
Completed | GPrCIPr, | PPrCNPr, | PPrCNPr, | PPrCENPr, | IPrCNPr | IPrCNPr
PPrCNPr, | IPrENPr | IPrCPPr | IPrCPPr
IPrCPPr

Table 15. Completing the NCI ontology using Algorithms C5-C9.

Ch C6 c7 C8 C9
Source 311 311 311 6146 311
Target | 40 2143 83 | 40 2143 83 | 40 2136 76 | 59 2143 83 | 40 2133 76

Table 16. Completing the NCI ontology using Algorithms C5-C9.

Cb C6 C7 C8 C9
Sup(a,T) 311 311 311 1516 9 311
Sub(3,T) | 41 2143 83 | 41 2143 83 | 41 2136 76 | 66 2144 86 | 41 2133 76

Table 17. Completing the NCI ontology using Algorithms C10-C13.

C10 C11 C12 C13
Source 311 311 311 311
Target | 40 2136 76 | 40 2143 83 | 40 2133 76 | 40 2133 76

Table 18. Completing the NCI ontology using Algorithms C10-C13.

C10 C11 C12 C13
Sup(a,T) 311 311 311 311
Sub(3,T) | 41 2136 76 | 41 2143 83 | 41 2133 76 | 41 2133 76

Table 19. Completing the PACO ontology using Algorithms C5-C9.

C5 C6 c7 C8 C9
Source 111111 111111 111111 222223 111111
Target | 59 59 59 171 40 40 | 59 59 59 171 40 40 | 59 59 59 171 40 40 | 59 59 59 171 40 40 | 51 51 51 168 39 39

Table 20. Completing the PACO ontology using Algorithms C10-C13.

C10 C11 C12 C13
Source 111111 111111 111111 111111
Target | 51 52 53 170 39 40 | 59 59 59 171 40 40 | 51 51 51 168 39 39 | 51 52 53 170 39 40

Table 21. Completing of the EKAW ontology using Algorithms C5-C9.

Ch C6 c7 C8 C9
Source 9111 9111 9111 10222 9111
Target | 23 17 34 34 |23 173434 |23 1734 34 | 23 17 34 34 | 23 17 33 33

Table 22. Completing of the EKAW ontology using Algorithms C10-C13.

C10 Cl11 C12 C13
Source 9111 9111 9111 9111
Target | 23 17 33 34 | 23 17 34 34 | 23 17 33 33 | 23 17 33 34

Table 23. Completing by the Pizza ontology using Algorithms C5-C9.

Cbh

C6

c7

C8

C9

Source
Target

1133
50 147 50 50

1133
50 147 50 50

1133
50 147 50 50

2746
50 147 50 50

1133
50 144 48 48

Table 24. Completing the Pizza ontology using Algorithms C10-C13.

C10

C11

C12

C13

Source
Target

1
49 147

133
48 50

50 147 50 50

1133

18 144 48 48

1133

48 145 49 50

1133

Table 25. Completing the OFSMR ontology using Algorithms C5-C9.

Ch

C6

c7

c8

C9

Source
Target

111
125 125 125

111
125 125 125

111
125 125 125

233
125 125 125

111
123 122 122

Table 26. Completing the OFSMR ontology using Algorithms C10-C13.

C10 C11 C12 C13
Source 111 111 111 111
Target | 123 122 123 | 125 125 125 | 123 122 122 | 123 122 123

F. Implemented systems

We have implemented two systems. As Protégé is a well-known ontology de-
velopment tool, we implemented a plugin for repairing based on Algorithm C9.
Using this algorithm the user can repair all wrong axioms at once. However, by
iteratively invoking this plugin the user can also repair the wrong axioms one
at a time. Further, we extended the £L version of the RepOSE system (Wei-
Kleiner, Dragisic, and Lambrix 2014; Lambrix, Wei-Kleiner, and Dragisic 2015).
We allow the user to choose different combinations, thereby giving a choice in
the trade-off between validation work and completeness.

The systems and user manual with examples are available at https://
figshare.com/s/£3b9472a7e5dd69237dc.

G. Derivation of the Hasse diagrams

For a given TBox T, let Der(7) denote the set of derivable axioms from 7.
Then, for TBoxes 77 and T, if 71 C Ta, then we know that Der(77) E Der(73).
This means that if an axiom is derivable from TBox 77, it is also derivable from
TBox T2 (but not necessarily the other way around). As the sub- and super-
concepts of a concept are computed using subsumption axioms, this also means
that the set of sub-concepts for a concept in 77 is a subset of the set of sub-
concepts for that concept in 72, and the set of super-concepts for a concept in Ty
is a subset of the set of super-concepts for that concept in 7. When computing
weakened axiom sets and completed axiom sets, the algorithms compute sets of
sub-concepts and sets of super-concepts to generate candidate axioms for these
weakened and completed axiom sets. Therefore, if 71 C 7o, the sets of candidate
axioms for the weakened and completed axiom sets computed for 7; are subsets
of those computed for 75. This means more validation work for 73, but also
possibly a more complete final ontology. The Hasse diagrams are based on this
observation.

Removing. In general, when removing all axioms at once, the TBox is a
subset of the TBox with one axiom removed, which in turn is a subset of the
TBox where no axioms are removed. When adding no axioms back, the TBox
is a subset of the TBox with one axiom added back, which in turn is a subset
of the TBox where all axioms are added back. If no wrong axioms are removed,
then nothing needs to be added back and thus AB-one, AB-all and AB-none
have the same result (Tanone,ABfall = Tanone,ABfone = Tanone,ABfnone)
The TBox for these strategies is larger during computation (of weakened or
completed axiom sets) than the TBoxes where one or all wrong axioms are
removed. If one wrong axiom at the time is removed, the adding back all (AB-all)
or one (AB-one) give the same result (Tr—one, AB—all = TR—one,AB—one) as both
strategies add the same one axiom back. The TBox for these strategies is larger
than when no wrong axiom is added back (Tr—one,AB—none & TR—one,AB—all =

TR—one, AB—one)- When all wrong axioms are removed at once, then they will be

added back at the end or not.! However, this does not influence the TBox during
the computation. Therefore, the add back strategy does not matter and the TBox
during computation is smaller than when wrong axioms were removed one at a
time (TRfall,ABfall = TRfall,ABfone = TRfall,ABfnone C TRfone,ABfnone)

Weakening. First, we note that updating immediately or updating after each
wrong axiom is the same operation for weakening, as a complete weakened ax-
iom set for a wrong axiom is computed. Thus, the TBox for (Tw —one,U—now) iS
the same as for (Tw_one,U—end_one); and the TBox for (Tw—ai,u—now) is the
same as for (Tw_qi1,U—end_one). Further, when weakening one axiom at a time
and updating the TBox (i.e., adding the axioms of the weakened axiom set for a
wrong axiom) immediately, results in a larger TBox for the next computations
of weakened axiom sets for wrong axioms, than if we would not update imme-
diately (Tw —one.U—end_atl & Tw —one,U—now)- When not immediately updating,
the TBox for generating the weakened axioms sets stays the same for all wrong
axioms and thus gives the same result as weakening all wrong axioms at once.
Thus, TW*CL”,U*TEOU} = 7—Wfall,Ufendiall = 7-I/Vfone,Ufendiall-

Completing. When completing one axiom at a time and updating the TBox
(i.e., adding the axioms of the completed axiom set for a weakened axiom) imme-
diately, results in a larger TBox for the next computations of completed axiom
sets for weakened axioms than not updating immediately (Tc—one,U—end_one T
TCfone,Cfnow; 7—C'fone,Ufendiall C TCfone,C’fnow7)~ When not updating imme-
diately, there is the choice between updating after all weakened axioms for a
particular wrong axiom have been processed or waiting until all weakened ax-
ioms for all wrong axioms are processed. The TBox for the former case is larger
than the one for the latter case (To—one,U—end_all T To—one,U—end_one)- Waiting
to update the TBox until all weakened axioms for all wrong axioms are processed,
means the TBox stays the same during the computation of the completed axioms
sets and thus gives the same result as completing all weakened axioms at once
(TC—one,U—endiall = TC—all,U—endiall = TC’—all,U—endﬁone = TC’—all,U—now)-

L After completing they should be removed, but after weakening they could be added
back for the completion step.

