

Experimenting with diversity in the model driven development
of a railway signaling system

Michele Banci
ISTI–CNR

Via G. Moruzzi 1
56124 Pisa, Italy

michele.banci@isti.cnr.it

Alessandro Fantechi
DSI - Università degli Studi di

Firenze, Via S. Marta, 3, 50139
Firenze, Italy

fantechi@dsi.unifi.it

Stefania Gnesi
ISTI–CNR

Via G. Moruzzi 1
56124 Pisa, Italy

stefania.gnesi@isti.cnr.it
Giovanni Lombardi

ISTI–CNR
Via G. Moruzzi 1
56124 Pisa, Italy

giovanni.lombardi@isti.cnr.it

ABSTRACT
In this paper we discuss how we have introduced elements of
diversity in the experimental model driven development process
of a railway signalling system. The experience has been done
inside a larger industrial project undertaken to evaluate the
feasibility of employing formal modelling and automatic code
generation in the development of a new generation of railway
signalling systems hosted by a new fault-tolerant platform. The
diversity is introduced at the level of the compilation of the
generated code, and is aimed to discover possible faults due to the
compilation environment or to the underlying operating system.
Other forms of diversity will be then experimented in a step by
step fashion.
Categories and Subject Descriptors
I.2.2 [Design Language]: state machines, automatic generation
code;
D.2.1[Software Engineering]: Requirements/Specifications;
D.2.2 [Software Engineering]: Design Tools and Techniques;

General Terms
Design

Keywords

Formal modelling, automatic code generation

EFTS'07, September 4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM ISBN 978-1-59593-725-4/07/09...$5.00

1. INTRODUCTION
We present some experiments made about the introduction of
diversity in a development process of a safety-critical embedded
system, based on formal modelling and automatic code
generation. Indeed, within a collaboration with ALSTOM, ISTI-
CNR has undertaken a project for evaluating on a proprietary
embedded architecture the performance issues of code
automatically generated from a formal model of the interlocking,
in terms of number of controlled entities (switches, signals,…)
that can be dealt with, within the real-time constraints established
for the specific application.
In this paper we report instead how the introduction of diversity in
the adopted model driven development process helps to improve
safety of the produced equipment. The diversity is introduced at
the level of the compilation of the generated code, and is aimed at
discovering possible faults either due to the compilation
environment or to the underlying operating system. Other forms
of diversity are planned to be experimented in a step by step
fashion.
The hardware platform that has been used in the present paper
has been realized by ALSTOM for supporting communication
among the different units constituting their interlocking systems.
The platform is a proprietary 2 out of 2 architecture using two
Freescale Coldfire processors. Hw & Sw diversity are used to
bring the system to a fail shutdown in the case the two processors
do not behave consistently.
The typical applications of the redundant platform are in the
distribution and concentration of safe data links over a
geographically distributed area.

The main purpose of the on-going collaboration of ISTI-CNR and
ALSTOM is the evaluation of performance issues in the case the

Figure 1. 019 system

platform is used as a basis to support the full functionality of an
interlocking system, by means of code automatically generated
from a formal model. In this paper, we address instead only issues
related to the introduction of diversity in the software
development cycle, hence we will not discuss any more hardware
architectural issues.
The paper is structured as follows: in this section we have
introduced the redundant architecture that hosts the designed
interlocking system, which is described in Section 2. In Section 3
the adopted development process is presented, together with the
used formalisms and tools. In Section 4 the same development
process is revisited in terms of the safety issues, in conformance
to the CENELEC safety guidelines for railway signalling systems.
Such issues suggest the adoption of diversity for some phases of
the development process, which is done in Section 5 for what
concerns compilation. Further applications of diversity are
discussed in the conclusive section.

2. THE CASE STUDY
In the experience described in this paper, we have used as a case
study a real Italian interlocking system referring to a typical
layout of a simple station (see [10]).
This typical layout is referred in the documents of Italian railways
with the number 019. This example (a single track line station) is
constituted by eight allowed routes, two switches, eight signals,
six track circuits and two automatic blocks. In Figure 1 line
segments represent track segments in the station; some of them
have track circuits, that is, sensors that detect the presence of a
train, which are numbered inside circles, joints between segments
representing switches. Lollypop-like drawings represent signals of
various type. Numbered labels are attached to each important part
of a route. Interlocking rules are obviously the core of the system,
so their correctness is the main objective to be addressed. The
rules aim at allowing only the safe combinations of switches
positions, signals and trains in a station in order to avoid
collisions. The signal indications, handled by the interlocking
system, govern the correct use of the routes, authorizing the
movement of trains. The rules usually enforce a predefined
sequence of actions: issuing a route request command usually
triggers a check that all the track elements involved in the route
are free. In this case, commands are issued for the positioning of
switches for that route and for locking the track elements. This
phase may be followed by a global centralized control over the
correct state of the commanded elements, after which the route is
locked and signal indications for the route are set.
A route can be set free only if all switches on it are in the correct
position, and no trains are present.
The signals can be set to green only if the route in front of them is
set to free. The above set of rules expresses two examples of
generic principles that hold for every interlocking systems.
Actually, the precise and complete set of such rules depends on
the particular station or railway yard, and also on national policies

traditionally established by railway companies or regulatory
boards.
The development of computer controlled Railway Interlocking
Systems has seen an increasing interest in the use of Formal
Methods, due to their ability to precisely specify the logical rules
that guarantee the safe establishment of routes for trains through a
railway yard, as witnessed by the considerable literature about
formalization of interlocking systems (see for example,
[8][9][3][1][7]).
The application of formal methods in the rigorous definition and
analysis of the functionality and the behaviour of a system,
promises the ability of showing that the system is correct.
Given such a promise, that is already out since several years, it is
astonishing to see how little formal methods are actually used in
the safety critical system industry, though the use of formal
methods is increasingly required by the international standards
and guidelines for the development of safety critical computer-
controlled systems.
Industrial acceptance of formal methods is strictly related to the
investment needed to introduce them, to the maturity of tool
support available, and to the easiness of use of formal methods
and tools.
Nowadays, the industrial trend is directed to the adoption of
formal verification techniques to validate the design, integrating
them within the existing development process.
Industries are more keen to accept formal verification techniques
assessing the quality attributes of their products, obtained by a
traditional life cycle, rather than a fully formal life cycle
development, due to the lower training and innovation costs of
the former.
Several approaches to the application of formal methods in the
development process have been proposed, differing for the degree
of involvement of the method within it. Starting from rigorous
specifications, formal methods can be used for the derivation of
test cases, or as a validation technique aimed at proving that the
specification satisfies the requirements, or as an auxiliary
technique in the automated generation of code.

3. THE DEVELOPMENT PROCESS
The development process adopted for the case study follows the
cited trends, basing on the modelling of the 019 system using the
tool SCADE of Esterel Technologies, by means of state machines
(called SSM – Safe State Machines) and data-flow diagrams,
starting from the original specifications of the 019 system.
The SCADE (Safety Critical Application Development
Environment) tool-suite by Esterel Technologies is a set of tools
able to support a whole model-based development method.
SCADE is mostly used in automotive and avionics applications,
and relies on the use of diagrams and state machines, representing
an approach to formal modelling based on a formal graphical
description of the specification of a system. Its graphical

modelling formalism benefits from deterministic formal
semantics, allowing the derivation of a clean mathematical model
from a SCADE design to the synchronous paradigm of the Lustre
[2] language. The same deterministic model could be used for
correct-by-construction automatic code generation and formal
verification [11].
SCADE provides a verification technique based on formal
verification tools over the model as well. It is based on the
synchronous data-flow paradigm. Inputs and outputs of a SCADE
block are typed data-flows. The type of a data-flow can be simple
(bool, int, real) or structured (a structure or tuple made of a set of
typed fields).
The model produced for the 019 system is made up by 68 SSMs.
Every SSM is very simple and it is formed by two states, being
the model directly derived by the relay circuits schematics that
constitute the official specification of the 019 system. The model
cannot be reproduced here for lack of space: we only give a
description of a portion of the model, as it appears in a window of
the SCADE tool (Figure 4).
The model has been simulated by means of the SCADE simulator,
employing as simulation cases an already existing suite of test
cases for the 019 system.
Model checking over the SCADE state machines by means of the
native model checker Design Verifier tool is another way to gain
confidence in the model, which has only preliminary been
attempted at the current stage of the project.
After the SCADE model has been developed and simulated, the
KCG 5.1 code generator, available in the SCADE tool suite, has
been used to derive C code implementing the model; this code
generator has obtained a certification for the Safety Integrity
Level A of the DO-178B avionic guidelines. The obtained code
can be directly used on the architecture target without any
modifications.

The generated code is then compiled and loaded on the duplicated
processors, by means of the CodeWarrior for Coldfire compiler
and its facilities for host/target development.

The same interface1 (see Figure 3) is used for providing inputs
and reading outputs to/from the SCADE model, and to send input
commands and to receive output values to/from the embedded
system, the same tests can be in this way performed on the two
implementations. We speak of simulation also in the case of test
execution over the target platform since we are anyway
simulating the real environment.

Simulation of the SCADE model and of the implementation
contributes to give further confidence over the validated code
generator.

1 Actually, two equivalent interfaces have been built, one written

in Java and one written in Visual Basic, to better accommodate
the different used environments.

Figure 2 - Development process

4. SAFETY ISSUES IN THE

DEVELOPMENT PROCESS
CENELEC guidelines recommend the usage of specific
techniques to increase the safety of railway signalling systems in
spite of faults that can have a negative impact on the safety of the
system, at the hardware level (EN 50129) [5], at the software
level (EN 50128) [4] and at the system level (EN 50126) [6].
Form the lower level to the most abstract one, the main techniques
used at each step of the development process.
As we have already said, a 2 out of 2 architecture is used to detect
hardware faults and to bring the system in a fail-safe state.
Actually, many other techniques are used to improve reliability,
and hence safety, of the hardware. Moreover, various applications
of this architecture employ two replicas of this fail-safe processor,
for improving availability.
The real-time operating system, is considered as “proven in use”
and hence acceptable for the guidelines: system testing and
simulation with the SCADE model help to cover possible
problems related to the use of this operating system

The same can be said for the compiler, which is also considered
proven in use; again, system testing and co-simulation with the
SCADE model help to cover possible problems related to the use
of this particular compiler.
We have already reported that the SCADE code generator has
been validated for the high levels of safety integrity. Also in this
case, system testing and co-simulation on the model and on the
generated code with the same tests help in gaining confidence
over the generated code.
We have also reported that confidence in the produced models is
obtained by means of simulation, and model checking.
The weaker phase in this process, for what concerns the safety
issues, appears to be the Compiler/Operating System issue, the
confidence on which is based only on simulation and testing.
Also a better confidence over the modelling phase, delegated only
to simulation and model checking, could be desirable.

Relay schemas

SCADE Diagram

Code generation

Embedded code

Execution

Figure 3. 019 input-output panel

5. INTRODUCTION OF DIVERSITY IN
COMPILATION

Diverse design and diverse programming has been often adopted
as a method to build systems that can tolerate design faults.
Software faults are essentially due to design problems, hence in
order to provide means to tolerate software faults diverse design
can be exploited at several levels, for example requiring
hardware redundancy as well.
In particular, diversity is to be applied where other forms of
guaranteeing the absence of faults are not in place.
As we have said, inside the development process presented in the
previous section, a weakness can be identified in the Compiler
and Operating System support. We have applied diversity at this
step by compiling the generated code with a different compiler
over a different operating system. In particular, a Window
implementation is obtained by means of the Visual C
programming environment.
The obtained code has been executed on the host Windows
machine, exercising it by means of the same interface designed
for the other implementation, and the execution of this
implementation has been compared, on the identified test cases,
with the execution on the target platform. In other words, we
have executed a simulation as already done for the model on the
embedded implementation.

Since the two implementations differ for the compiler used and
for the operating environment (processor and operating system),
co-simulation allows possible faults depending on such
components to be detected. Obviously, although exhaustiveness
of testing cannot be reached, the use of an extensive test suite
derived from the application domain allows to reach a high degree
of confidence. Indeed, with the (limited) amount of testing
conducted as far on the case study, we were not able to identify
discrepancies. At present, all the testing activity has been done
manually, but the co-simulation and testing can be appropriately
automated in the production process, accommodating much more
extensive test suites.
The other area of development process in which we have
identified a weakness form the point of view of guaranteeing
safety is the modelling itself.
The adoption of diversity also in this case is under study, giving
two diverse models of the same 019 system developed with two
formalisms, for example with SCADE and Statemate, and to
compare them both by simulation and by testing and comparing
the generated codes, which would be generated by diverse code
generators as well.
The two models will be co-simulated to look for discrepancies,
against exploiting an extensive test/simulation suite. This
particular application of diversity aims at discovering of faults
due to erroneous interpretation of system requirements,

Figure 4. Model 019 structure

especially those which could have been facilitated by the specific
modelling paradigm enforced by the adopted formalism and tool.
Comparing a synchronous SCADE model with an asynchronous
Statemate model will make it possible to discover this kind of
faults. The two models can even produce, by diverse automatic
generator tools, two diverse versions of C code, which again can
be tested over the same test suite.
It would be even possible in principle to load the code generated
starting from the diverse models in the two processors of the
Smart I/O platform: this possibility needs however to be studied
in detail, since synchronization issues between the two replicas
become an important problem.

6. CONCLUSIONS
The availability of the complete environment needed to
produce an application at industrial level from a formal
model to the code has been exploited to carry on some
experiments on the introduction of diversity in the
development process.
The first experiments have been encouraging due to their
relatively low cost (limited to re-compilation and re-
testing), that can positively effect the industrial acceptance
of the approach. We are planning new experiments to
extend the adoption of diversity, to other steps of the
development process

7. ACKNOWLEDGMENTS
We wish to thank ALSTOM for the technical support given to the
experiments and for having provided the hardware platform and
the access to the needed software tools.

8. REFERENCES
[1] A. Cimatti, F. Giunchiglia, G. Mongardi, D. Romano, F.

Torielli and P. Traverso, 1998, Formal Verification of a
Railway Interlocking System using Model Checking, Formal
Aspects of Computing, Vol 10, 361-380.

[2] Alain Le Guennec, Bernard Dion, Esterel Technologies,

Bridging UML and Safety-Critical Software Development
Environments.

[3] C. Bernardeschi, A. Fantechi, S. Gnesi, S. Larosa, G.

Mongardi and D. Romano. A Formal Verification
Environment for Railway Signaling System Design, Formal
Methods in System Design, Vol. 12, 2, pp. 139-161, 1198.

[4] CENELEC European Committee for Electrotechnical

Standardization. Railway applications: software for railway
control and protection systems. European Standard, June
1997. prEN 50128.

[5] CENELEC European Committee for Electrotechnical

Standardization. Railway applications: safety railway related
electronic systems for signalling. European Standard,
December 1999. prEN 50129.

[6] CENELEC European Committee for Electrotechnical

Standardization, Railwayapplications: software for railway
control and protection systems. European Standard, June
1997. prEN 50126.

[7] F. J. van Dijk, W. J. Fokkink, G. P. Kolk, P. H. J. van de Ven

and S. F. M. van Vlijmen, EURIS, a specification method for
distributed interlockings, in (W. Ehrenberger, ed) Proc. 17th
Conference on Computer Safety, Reliability and Security -

SAFECOMP'98, Heidelberg, Lecture Notes in Computer
Science 1516, pp. 296-305, Springer (October 1998)

[8] M. Banci, A. Fantechi, Geographical vs. Functional

Modelling by Statecharts of Interlocking Systems. FMICS
Ninth International Workshop on Formal Methods for
Industrial Critical Systems, Linz, September 20-21, 2004.
Electronic Notes in Computer Science (Elsevier).

[9] P. Behm, P. Benoit, A. Faivre, and J.M. Meynadier. Meteor:

A Successful Application of B in a Large Project. FM'99,
Toulouse, Sept. 1999, LNCS 1708, pp.369-387

[10] P. E. Debarbieri, F. Valdambrini and E. Antonelli, A.C.E.I.

Telecomandati per linee a semplice binario, schemi I0/19.
CIFI Collana di testi per la preparazione agli esami di
abilitazione, Quaderno 12, 1987.

[11] Pascal Raymond, PhD thesis : Compilation efficace d’un

langage d´eclaratif synchrone: le generateur de code Lustre-
v3, Institut National Polytechnique de Grenoble, 1991.

