
POSTER: Revisiting Anomaly Detection System Design
Philosophy

Ayesha Binte Ashfaq1, Muhammad Qasim Ali2, Ehab Al-Shaer2 and Syed Ali Khayam3

1 School of Electrical Engineering and Computer Science
National University of Sciences and Technology, Islamabad, Pakistan

2 Department of Software and Information Systems
University of North Carolina Charlotte

3 PLUMgrid Inc.
Sunnyvale, CA

ayesha.ashfaq@seecs.edu.pk; {mali12,ealshaer}@uncc.edu; khayam@gmail.com

ABSTRACT

The inherent design of anomaly detection systems (ADSs)
make them highly susceptible to evasion attacks and hence
their wide-spread commercial deployment has not been wit-
nessed. There are two main reasons for this: 1) ADSs in-
cur high false positives; 2) Are highly susceptible to evasion
attacks (false negatives). While efforts have been made to
minimize false positives, evasion is still an open problem. We
argue that ADSs design is inherently flawed since it relies on
the ADS’s detection logic and feature space which is trivial
to estimate. In information security e.g. cryptographic algo-
rithms (such as DES), security is inherently dependent upon
the key and not the algorithm, which makes these systems
very robust by rendering evasion computationally infeasible.
We believe there is a need to redesign the anomaly detec-
tion systems similar to cryptographic systems. We propose
to randomize the feature space of an ADS such that it acts
as a cryptographic key for the ADS and hence this random-
ized feature space is used by the ADS logic for detection of
anomalies. This would make the evasion of the ADS com-
putationally infeasible for the attacker.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and Protection; D.4.6 [Security and Protection]:
Invasive Software; K.6.5 [Security and Protection]: Unau-
thorized access

Keywords

Evasion; Intrusion Detection Systems

1. INTRODUCTION
While the original models for anomaly detection system

were proposed more than two decades ago, anomaly detec-
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tion still remains an active area of research as the attacks
continue to adapt and evade intrusion detection solutions.
Current anomaly detection systems employ feature classes
for detection that do not vary throughout the operational
life of the ADS. Therefore, if an attacker can estimate the
normal behavior of the network, it can easily evade the de-
tection system and send attack packets into the network
without detection. Moreover, the possibility of detecting
such evasion attacks is bleak because the normal network
behavior is not frequently updated.

We propose that an anomaly detection system should be
redesigned based on mutating feature space i.e. feature
space that changes across time. This makes the task of
estimating the normal behavior of the network infeasible.
Therefore, the attacker would now first have to identify the
features being used for detection and then analyze the net-
work traffic pertaining to those features to develop a model
of normality. For the attacker to launch the evasion attack,
the features used by the ADS for detection should not vary
from those estimated. However, if the features change, the
attack would be detected because the normal network be-
havior is now defined in terms of a different set of features
than those estimated. Thus, the mutation across time ren-
ders the two-tier estimation unrewarding for the attacker
since he would have to re-estimate the parameters in differ-
ent time window. Hence the robustness of the system lies
in mutating the feature space across time rather than in the
methodology used for detection, just like crypto-algorithms
rely on the key for security. Below we discuss the ADS pa-
rameters that need to be estimated by the attacker, followed
by a case study.

2. CAN WE ESTIMATE THE EVASION

MARGIN?
Currently ADSs assume that the underlying detection prin-

ciple is not known to the attacker. However, it does not hold
in real world where some knowledge about the ADS princi-
ple can be obtained through methods like social engineering,
fingerprinting, etc. [1]. In fact, ADS can be evaded without
knowing the exact design principles; several types of attacks
(e.g., polymorphic blending attacks, mimicry attacks, etc.)
have been proposed in existing literature.

Moreover, ADSs rely significantly on the belief that the
attacker does not know the network topology and/or the ser-
vices running within the network. Hence, it tends to commu-

1473



0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

False alarms per day

A
v
e
ra

g
e
 d

e
te

c
ti
o
n
 r

a
te

 (
%

)

 

 

Max−Entropy

Max−Entropy under known configuration attack

TRW−CB

TRW−CB under known configuration attack

TRW

TRW under known configuration attack

(a) Dataset-1
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Figure 1: Comparison of ADS performance with and without evasion attack using configuration estimation.

nicate with hosts that do not exist or hosts that do not have
the requested service available. Thus the malicious pack-
ets from the attacker would considerably alter the real-time
traffic characteristics from the baseline distribution. How-
ever, we show that this is a flawed assumption.

For the attacker to estimate the evasion margin i.e., the
number of attack packets that it can send into the network
without detection, it has to estimate three ADS parame-
ters: a) baseline distribution; b) realtime distribution; and
c)detection threshold.

As a proof-of-concept, we use two existing, prominent
and diverse statistical ADSs: Maximum Entropy [2] and
TRW/Credit-based TRW [3], [4]. These ADSs are briefly
described in Section 3. We now explain the estimation of
the ADS parameters below.

The baseline distribution can be estimated by either: a)
Observing traffic generated from a host within the target
network; or b) Brute force estimation. For the realtime ob-

servation, a realistic scenario for estimating the baseline dis-
tribution is that the attacker compromises a host X in net-
work A that communicates with the target host [1]. Hence,
it can observe the normal traffic from host X to the target
entity that can be used to build the normal profile for net-
work A. Brute force estimation is the most common modus
operandi used extensively in cryptanalysis. Despite its com-
putational complexity, it has been shown that with the cur-
rent high-performance COTS (multithreaded and multicore)
hardware, it is not difficult for a craft attacker to acquire
and exploit hardware parallelism to carry out a bruteforce
analysis [1], [5].

We proposed a Markovian stochastic model [6] of tem-
poral dependence in an ADS’s anomaly scores. While the
motivation for the original work was to improve the accu-
racy and automation of an ADS using threshold estimation,
the technique can be adapted to estimate the ADS detection
threshold for evasion. However, we restrict the evaluation
of conditional entropy to first order Markov chains only:

H (pj |pi) = −
∑

ω

p(pi, pj) log (p (pj |pi)) . (1)

The conditional entropy H(pj|pi), of two random variables
pi and pj correspond to the information in pj not given
by pi. Thus, computing the maximum conditional entropy
between baseline distributions in two consecutive time bins,

as we slide from bin 1 to bin n, can provide us the minimum
information overlap in normal benign data. This can be
stochastically modeled as:

Hmax = max
i,j∈{1,2...n}

H (pj |pi) (2)

This minimum information overlap can be used to identify
the acceptable divergence bounds for normal traffic for which
the detector does not raise an alarm.

Once the baseline distribution and the threshold have
been estimated, the detection logic can be used to esti-
mate the realtime distribution. This realtime distribution
can then be used by the attacker to generate attack sessions
in different feature classes that stay below the threshold and
hence evade ADS detection. For example, for the Maximum
entropy ADS, it can be estimated as:

q̂B [ω] < 2

τ
KL
p(ω) p(ω) (3)

where q(ω) is the realtime distribution, τKL is the detection
threshold and ω is the packet class

3. CASE STUDY
The Maximum Entropy detector [2] employs Kullback-

Leibler (KL) divergence measure for anomaly detection. The
measure computes how much the baseline distribution p(ω)
varies from the real-time distribution q(ω). Traffic is di-
vided into 2348 packet classes based on the destination ports
and the protocol. The detector uses maximum entropy es-
timation to develop the baseline distribution for the traf-
fic classes. If the divergence between the baseline and the
real-time distributions for a particular packet class exceeds
the threshold τKL in h of these W windows, an anomaly is
flagged by the detector. Maximum entropy has been shown
to provide high accuracy dividends [7].

Sequential hypothesis testing based TRW ADSs [3] [4] em-
ploy the likelihood ratio test to identify if local/remote hosts
are scanners. TRW classifier [3] detects remote scanners
while Credit-based TRW (TRW-CB) [4] detects local scan-
ners. Both these algorithms have been shown to be quite
accurate and commercial ADSs also deploy these algorithms
for portscan detection.

For both Maximum entropy and TRW ADSs, we launched
stealthy scanning attack by estimating the ADS’s parame-
ters as described in Section 2. Both the detectors failed

1474



0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

Packets

S
c
o

re

Observed Value

Fixed Threshold

(a) TRW

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Time (sec)

A
n

o
m

a
ly

 S
c
o

re

Observed Value

Fixed Threshold

(b) Maximum Entropy

Figure 2: Threshold values observed in stealthy scanning time window for TRW and Maximum Entropy
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Figure 3: Accuracy of the Maximum Entropy detec-

tor with varying number of feature classes.

to detect the scanning probes on two different datasets as
shown in Figure 1.

Figure 2(a) shows that TRW failed to detect the scan
traffic in a malicious time window. It can be clearly observed
that the likelihood ratio did not exceed the threshold. TRW
calculates the likelihood ratio for each connection attempt
and classify them as anomalous if the likelihood ratio for
any host increases more than the threshold. Since the hosts
were also generating benign traffic, the likelihood ratio did
not cross the threshold set. Similarly, Figure 2(b) shows
the threshold values observed in a 60 sec time window for
Maximum entropy. As proposed in [2], if the threshold (15)
is exceeded 30 times within 60 seconds interval, an alarm is
raised. Due to stealthy scanning the run-time distribution
exceeded the threshold only 10 times. Therefore, just by
slowing down or the effect of averaging out in the normal
traffic, scanning was able to go undetected.

It can be observed that of the three parameters that an
attacker has to estimate (Section2), two of those are depen-
dent on the features employed by the ADS for detection.
Since these features are inherently fixed by design, the at-
tacker can easily estimate them to evade the ADSs.

4. DOES A LARGER FEATURE SPACE GUAR-

ANTEE OPTIMAL PERFORMANCE?
Using a high-dimensional feature space does not necessar-

ily yield optimal performance. Figure 3 provides the accu-
racy gain on the endpoint dataset achieved by the Maximum

Entropy ADS as the feature space is varied from 2 to 2348
using the detector’s slicing technique progressively. Figure
3(a) shows that the detection rate does not increase propor-
tionally as we increase the number of analyzed static feature
space from 2 to 2348. The same trend is observed in the
false alarms as well. Thus, using all the features simultane-
ously does not ensure high accuracy. Hence selecting a few
feature class(es) judiciously for detection in a time window
would suffice to introduce enough randomness in the process
of ADS detection, so as to render the parameter estimation
attacks impractical.

5. MOVING TARGET-BASED ADS DESIGN
Since current ADSs are susceptible to evasion margin es-

timation, they can be bypassed by an intelligent and a re-
sourceful attacker. This is because the underlying feature
space does not change with time and hence can be lever-
aged to analyze network traffic semantics and craft attacks
accordingly. We believe a moving target based ADS de-
sign would, however, make it infeasible for an adversary to
craft evasion estimation attacks due to inherent randomness
introduced by the mutating feature space. However, it is
important to identify the right number of features to be em-
ployed for detection in different time windows, for optimal
performance.
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