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1 The case of a single loop using the absolute
parametrization

1.1 Absolute parametrization and measurement models
The absolute parametrization consists in estimating transformations of the form
TkW where W is the “world” coordinate system and k is the local coordinate
system of the camera at time instant k. Thus at time instant k, the set of
estimated transformations is {TiW }i=1,...,k. In practice, T1W is usually fixed to
the identity matrix since the “world” coordinate system is also unknown. The
likelihood for an odometry measurement and a loop closure are assumed to be
Gaussian and are given in Table 1 eq.(1) and eq.(2), respectively.

Table 1. Odometry measurement model and loop closure measurement model using
the absolute parametrization

Odometry likelihood Loop closure likelihood

p
(
Zn(n+1)|TnW , T(n+1)W

)
=

NG
(
Zn(n+1);TnWT

−1
(n+1)W , Σn(n+1)

) (1)
p (Zmn|TmW , TnW ) =

NG
(
Zmn;TmWT

−1
nW , Σmn

) (2)

1.2 Inference using the absolute parametrization
Using the likelihoods defined in eq.(1) and eq.(2), we wish to minimize the fol-
lowing criterion w.r.t the absolute transformations {TiW }i=1,...,NL

:

− 2 ln
(
p
(
{TiW }i=1,...,NL

|Z1NL
,
{
Zi(i+1)

}
i=1,...,NL−1

))
=

∥∥log∨G
(
Z1NL

TNLWT
−1
1W

)∥∥2
Σ1NL

+

NL−1∑
i=1

∥∥log∨G
(
Zi(i+1)T(i+1)WT

−1
iW

)∥∥2
Σi(i+1)

+ cst

(3)

The classical way to minimize this criterion is to apply a Gauss-Newton algo-
rithm where the absolute transformations are jointly refined iteratively as follows
(the superscript stands for the iteration):

T
(l)
iW = exp∧G

(
δ
(l/l−1)
iW

)
T

(l−1)
iW for i = 1...NL. (4)
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The increments
{
δ
(l/l−1)
iW

}
i=1,...,NL

are obtained at each iteration by solving the

following (sparse) linear system of size p×NL:
δ
(l/l−1)
1W

...

δ
(l/l−1)
NLW

 =

((
J
(l)
abs

)T
ΛJ

(l)
abs

)† (
J
(l)
abs

)T
Λ


r
(l−1)
12

...

r
(l−1)
(NL−1)NL

r
(l−1)
1NL

 (5)

where J
(l)
abs is the Jacobian matrix of the system, Λ is a block diagonal matrix

concatenating the inverse of the covariance matrices of the measurements and †
stands for the pseudo-inverse of a matrix (since JTabsΛJabs has p null eigenvalues).

Moreover r
(l−1)
1NL

= log∨G

(
Z1NL

T
(l−1)
NLW

(
T

(l−1)
1W

)−1)
and

r
(l−1)
i(i+1) = log∨G

(
Zi(i+1)T

(l−1)
(i+1)W

(
T

(l−1)
iW

)−1)
.

(a) Illustration of a per-
fect loop of length 10,
where a cone represents
a camera pose (cam-
era 1 is black camera
10 is blue). The (noise-
less) odometry measure-
ments are plotted as
solid blue lines while the
(noiseless) loop closure
measurement is shown
as a dashed red line.

Jabs JTabsΛJabs
(
JTabsΛJabs

)†

Jrel JTrelΛJrel
(
JTrelΛJrel

)−1

(b) Jacobian, pseudo-Hessian and inverse pseudo-Hessian for
absolute and relative parametrizations (only the magnitude
of the coefficients is shown).

Fig. 1. Illustration of the motion averaging problem on SE(3) for a single loop.
Using an absolute parametrization, the inverse pseudo-Hessian exhibits very strong
correlations between the absolute transformations. On the contrary, using a relative
parametrization, the inverse pseudo-Hessian has very small correlations (not null but
close to zero) between the relative transformations, motivating our variational Bayesian
approximation of the posterior distribution which assumes independent relative trans-
formations.

As can be seen in Fig. 1b, the pseudo-Hessian JTabsΛJabs is extremely sparse,
which allows to employ efficient sparse solvers. However, the pseudo-inverse
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of the pseudo-Hessian
(
JTabsΛJabs

)†
, which represents (once the algorithm has

reached convergence) the covariance matrix of the posterior distribution under
a linear approximation, manifests very strong correlations between the transfor-
mations. This makes any approximation of that covariance matrix very difficult
and thus prevents us from being able to derive a filter operating on large scale
problems. In fact, this approach corresponds to what was proposed in [2] where
the full covariance matrix is maintained. As it is acknowledged by the authors
of [2], in practice their filter can only efficiently estimate less than a thousand
absolute transformations.

2 Proof of eq.(7) of the submitted version of the paper

At iteration l, the Gauss-Newton algorithm consists in linearizing the terms
inside the norms of the following cost function∥∥∥∥∥∥log∨G

Z1NL

(
NL−1∏
i=1

exp∧G

(
δ
(l/l−1)
i(i+1)

)
T

(l−1)
i(i+1)

)−1∥∥∥∥∥∥
2

Σ1NL

+

NL−1∑
i=1

∥∥∥log∨G

(
exp∧G

(
δ
(l/l−1)
i(i+1)

)
T

(l−1)
i(i+1)Z

−1
i(i+1)

)∥∥∥2
Σi(i+1)

(6)

around δi(i+1) = 0 for i = 1...NL − 1. Thus we obtain:∥∥∥∥∥r(l−1)1NL
−
NL−1∑
i=1

J
(l)
1i δ

(l/l−1)
i(i+1)

∥∥∥∥∥
2

Σ1NL

+

NL−1∑
i=1

∥∥∥r(l−1)i(i+1) + δ
(l/l−1)
i(i+1)

∥∥∥2
Σi(i+1)

=
∥∥∥r(l−1) − J (l)

relδ
(l/l−1)

∥∥∥2
Λ−1

(7)

where we approximated the Jacobian of log∨G by the identity, J
(l)
11 ' Id,

J
(l)
1n ' AdG

(∏n−1
i=1 T

(l−1)
i(i+1)

)
for n = 2...NL − 1,

r
(l−1)
1NL

=log∨G

(
Z1NL

(∏NL−1
i=1 T

(l−1)
i(i+1)

)−1)
and r

(l−1)
i(i+1) =log∨G

(
T

(l−1)
i(i+1)Z

−1
i(i+1)

)
.

Moreover, r(l−1) =


r
(l−1)
12

...

r
(l−1)
(NL−1)NL

r
(l−1)
1NL

, δ(l/l−1) =


δ
(l/l−1)
12

...

δ
(l/l−1)
(NL−1)NL

,

J
(l)
rel =


−Id 0

. . .

0 −Id
J
(l)
11 · · · J

(l)
1(NL−1)

 and Λ is a block diagonal matrix concatenating

the inverse of the covariance matrices of the measurements.
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Minimizing (7) w.r.t δ(l/l−1) gives

δ(l/l−1) =

((
J
(l)
rel

)T
ΛJ

(l)
rel

)−1 (
J
(l)
rel

)T
Λr(l−1) (8)

=

(
C−1 +

(
J
(l)
LC

)T
Σ−11NL

J
(l)
LC

)−1 (
J
(l)
LC

)T
Σ−11NL

r
(l−1)
1NL

−
(
C−1 +

(
J
(l)
LC

)T
Σ−11NL

J
(l)
LC

)−1
C−1


r
(l−1)
12

...

r
(l−1)
(NL−1)NL

 (9)

where J
(l)
LC =

[
J
(l)
11 · · · J

(l)
1(NL−1)

]
and C =

Σ12 0
. . .

0 Σ(NL−1)NL

. However, us-

ing the Woodbury formula:

(A+ UBV )
−1

= A−1 −A−1U
(
B−1 + V A−1U

)−1
V A−1 (10)

the second term in (9) becomes

−
(
C−1 +

(
J
(l)
LC

)T
Σ−11NL

J
(l)
LC

)−1
C−1


r
(l−1)
12

...

r
(l−1)
(NL−1)NL



= −

(
C − C

(
J
(l)
LC

)T (
Σ1NL

+ J
(l)
LCC

(
J
(l)
LC

)T)−1
J
(l)
LCC

)
C−1


r
(l−1)
12

...

r
(l−1)
(NL−1)NL



= −

(
Id− C

(
J
(l)
LC

)T (
Σ1NL

+ J
(l)
LCC

(
J
(l)
LC

)T)−1
J
(l)
LC

)
r
(l−1)
12

...

r
(l−1)
(NL−1)NL

 (11)

Moreover, using the following identity(
C−1 +

(
J
(l)
LC

)T
Σ−11NL

J
(l)
LC

)−1 (
J
(l)
LC

)T
Σ−11NL

=C
(
J
(l)
LC

)T (
J
(l)
LCC

(
J
(l)
LC

)T
+Σ1NL

)−1
(12)

the first term in (9) becomes(
C−1 +

(
J
(l)
LC

)T
Σ−11NL

J
(l)
LC

)−1 (
J
(l)
LC

)T
Σ−11NL

r
(l−1)
1NL

=C
(
J
(l)
LC

)T (
J
(l)
LCC

(
J
(l)
LC

)T
+Σ1NL

)−1
r
(l−1)
1NL

(13)
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From (9), (11) and (13), we obtain

δ(l/l−1) = C
(
J
(l)
LC

)T (
J
(l)
LCC

(
J
(l)
LC

)T
+Σ1NL

)−1
·

·

r(l−1)1NL
+ J

(l)
LC


r
(l−1)
12

...

r
(l−1)
(NL−1)NL


−


r
(l−1)
12

...

r
(l−1)
(NL−1)NL

 (14)

In order to reduce the number of calls to log∨G, which can be time consuming
(especially for SL(3) since there exists no analytical formula for log∨SL(3)), we

use the following approximation (assuming T
(0)
i(i+1) = Zi(i+1))

r
(l−1)
i(i+1) = log∨G

(
T

(l−1)
i(i+1)Z

−1
i(i+1)

)
= log∨G

(
T

(l−1)
i(i+1)

(
T

(0)
i(i+1)

)−1)
= log∨G

(
T

(l−1)
i(i+1)

(
T

(l−2)
i(i+1)

)−1
T

(l−2)
i(i+1) · · ·

(
T

(1)
i(i+1)

)−1
T

(1)
i(i+1)

(
T

(0)
i(i+1)

)−1)
= log∨G

(
exp∧G

(
δ
(l−1/l−2)
i(i+1)

)
exp∧G

(
δ
(l−2/l−3)
i(i+1)

)
· · · exp∧G

(
δ
(1/0)
i(i+1)

))
'

l−1∑
n=1

δ
(n/n−1)
i(i+1) (15)

Finally, from (14) and (15) we obtain

δ(l/l−1) '

Σ12 0
. . .

0 Σ(NL−1)NL

(J (l)
LC

)T (
Σ1NL

+

NL−1∑
i=1

J
(l)
1i Σi(i+1)

(
J
(l)
1i

)T)−1
·

·

r(l−1)1NL
+ J

(l)
LC

l−1∑
n=1


δ
(n/n−1)
12

...

δ
(n/n−1)
(NL−1)NL


− l−1∑

n=1


δ
(n/n−1)
12

...

δ
(n/n−1)
(NL−1)NL

 (16)

3 Online Variational Bayesian Motion Averaging
algorithm

A pseudo-code of our online motion averaging algorithm is presented in Alg.1.
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Algorithm 1 Online variational Bayesian motion averaging algorithm

Inputs:
{
Z(k−1)k, Σ(k−1)k

}
k=2,...

(stream of odometry measurements),

{Zmn, Σmn}m<n (stream of loop closure measurements), t (gating threshold)

Outputs: The algorithm continuously provides an estimate of the absolute

transformations (w.r.t the first reference frame)
{
T
abs
1k

}
k=1,...

by composing the

estimated relative transformations

k = 1, T
abs
1k = Id

while 1 //infinite loop processing new odometry and loop closure measurements
k = k + 1

//process new odometry measurement
(
Z(k−1)k, Σ(k−1)k

)
T (k−1)k = Z(k−1)k, P(k−1)k = Σ(k−1)k //initialize mean and covariance of T(k−1)k

T
abs
1k = T

abs
1k−1T (k−1)k //initialize absolute transformation T

abs
1k

//process new loop closure measurements {Zlk, Σlk}l<k
for each new loop closure measurement (Zlk, Σlk) where l < k do

if

∥∥∥∥log∨G

(
Zlk

(∏k−1
i=l T i(i+1)

)−1
)∥∥∥∥2

Σlk+
∑k−1

i=l
JliPi(i+1)J

T
li

< t then //gating

//apply Gauss-Newton
for i = l, ..., k − 1 do T̆i(i+1) = T i(i+1), ri(i+1) = 0, δi(i+1) = 0 end for
while not converged

rlk = log∨G

(
Zlk

(∏k−1
i=l T̆i(i+1)

)−1
)

//compute loop error

rl(l+1) += δl(l+1), Jll = Id //update relative errors and compute Jacobians

for i = l + 1, ..., k − 1 do ri(i+1) += δi(i+1), Jli = AdG
(∏i−1

j=l T̆j(j+1)

)
end for

rlk,cum = rlk, Clk,cum=Σlk //compute cumulated error and covariance
for i = l, ..., k − 1 do
rlk,cum += Jliri(i+1), Clk,cum += JliPi(i+1)J

T
li

end for

solve Clk,cumx = rlk,cum

//compute increments and update relative transformations
for i = l, ..., k − 1 do
δi(i+1) = Pi(i+1)J

T
li x− ri(i+1), T̆i(i+1) = exp∧G

(
δi(i+1)

)
T̆i(i+1)

end for
end while

//variational Bayesian approximation of the posterior

for i = l, ..., k− 1 do T i(i+1) = T̆i(i+1), Pi(i+1) =
(
JTliΣ

−1
lk Jli + P−1

i(i+1)

)−1

end for

//update absolute transformations modified by the loop closure

for i = l, ..., k − 1 do T
abs
1(i+1) = T

abs
1i T i(i+1) end for

end if
end for

end while
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Fig. 2. Results for planar visual SLAM (SE(2)) with wrong loop closures (the results
of DCS are taken from Fig.4 in [4]): Using its default parameter value (w = 1), DCS
[1] rejects all (correct and wrong) the loop closures. Using a higher value (w = 1000),
DCS manages to reject wrong loop closures. Contrary to DCS, both our approach and
LG-IEKF [2] do not need parameter tuning (we simply use the X 2 value with p degrees
of freedom given by a p-value of 0.001) and produces the same results as DCS when
its parameter is optimized. Remark: results for COP-SLAM [3] could not be provided
since it is not able to detect wrong loop closures.

4 Evaluation of the robustness

In this experiment, we employ the dataset provided by the authors of [4] which
allows to evaluate the robustness of an approach to wrong loop closures on a
planar visual SLAM application (Lie group SE(2)). For two sequences of the
KITTI dataset, both a visual odometry module and a loop closure module have
been employed in order to obtain the odometry measurements and loop closures.
The loop closure module that has been used has a threshold α that allows to
tune the algorithm output (α = 1: only highly confident loop closures, α = 0: all
the loop closures). Synthetic wrong loop closures are also generated and added
to the set of loop closure measurements. In order to evaluate the robustness of
an algorithm, the experiment consists, for different values of α, in applying the
algorithm and computing the loop closure detection precision and recall. The
results for this experiment are given in Fig.2 where we reported the precision
and recall for our approach, LG-IEKF [2] and DCS [1] (that uses g2o).

One can see that our approach surprisingly achieved exactly the same pre-
cision and recall as both LG-IEKF and DCS. This is a remarkable result since
these two algorithms are not designed to perform online large scale estimation
and are consequently much slower than our approach.

Let us note that for α = 0.15 and α = 0.2 we observe a failure case for
all the algorithms. Indeed, both precision and recall drop to zero because an
ambiguous wrong loop closure was classified as inlier. This led to the distortion
of the estimated trajectory and, as a consequence, to the rejection of all the
subsequent loop closures.
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5 Additional experiments

5.1 Monocular Visual SLAM

In this experiment, we demonstrate the ability of our approach to deal with the
Lie group Sim(3) by considering a monocular visual SLAM problem. In order
to obtain the measurements, a local SLAM approach performs sliding-window
bundle adjustment in order to reconstruct small overlapping submaps. Here a
“submap” corresponds to a fragment of the camera trajectory and a small 3D
point cloud. The odometry measurements are obtained by computing the 3D
similarities between the temporally consecutive submaps. In order to detect a
loop closure between the current submap and a previous submap, we first use a
place recognition algorithm. Then, for each candidate past submap, we match
the descriptors of its 3D points with the 3D points of the current submap and
then compute a 3D similarity using a RANSAC algorithm.

The objective of a motion averaging algorithm in this application is to align
all the submaps, resulting in a global map of the environment, i.e a global 3D
point cloud as well as the complete camera trajectory.

In Fig. 3, we present results for monocular visual SLAM (Lie group Sim(3))
on sequence 15 of the KITTI dataset. One can see that the trajectory estimated
with our approach is visually much closer to the result of [5] (which employs a
Lidar) than the trajectory estimated with COP-SLAM. Results on sequence 13
of the KITTI dataset are provided in the submitted version of paper.

LOAM [5] (Lidar) Visual odometry COP-SLAM [3] This paper

Fig. 3. Results for monocular visual SLAM (Lie group Sim(3)) on sequence KITTI
15. The ground truth is not available for that sequence. Thus, we reported the best
result obtained using a Lidar [5].

5.2 Video mosaicking

In this experiment, we demonstrate the ability of our approach to deal with
the Lie group SL(3) by considering a video mosaicking problem. The odometry
measurements are obtained by computing the homographies between temporally
consecutive frames of the video. In order to detect the loop closures (i.e when
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the current video frame overlaps with a past video frame), we employ an image
recognition algorithm and then apply a RANSAC algorithm to compute the
homography between the current video frame and the retrieved past video frame.

The objective of a motion averaging algorithm in this application is to align
all the video frames, assuming a planar scene, resulting in a global (planar)
mosaic of the entire scene.

In Fig. 4, we present results for video mosaicking (Lie group SL(3)) on the
dataset provided by the authors of [2].

In theory, LG-IEKF [2] should outperform our approach since our approach
approximates the posterior distribution with few parameters in order to effi-
ciently deal with large scale problems.

However, one can see that, like LG-IEKF, our approach produces a mosaic
visually very close to the ground truth and also perfectly detects the wrong loop
closures.

(a) Examples of input images

Ground truth LG-IEKF [2] Ours

(b) Top row: mosaic, Bottom row: labeling matrices (a white pixel is an inlier, a black
pixel corresponds to an unavailable measurement, a gray pixel corresponds to an outlier)

Fig. 4. Results for video mosaicking (Lie group SL(3)).
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