Guided Image Filtering

Supplementary Technical Details

1 Derivation of the Filter Kernel

By definition the guided filter output q is computed through the following steps:

$$
\begin{align*}
a_{k} & =\frac{\frac{1}{|\omega|} \sum_{i \in \omega_{k}} I_{i} p_{i}-\mu_{k} \bar{p}_{k}}{\sigma_{k}^{2}+\epsilon} \tag{1}\\
b_{k} & =\bar{p}_{k}-a_{k} \mu_{k} \tag{2}\\
q_{i} & =\left(\frac{1}{|\omega|} \sum_{k \in \omega_{i}} a_{k}\right) I_{i}+\left(\frac{1}{|\omega|} \sum_{k \in \omega_{i}} b_{k}\right) . \tag{3}
\end{align*}
$$

As we indicate in the paper, the above equations can be written in the forms of filtering: $a_{k}=\sum_{j} A_{k j}(I) p_{j}, b_{k}=\sum_{j} B_{k j}(I) p_{j}$, and $q_{i}=\sum_{i} W_{i j}(I) p_{j}$. So the filter kernel can be computed by taking the partial derivation: $W_{i j}=\frac{\partial q_{i}}{\partial p_{j}}$.

Putting (2) into (3) and eliminating b, we obtain:

$$
\begin{equation*}
q_{i}=\frac{1}{|\omega|} \sum_{k \in \omega_{i}}\left(a_{k}\left(I_{i}-\mu_{k}\right)+\bar{p}_{k}\right) . \tag{4}
\end{equation*}
$$

Taking the derivative w.r.t. p_{j}, we have:

$$
\begin{equation*}
\frac{\partial q_{i}}{\partial p_{j}}=\frac{1}{|\omega|} \sum_{k \in \omega_{i}}\left(\frac{\partial a_{k}}{\partial p_{j}}\left(I_{i}-\mu_{k}\right)+\frac{\partial \bar{p}_{k}}{\partial p_{j}}\right) \tag{5}
\end{equation*}
$$

In this equation, we have:

$$
\begin{equation*}
\frac{\partial \bar{p}_{k}}{\partial p_{j}}=\frac{1}{|\omega|} \delta_{j \in \omega_{k}}=\frac{1}{|\omega|} \delta_{k \in \omega_{j}} \tag{6}
\end{equation*}
$$

where $\delta_{j \in \omega_{k}}$ is one when j is in the window ω_{k}, and is zero otherwise. On the other hand, the partial derivative $\partial a_{k} / \partial p_{j}$ in (5) can be computed from (1):

$$
\begin{align*}
\frac{\partial a_{k}}{\partial p_{j}} & =\frac{1}{\sigma_{k}^{2}+\epsilon}\left(\frac{1}{|\omega|} \sum_{i \in \omega_{k}} \frac{\partial p_{i}}{\partial p_{j}} I_{i}-\frac{\partial \bar{p}_{k}}{\partial p_{j}} \mu_{k}\right) \\
& =\frac{1}{\sigma_{k}^{2}+\epsilon}\left(\frac{1}{|\omega|} I_{j}-\frac{1}{|\omega|} \mu_{k}\right) \delta_{k \in \omega_{j}} \tag{7}
\end{align*}
$$

Putting (6) and (7) into (5), we obtain:

$$
\begin{equation*}
\frac{\partial q_{i}}{\partial p_{j}}=\frac{1}{|\omega|^{2}} \sum_{k \in \omega_{i}, k \in \omega_{j}}\left(1+\frac{\left(I_{i}-\mu_{k}\right)\left(I_{j}-\mu_{k}\right)}{\sigma_{k}^{2}+\epsilon}\right) \tag{8}
\end{equation*}
$$

This is the expression of the filter kernel $W_{i j}$.

2 Approximate Solution to the Matting Laplacian Matrix

In the paper we have shown that: $\mathrm{L}_{i j}=|\omega|\left(\delta_{i j}-W_{i j}\right)$. The matrix form of this equation is:

$$
\begin{equation*}
\mathrm{L}=|\omega|(\mathrm{U}-\mathrm{W}) \tag{9}
\end{equation*}
$$

where U is a unit matrix of the same size as L . In [1], the alpha matte α is obtained by solving the following linear system:

$$
\begin{equation*}
(\mathrm{L}+\Lambda) \alpha=\Lambda \beta \tag{10}
\end{equation*}
$$

This linear system can be solved by iterative methods. Now we approximate the solution by one step of the Jacobi method. A similar strategy is used in [2] to derive the bilateral filter from the viewpoint of optimization. We decompose W into a diagonal part W_{d} and an off-diagonal part $\mathrm{W}_{o}: \mathrm{W}=\mathrm{W}_{d}+\mathrm{W}_{o}$. According to (9) and (10), we have:

$$
\begin{equation*}
\left(|\omega| \mathrm{U}-|\omega| \mathrm{W}_{d}-|\omega| \mathrm{W}_{o}+\Lambda\right) \alpha=\Lambda \beta \tag{11}
\end{equation*}
$$

Notice that only W_{o} is off-diagonal here. Using β as the initial guess of α, we compute one step of Jacobi iteration:

$$
\begin{align*}
\alpha & \approx\left(|\omega| \mathrm{U}-|\omega| \mathrm{W}_{d}+\Lambda\right)^{-1}\left(|\omega| \mathrm{W}_{o}+\Lambda\right) \beta \tag{12}\\
& =\left(\mathrm{U}-\mathrm{W}_{d}+\frac{\Lambda}{|\omega|}\right)^{-1}\left(\mathrm{~W}-\mathrm{W}_{d}+\frac{\Lambda}{|\omega|}\right) \beta \tag{13}
\end{align*}
$$

In this equation, we only need to perform the matrix multiplication $\mathrm{W} \beta$. The other matrices are all diagonal and point-wise operations. The matrix multiplication $\mathrm{W} \beta$ is indeed a guided filtering process. Because we only apply one step of Jacobi iteration to obtain the approximate solution, we require the initial guess β to be reasonably good. For example, it may be the binary segmentation mask of the object.

To further simplify this equation, we let the matrix Λ satisfy: $\Lambda=|\omega| \mathrm{W}_{d}$, or equivalently:

$$
\begin{equation*}
\Lambda_{i i}=\frac{1}{|\omega|} \sum_{k \in \omega_{i}}\left(1+\frac{\left(I_{i}-\mu_{k}\right)^{2}}{\sigma_{k}^{2}+\epsilon}\right) \tag{14}
\end{equation*}
$$

Eqn.(13) is then reduced to:

$$
\begin{equation*}
\alpha \approx \mathrm{W} \beta \tag{15}
\end{equation*}
$$

The diagonal matrices are eliminated and only the guided filter is remained. The expectation value of $\Lambda_{i i}$ in (14) is 2 . This implies that the alpha matte is loosely constrained by β. In our matting application where β is a binary mask, the loose constraint is required because it allows the filter to change the values of the mask near the object boundaries. The loose constraint is also required in haze removal as in [3]. Therefore, the simplified equation (15) is applicable in both applications.

References

1. Levin, A., Lischinski, D., Weiss, Y.: A closed form solution to natural image matting. CVPR (2006)
2. Elad, M.: On the origin of the bilateral filter and ways to improve it. IEEE Transactions on Image Processing (2002)
3. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. CVPR (2009)
