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Appendix A

In this section we provide proofs for Lemma 1 and Theorem 1.

Lemma 1

Proof. Following the path of Lemma 10.1.c in Lin and Bai [2] and the condition
C.2, we have
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and by inducing the condition C.1, we have
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where C1 term contains the mixing coefficient ρ.

Utilizing results of [3], let Pk =
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Theorem 1

For Theorem (1), we note the following:
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Furthermore, by applying Karush-Kuhn-Tucker (KKT) conditions and Bern-
stein inequality for ρ mixing [1], for any constant C∗(θθθ, κ) > 0,
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and with Lemma (1), the above inequality will hold with probability no less
than 1− p1−A2

0 .
Again, from Lemma (1), we see that
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Armed with the above inequality and that of the inequality of (3), any solu-
tion θ̂̂θ̂θA is within{
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B Simulations

Simulated structures

1. AR(1) with γ coefficient : Covariance matrix of the form |γi−j
i,j |

2. Star Block (SB): A block-structured covariance matrix with equal dimen-
sion blocks whose inverses correspond to star-structured graphs.

3. Uniformly weighted (UW): Weighted counterpart of the Erdos-Renyi
random graph where the weights are generated as per the Uniform(0,1).

Dependence Check

We use Autocorrelation function plots in Fig 1 to do a quality check of the
simulated data. The plots suggest that the synthetic data has a fast decaying
correlation as the lag between covariates increases which shows our data closely
follows a weakly dependent mixing process.
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(a) KS,AR(1) (b) KS , SB (c) KS, Uniform

(d) KP, AR(1) (e) KP, SB (f) KP, Uniform

(g) Sylvester, AR(1) (h) Sylvester, SB (i) Sylvester, Uniform

Fig. 1: Autocorrelation function plots to check the dependence structure of the
simulated AR(1), SB and UW graph data
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C Code and Reproducibility

The code for the data is available at https://drive.google.com/drive/folders/
1C_qYTZXbZ2QgZ5eC8GuqJv0wvXgrhvK8?usp=sharing. All the simulations were
done on a system with Linux OS, 32GB RAM, 13th Gen Intel(R) Core(TM)
i9-13900HX, and RTX 4080 GPU.

https://drive.google.com/drive/folders/1C_qYTZXbZ2QgZ5eC8GuqJv0wvXgrhvK8?usp=sharing
https://drive.google.com/drive/folders/1C_qYTZXbZ2QgZ5eC8GuqJv0wvXgrhvK8?usp=sharing
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