
Supplemental material
In this supplemental material, we give more details about algorithms and exper-
iments, implemented systems as well as a note on removing versus debugging
and a derivation of the Hasse diagrams.

A. Note about removing versus debugging
B. Normalization algorithm
C. Algorithms for combination strategies
D. Experiment - data
E. Experiment - results
F. Implemented systems
G: Derivation of Hasse diagrams

A. Note about removing versus debugging

We note that in this paper we deal with removing axioms with the assumption
that when they are removed, they cannot be derived from the TBox representing
the ontology anymore. This is not the full debugging problem, for which the
combination with weakening and completing is left for future work. Removing
can be seen as a simple kind of debugging, or as the second step of the debugging
process. As an example, assume a TBox with axioms A ⊑ B, B ⊑ C, and A ⊑
C. Assume that A ⊑ B and A ⊑ C are wrong axioms. In full debugging it would
be possible to set W = {A ⊑ C}. The system would then compute that A ⊑ C
as well as one of A ⊑ B and B ⊑ C need to be removed. A domain expert may
then choose to remove A ⊑ B and A ⊑ C. In our problem statement it is not
possible that W = {A ⊑ C} as, when removing A ⊑ C, it still can be derived
from the remaining axioms. We thus assume that a first debugging step has been
performed, e.g., using traditional methods, and then start with W = {A ⊑ C, A
⊑ B}. Combining full debugging, weakening and completing will add additional
complexity to the already complex problem we describe in this paper.



B. Normalization algorithm

Algorithm 1 rewrites an axiom into one of the allowed forms.

Algorithm 1 Normalize(sb ⊑ sp)
Input: Axiom sb ⊑ sp
Output: A set of axioms in normalized form

1: if sp ∈ Nc then
2: return { sb ⊑ sp }
3: else if sp is of the form P ⊓Q then
4: return { sb ⊑ P , sb ⊑ Q }
5: else if sp is of the form ∃r.P then
6: if sb ∈ Nc then
7: return { sb ⊑ sp }
8: else if sb is of the form ∃r.Q then
9: Introduce new concept Z

10: return { ∃r.Q ⊑ Z, Z ⊑ ∃r.Q, Z ⊑ sp}
11: else if sb is of the form ∃s.Q then
12: Introduce new concept Z
13: return { ∃s.Q ⊑ Z, Z ⊑ ∃s.Q, Z ⊑ sp}
14: else if sb is of the form Q ⊓R then
15: Introduce new concept Z
16: return { Q ⊓R ⊑ Z, Z ⊑ Q, Z ⊑ R, Z ⊑ sp }
17: end if
18: end if



C. Algorithms for combination strategies

In this part, we give more details about the different algorithms used in the exper-
iments. We show all our algorithms for combining different removing, weakening
and completing strategies including the ones that were presented in the paper
earlier. A brief description of each algorithm is shown in Table 1.

Algorithm C1 Weaken one at a time, add weakened axiom sets and remove all
wrong at end

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr, Or)
4: end for
5: Tr ← Add-axioms(T ,

∪
α⊑β wα⊑β)

6: return Remove-axioms(Tr,W )

Algorithm C2 Remove/weaken/add weakened axiom sets one at a time
Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: Tr ← T
2: for each α ⊑ β ∈ W do
3: Tr ← Remove-axioms(Tr, {α ⊑ β})
4: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr, Or)
5: Tr ← Add-axioms(Tr,wα⊑β)
6: end for
7: return Tr

Algorithm C3 Remove all wrong, weaken all and add weakened axiom sets at
end

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: Tr ← Remove-axioms(T , W )
2: for each α ⊑ β ∈ W do
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr, Or)
4: end for
5: return Add-axioms(Tr,

∪
α⊑β wα⊑β)



Algorithm C4 Remove all wrong, weaken/add weakened axiom sets one at a
time

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: Tr ← Remove-axioms(T , W )
2: for each α ⊑ β ∈ W do
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr, Or)
4: Tr ← Add-axioms(Tr,wα⊑β)
5: end for
6: return Tr

Algorithm C5 Weaken one at a time, complete one at a time, add completed
axiom set and remove all wrong at end

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr, Or)
4: end for
5: for each α ⊑ β ∈ W do
6: cα⊑β ← ∅
7: for each sb ⊑ sp ∈ wα⊑β do
8: csb⊑sp ← completed-axiom-set(sb ⊑ sp, T , Or)
9: cα⊑β ← cα⊑β ∪ csb⊑sp

10: end for
11: end for
12: Tr ← Add-axioms(T ,

∪
α⊑β cα⊑β)

13: return Remove-axioms(Tr,W )

Algorithm C6 Weaken/complete/add completed axiom sets one at a time,
remove all wrong at end

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr, Or)
4: cα⊑β ← ∅
5: for each sb ⊑ sp ∈ wα⊑β do
6: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr, Or)
7: T ← Add-axioms(T , csb⊑sp)
8: end for
9: end for

10: return Remove-axioms(T ,W )



Algorithm C7 Remove/weaken/complete/add completed axiom sets one at a
time

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: Tr ← T
2: for each α ⊑ β ∈ W do
3: Tr ← Remove-axioms(Tr, {α ⊑ β})
4: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr, Or)
5: cα⊑β ← ∅
6: for each sb ⊑ sp ∈ wα⊑β do
7: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr, Or)
8: Tr ← Add-axioms(Tr, csb⊑sp)
9: end for

10: end for
11: return Tr

Algorithm C8 Weaken/complete one at a time, add completed axiom sets and
remove all wrong axioms at end

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr, Or)
4: cα⊑β ← ∅
5: for each sb ⊑ sp ∈ wα⊑β do
6: csb⊑sp ← completed-axiom-set(sb ⊑ sp, T , Or)
7: cα⊑β ← cα⊑β ∪ csb⊑sp

8: end for
9: end for

10: Tr ← Add-axioms(T ,
∪

α⊑β cα⊑β)
11: return Remove-axioms(Tr,W )



Algorithm C9 Weaken one at a time, remove all wrong, complete one at a
time, then add completed axiom sets at end

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr, Or)
4: end for
5: Tr ← Remove-axioms(Tr,W )
6: for each α ⊑ β ∈ W do
7: cα⊑β ← ∅
8: for each sb ⊑ sp ∈ wα⊑β do
9: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr, Or)

10: cα⊑β ← cα⊑β ∪ csb⊑sp

11: end for
12: end for
13: Tr ← Add-axioms(Tr,

∪
α⊑β cα⊑β)

14: return Tr

Algorithm C10 Weaken one at a time, remove all wrong, complete/add com-
pleted axiom sets one at a time

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr, Or)
4: end for
5: Tr ← Remove-axioms(T , W )
6: for each α ⊑ β ∈ W do
7: for each sb ⊑ sp ∈ wα⊑β do
8: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr, Or)
9: Tr ← Add-axioms(Tr,csb⊑sp)

10: end for
11: end for
12: return Tr



Algorithm C11 Remove/Weaken one at a time, add the wrong axiom and then
complete/add completed axiom sets one at a time, remove all wrong at end

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr, Or)
4: end for
5: for each α ⊑ β ∈ W do
6: Tr ← Remove-axioms(T , {α ⊑ β})
7: for each sb ⊑ sp ∈ wα⊑β do
8: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr, Or)
9: T ← Add-axioms(T ,csb⊑sp)

10: end for
11: end for
12: return Remove-axioms(T ,W )

Algorithm C12 Remove all wrong, weaken all, complete all, add completed
axiom sets at end

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: Tr ← Remove-axioms(T , W )
2: for each α ⊑ β ∈ W do
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr, Or)
4: end for
5: for each α ⊑ β ∈ W do
6: cα⊑β ← ∅
7: for each sb ⊑ sp ∈ wα⊑β do
8: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr, Or)
9: cα⊑β ← cα⊑β ∪ csb⊑sp

10: end for
11: end for
12: return Add-axioms(Tr,

∪
α⊑β cα⊑β)

Algorithm C13 Remove all wrong, weaken/complete/add completed axiom
sets one at a time

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: Tr ← Remove-axioms(T , W )
2: for each α ⊑ β ∈ W do
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr, Or)
4: for each sb ⊑ sp ∈ wα⊑β do
5: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr, Or)
6: Tr ← Add-axioms(Tr,csb⊑sp)
7: end for
8: end for
9: return Tr



Table 1. Algorithms.

Algorithm Description
C1 Weaken one at a time, add weakened axiom sets and remove all wrong at end
C2 Remove/weaken/add weakened axiom sets one at a time
C3 Remove all wrong, weaken one at a time, add weakened axiom sets at end
C4 Remove all wrong, weaken/add weakened axiom sets one at a time
C5 Weaken one at a time, complete one at a time, add completed axiom sets and remove all

wrong at end
C6 Weaken/complete/add completed axiom sets one at a time, remove all wrong at end
C7 Remove/weaken/complete/add completed axiom sets one at a time
C8 Weaken/complete one at a time, add completed axiom sets and remove all wrong at end
C9 Weaken one at a time, remove all wrong, complete one at a time, then add

completed axiom sets at end
C10 Weaken one at a time, remove all wrong, complete/add completed axiom sets one at a time
C11 Weaken one at a time, complete/add completed axiom sets one at a time, remove all wrong

at end
C12 Remove all wrong, weaken all, complete all, add completed axiom sets at end
C13 Remove all wrong, weaken/complete/add completed axiom sets one at a time



D. Experiment - data

The Mini-GALEN ontology

We repeat here the Min-GALEN ontology that is used in the main paper (Figure
1) and give a visualization (Figure 2).

NC = {GPr (GranulomaProcess), NPr (NonNormalProcess),
PPh (PathologicalPhenomenon), F(Fracture), E (Endocarditis),
IPr (InflammationProcess), PPr (PathologicalProcess),
C (Carditis), CVD (CardioVascularDisease)};
NR = { hAPr (hasAssociatedProcess) }
T = { CVD ⊑ PPh, F ⊑ PPh, ∃hAPr.PPr ⊑ PPh, E ⊑ C,
E ⊑ ∃hAPr.IPr, GPr ⊑ NPr, PPr ⊑ IPr, IPr ⊑ GPr, E ⊑ PPr };
W = { E ⊑ PPr, PPr ⊑ IPr, IPr ⊑ GPr }
Or returns true for:
GPr ⊑ IPr, GPr ⊑ PPr, GPr ⊑ NPr, IPr ⊑ PPr, IPr ⊑ NPr,
PPr ⊑ NPr, CVD ⊑ PPh, F ⊑ PPh, E ⊑ PPh, E ⊑ C,
E ⊑ CVD, C ⊑ PPh, C ⊑ CVD, ∃hAPr.PPr ⊑ PPh,
∃hAPr.IPr ⊑ PPh, E ⊑ ∃hAPr.IPr, E ⊑ ∃hAPr.PPh.
Note that for an oracle that does not make mistakes,
if Or(P ⊑ Q) = true, then also Or(∃r.P ⊑ ∃r.Q)=true and
Or(P ⊓ O ⊑ Q)=true.
For other axioms P ⊑ Q with P, Q ∈ NC , Or(P ⊑ Q) = false.

Fig. 1. Mini-GALEN; same as in main paper. (Visualized in Figure 2.)

Fig. 2. Visualization of the Mini-GALEN ontology in Figure 1. The axioms in the TBox
are represented with black arrows except for the wrong axioms which are represented
in red. The oracle’s knowledge about the axioms in the ontology is marked with T
(true) or F (false) at the arrows.



Characteristics of the 6 ontologies in the experiments

In order to compare the use of the different combinations of strategies, we run
experiments on several ontologies: Mini-GALEN, PACO, NCI, EKAW, OFSMR
and Pizza ontology. Mini-GALEN is an example inspired by the GALEN (from
https://bioportal.bioontology.org/) ontology; PACO, NCI, OFSMR are
available at https://bioportal.bioontology.org/, EKAW from the confer-
ence track of http://oaei.ontologymatching.org/ and the Pizza ontology is
available at https://github.com/owlcs/pizza-ontology. We made the ver-
sions of the ontologies that we used available at https://figshare.com/s/
f3b9472a7e5dd69237dc. We have used the parts of these ontologies that are
expressible in EL in the sense that we removed the parts of axioms that used
constructors not in EL.

An overview of the numbers of concepts, roles and axioms in these ontologies
is given in Table 2.

Table 2. Ontologies

Mini- Pizza EKAW OFSMR PACO NCI
GALEN

Concepts 9 74 100 159 224 3304
Roles 1 33 8 2 23 1
Axioms 20 341 801 1517 1153 30364



E. Experiment - results

In this part, we give the full results of the comparative experiments run in
different ontologies.

Table 3 lists the wrong axioms we introduced in each test ontology for ex-
periments. These wrong axioms were generated by replacing existing axioms
with axioms where their left/right-hand side concepts were changed. Figure 2
visualizes the structure of the Mini-Galen ontology in Figure 1.

The full results of the experiments are listed in Tables 4-26. Table 5 shows
the sizes of the sub-and super-concepts sets for weakening when removing wrong
axioms one at a time in different orders using Algorithm C2. Tables 6-10 show
the sizes of the super- and sub-concepts sets for weakening different ontologies
using Algorithms C1-C4.

When the completion is added, we can reduce the amounts of concepts in the
completed axiom sets by only showing combinations that would not introduce
equivalence between concepts in the ontology. This means that in the imple-
mented version of the completing algorithm, sp should belong to sup(α, T ) \
sup(β, T ) (sup(α, T ) in the original algorithm) and sb to sub(β, T ) \ sub(α, T )
(sub(β, T ) in the original algorithm). These new sets of super- and sub-concepts
are called source and target. We ran several comparative experiments showing the
difference between the sizes of source/target sets and the sizes of Sup(α,T )/Sub(β,T )
sets for the Mini-GALEN ontology and the NCI ontology. Tables 11-18 list the
relevant completing results using Algorithms C5-C13. For the remaining ontolo-
gies, in order to not introduce equivalence between concepts in the ontology, we
only choose the concepts in the source and target sets to generate the completed
axioms and Tables 19-26 show the results of the sizes of the source and target
sets when completing different ontologies using Algorithms C5-C13.



Table 3. Wrong axioms in each ontology.

Ontology Wrong axioms
Mini-
GALEN

PathologicalProcess⊑InflammationProcess,
InflammationProcess⊑GranulomaProcess,
Endocarditis⊑PathologicalProcess

PACO Polish_car⊑Home_improvement_maintenance,
Washing_windows⊑Home_improvement_maintenance,
Moderate⊑Speed, Washing_car⊑Home_improvement_maintenance,
Walking⊑Daily_living_activity, Per_week⊑By_duration

EKAW Camera_Ready_Paper⊑ ∃writtenBy.Student, Tutorial⊑Conference,
Invited_Talk_Abstract⊑Paper, Programme_Brochure⊑Flyer

NCI Tooth_tissue⊑Tooth, Red_fiber⊑Connective_tissue_fiber, Eye_lid⊑Cheek
Pizza PineKernels⊑VegetableTopping, PeperoniSausageTopping⊑PeperonataTopping,

IceCream⊑ ∃hasTopping.FruitTopping, RosemaryTopping⊑VegetableTopping
OFSMR Beverage⊑Food, Bread⊑Procesed_fruit_and_vegetables,

Pasta⊑Procesed_fruit_and_vegetables

Table 4. Weakening for Mini-GALEN using Algorithms C1-C4. Three wrong axioms
give 3 sup/sub-sets per algorithm.

C1 C2 C3 C4
Sup(β,T ) 3 2 4 3 2 2 1 2 1 1 2 1
Sub(α,T ) 2 3 1 2 1 1 1 1 1 1 1 1
Weakened PPr ⊑ NPr

IPr ⊑ NPr
PPr ⊑ NPr
IPr ⊑ NPr

IPr ⊑ NPr IPr ⊑ NPr

Table 5. Removing wrong axioms in different order for Mini-GALEN by Algorithm
C2. Wrong axioms: 1⃝PPr⊆IPr, 2⃝IPr⊆GPr, 3⃝E⊆PPr.

Wrong Axiom 1⃝→ 2⃝→ 3⃝ 1⃝→ 3⃝→ 2⃝ 2⃝→ 1⃝→ 3⃝ 2⃝→ 3⃝→ 1⃝ 3⃝→ 2⃝→ 1⃝ 3⃝→ 1⃝→ 2⃝
Sup(β,T ) 3 2 2 3 2 2 3 2 2 2 2 3 2 2 4 3 2 4
Sub(α,T ) 2 1 1 2 1 1 2 1 3 1 3 1 1 2 1 1 1 1

Table 6. Weakening the PACO ontology using Algorithms C1-C4. Six wrong axioms
give 6 sup/sub-sets per algorithm.

C1 C2 C3 C4
Sup(β,T ) 4 4 4 3 4 3 4 4 4 3 4 3 4 4 4 3 4 3 4 4 4 3 4 3
Sub(α,T ) 1 1 1 6 1 1 1 1 1 6 1 1 1 1 1 6 1 1 1 1 1 6 1 1



Table 7. Weakening the EKAW ontology using Algorithms C1-C4. Four wrong axioms
give 4 sup/sub-sets per algorithm.

C1 C2 C3 C4
Sup(β,T ) 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3
Sub(α,T ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 8. Weakening the NCI ontology using Algorithms C1-C4. Three wrong axioms
give 3 sup/sub-sets per algorithm.

C1 C2 C3 C4
Sup(β,T ) 13 15 8 13 15 8 13 15 8 13 15 8
Sub(α,T ) 7 1 3 7 1 3 7 1 3 7 1 3

Table 9. Weakening the Pizza ontology using Algorithms C1-C4. Four wrong axioms
give 4 sup/sub-sets per algorithm.

C1 C2 C3 C4
Sup(β,T ) 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8
Sub(α,T ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 10. Weakening the OFSMR ontology using Algorithms C1-C4. Three wrong
axioms give 3 sup/sub-sets per algorithm.

C1 C2 C3 C4
Sup(β,T ) 2 4 4 2 4 4 2 4 4 2 4 4
Sub(α,T ) 2 1 1 2 1 1 2 1 1 2 1 1

Table 11. Completing the Mini-GALEN ontology using Algorithms C5-C7.

C5 C6 C7
Weakened PPr⊑NPr, IPr⊑NPr PPr⊑NPr, IPr⊑NPr PPr⊑NPr, IPr⊑NPr
Source 1 1 1 1 1 1
Target 3 2 3 2 3 4
Completed PPr⊑NPr, IPr⊑NPr PPr⊑NPr, IPr⊑NPr PPr⊑NPr, IPr⊑PPr

Table 12. Completing the Mini-GALEN ontology using Algorithms C5-C7.

C5 C6 C7
Weakened PPr⊑NPr, IPr⊑NPr PPr⊑NPr, IPr⊑NPr PPr⊑NPr, IPr⊑NPr
Sup(α,T ) 1 1 1 1 1 1
Sub(β,T ) 3 2 3 4 3 4
Completed PPr⊑NPr, IPr⊑NPr PPr⊑NPr, IPr⊑PPr PPr⊑NPr, IPr⊑PPr



Table 13. Completing the Mini-GALEN ontology using Algorithms C8-C13.

C8 C9 C10 C11 C12 C13
Weakened PPr⊑NPr,

IPr⊑NPr
PPr⊑NPr,
IPr⊑NPr

PPr⊑NPr,
IPr⊑NPr

PPr⊑NPr,
IPr⊑NPr

IPr⊑NPr IPr⊑NPr

Source 3 2 1 1 1 1 1 1 1 1
Target 3 2 2 2 2 3 3 2 2 2
Completed GPr⊑IPr,

PPr⊑NPr,
IPr⊑NPr

PPr⊑NPr,
IPr⊑NPr

PPr⊑NPr,
IPr⊑PPr

PPr⊑NPr,
IPr⊑NPr

IPr⊑NPr IPr⊑NPr

Table 14. Completing the Mini-GALEN ontology using Algorithms C8-C13.

C8 C9 C10 C11 C12 C13
Weakened PPr⊑NPr,

IPr⊑NPr
PPr⊑NPr,
IPr⊑NPr

PPr⊑NPr,
IPr⊑NPr

PPr⊑NPr,
IPr⊑NPr

IPr⊑NPr IPr⊑NPr

Sup(α,T ) 4 3 1 1 1 1 1 1 1 1
Sub(β,T ) 5 5 2 2 2 3 3 4 2 2
Completed GPr⊑IPr,

PPr⊑NPr,
IPr⊑PPr

PPr⊑NPr,
IPr⊑NPr

PPr⊑NPr,
IPr⊑PPr

PPr⊑NPr,
IPr⊑PPr

IPr⊑NPr IPr⊑NPr

Table 15. Completing the NCI ontology using Algorithms C5-C9.

C5 C6 C7 C8 C9
Source 3 1 1 3 1 1 3 1 1 6 14 6 3 1 1
Target 40 2143 83 40 2143 83 40 2136 76 59 2143 83 40 2133 76

Table 16. Completing the NCI ontology using Algorithms C5-C9.

C5 C6 C7 C8 C9
Sup(α,T ) 3 1 1 3 1 1 3 1 1 15 16 9 3 1 1
Sub(β,T ) 41 2143 83 41 2143 83 41 2136 76 66 2144 86 41 2133 76

Table 17. Completing the NCI ontology using Algorithms C10-C13.

C10 C11 C12 C13
Source 3 1 1 3 1 1 3 1 1 3 1 1
Target 40 2136 76 40 2143 83 40 2133 76 40 2133 76

Table 18. Completing the NCI ontology using Algorithms C10-C13.

C10 C11 C12 C13
Sup(α,T ) 3 1 1 3 1 1 3 1 1 3 1 1
Sub(β,T ) 41 2136 76 41 2143 83 41 2133 76 41 2133 76



Table 19. Completing the PACO ontology using Algorithms C5-C9.

C5 C6 C7 C8 C9
Source 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 1 1 1 1 1 1
Target 59 59 59 171 40 40 59 59 59 171 40 40 59 59 59 171 40 40 59 59 59 171 40 40 51 51 51 168 39 39

Table 20. Completing the PACO ontology using Algorithms C10-C13.

C10 C11 C12 C13
Source 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Target 51 52 53 170 39 40 59 59 59 171 40 40 51 51 51 168 39 39 51 52 53 170 39 40

Table 21. Completing of the EKAW ontology using Algorithms C5-C9.

C5 C6 C7 C8 C9
Source 9 1 1 1 9 1 1 1 9 1 1 1 10 2 2 2 9 1 1 1
Target 23 17 34 34 23 17 34 34 23 17 34 34 23 17 34 34 23 17 33 33

Table 22. Completing of the EKAW ontology using Algorithms C10-C13.

C10 C11 C12 C13
Source 9 1 1 1 9 1 1 1 9 1 1 1 9 1 1 1
Target 23 17 33 34 23 17 34 34 23 17 33 33 23 17 33 34

Table 23. Completing by the Pizza ontology using Algorithms C5-C9.

C5 C6 C7 C8 C9
Source 1 1 3 3 1 1 3 3 1 1 3 3 2 7 4 6 1 1 3 3
Target 50 147 50 50 50 147 50 50 50 147 50 50 50 147 50 50 50 144 48 48

Table 24. Completing the Pizza ontology using Algorithms C10-C13.

C10 C11 C12 C13
Source 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3
Target 49 147 48 50 50 147 50 50 18 144 48 48 48 145 49 50

Table 25. Completing the OFSMR ontology using Algorithms C5-C9.

C5 C6 C7 C8 C9
Source 1 1 1 1 1 1 1 1 1 2 3 3 1 1 1
Target 125 125 125 125 125 125 125 125 125 125 125 125 123 122 122



Table 26. Completing the OFSMR ontology using Algorithms C10-C13.

C10 C11 C12 C13
Source 1 1 1 1 1 1 1 1 1 1 1 1
Target 123 122 123 125 125 125 123 122 122 123 122 123



F. Implemented systems

We have implemented two systems. As Protégé is a well-known ontology de-
velopment tool, we implemented a plugin for repairing based on Algorithm C9.
Using this algorithm the user can repair all wrong axioms at once. However, by
iteratively invoking this plugin the user can also repair the wrong axioms one
at a time. Further, we extended the EL version of the RepOSE system (Wei-
Kleiner, Dragisic, and Lambrix 2014; Lambrix, Wei-Kleiner, and Dragisic 2015).
We allow the user to choose different combinations, thereby giving a choice in
the trade-off between validation work and completeness.

The systems and user manual with examples are available at https://
figshare.com/s/f3b9472a7e5dd69237dc.

G. Derivation of the Hasse diagrams

For a given TBox T , let Der(T ) denote the set of derivable axioms from T .
Then, for TBoxes T1 and T2, if T1 ⊑ T2, then we know that Der(T1) ⊑ Der(T2).
This means that if an axiom is derivable from TBox T1, it is also derivable from
TBox T2 (but not necessarily the other way around). As the sub- and super-
concepts of a concept are computed using subsumption axioms, this also means
that the set of sub-concepts for a concept in T1 is a subset of the set of sub-
concepts for that concept in T2, and the set of super-concepts for a concept in T1
is a subset of the set of super-concepts for that concept in T2. When computing
weakened axiom sets and completed axiom sets, the algorithms compute sets of
sub-concepts and sets of super-concepts to generate candidate axioms for these
weakened and completed axiom sets. Therefore, if T1 ⊑ T2, the sets of candidate
axioms for the weakened and completed axiom sets computed for T1 are subsets
of those computed for T2. This means more validation work for T2, but also
possibly a more complete final ontology. The Hasse diagrams are based on this
observation.

Removing. In general, when removing all axioms at once, the TBox is a
subset of the TBox with one axiom removed, which in turn is a subset of the
TBox where no axioms are removed. When adding no axioms back, the TBox
is a subset of the TBox with one axiom added back, which in turn is a subset
of the TBox where all axioms are added back. If no wrong axioms are removed,
then nothing needs to be added back and thus AB-one, AB-all and AB-none
have the same result (TR−none,AB−all = TR−none,AB−one = TR−none,AB−none).
The TBox for these strategies is larger during computation (of weakened or
completed axiom sets) than the TBoxes where one or all wrong axioms are
removed. If one wrong axiom at the time is removed, the adding back all (AB-all)
or one (AB-one) give the same result (TR−one,AB−all = TR−one,AB−one) as both
strategies add the same one axiom back. The TBox for these strategies is larger
than when no wrong axiom is added back (TR−one,AB−none ⊑ TR−one,AB−all =
TR−one,AB−one). When all wrong axioms are removed at once, then they will be



added back at the end or not.1 However, this does not influence the TBox during
the computation. Therefore, the add back strategy does not matter and the TBox
during computation is smaller than when wrong axioms were removed one at a
time (TR−all,AB−all = TR−all,AB−one = TR−all,AB−none ⊑ TR−one,AB−none).

Weakening. First, we note that updating immediately or updating after each
wrong axiom is the same operation for weakening, as a complete weakened ax-
iom set for a wrong axiom is computed. Thus, the TBox for (TW−one,U−now) is
the same as for (TW−one,U−end_one), and the TBox for (TW−all,U−now) is the
same as for (TW−all,U−end_one). Further, when weakening one axiom at a time
and updating the TBox (i.e., adding the axioms of the weakened axiom set for a
wrong axiom) immediately, results in a larger TBox for the next computations
of weakened axiom sets for wrong axioms, than if we would not update imme-
diately (TW−one,U−end_all ⊑ TW−one,U−now). When not immediately updating,
the TBox for generating the weakened axioms sets stays the same for all wrong
axioms and thus gives the same result as weakening all wrong axioms at once.
Thus, TW−all,U−now = TW−all,U−end_all = TW−one,U−end_all.

Completing. When completing one axiom at a time and updating the TBox
(i.e., adding the axioms of the completed axiom set for a weakened axiom) imme-
diately, results in a larger TBox for the next computations of completed axiom
sets for weakened axioms than not updating immediately (TC−one,U−end_one ⊑
TC−one,C−now, TC−one,U−end_all ⊑ TC−one,C−now,). When not updating imme-
diately, there is the choice between updating after all weakened axioms for a
particular wrong axiom have been processed or waiting until all weakened ax-
ioms for all wrong axioms are processed. The TBox for the former case is larger
than the one for the latter case (TC−one,U−end_all ⊑ TC−one,U−end_one). Waiting
to update the TBox until all weakened axioms for all wrong axioms are processed,
means the TBox stays the same during the computation of the completed axioms
sets and thus gives the same result as completing all weakened axioms at once
(TC−one,U−end_all = TC−all,U−end_all = TC−all,U−end_one = TC−all,U−now).

1 After completing they should be removed, but after weakening they could be added
back for the completion step.


