Probabilistic Reasoning in Bayesian Networks: A
Relational Database Approach

S.K.M. Wong, D. Wu and C.J. Butz

Department of Computer Science, University of Regina
Regina Saskatchewan, Canada S4S 0A2

Abstract. Probabilistic reasoning in Bayesian networks is normally con-
ducted on a junction tree by repeatedly applying the local propagation
whenever new evidence is observed. In this paper, we suggest to treat
probabilistic reasoning as database queries. We adapt a method for an-
swering queries in database theory to the setting of probabilistic reason-
ing in Bayesian networks. We show an effective method for probabilistic
reasoning without repeated application of local propagation whenever
evidence is observed.

1 Introduction

Bayesian networks [3] have been well established as a model for representing
and reasoning with uncertain information using probability. Probabilistic rea-
soning simply means computing the marginal distribution for a set of variables,
or the conditional probability distribution for a set of variables given evidence.
A Bayesian network is normally transformed through moralization and triangu-
lation into a junction tree on which the probabilistic reasoning is conducted.

One of the most popular methods for performing probabilistic reasoning is
the so-called local propagation method [2]. The local propagation method is
applied to the junction tree so that the junction tree reaches a consistent state,
i.e., a marginal distribution is associated with each node in the junction tree.
Probabilistic reasoning can then be subsequently carried out on this consistent
junction tree [2].

In this paper, by exploring the intriguing relationship between Bayesian net-
works and relational databases [5], we propose a new approach for probabilistic
reasoning by treating it as a database query. This new approach has several
salient features. (1) It advocates using hypertree instead of junction tree for
probabilistic reasoning. By selectively pruning the hypertree, probabilistic rea-
soning can be performed by employing the local propagation method once and
can then answer any queries without another application of local propagation.
(2) The structure of a fixed junction tree may be favourable to some queries
but not to others. By using the hypertree as the secondary structure, we can
dynamically prune the hypertree to obtain the best choice for answering each
query. (3) Finally, this database perspective of probabilistic reasoning provides
ample opportunities for well developed techniques in database theory, especially



techniques in query optimization, to be adopted for achieving more efficient
probabilistic reasoning in practice.

The paper is organized as follows. We briefly review Bayesian networks and
local propagation in Sect. 2. In Sect. 3, we first discuss the relationship between
hypertrees and junction trees and the notion of Markov network. We then present
our proposed method. We discuss the advantages of the proposed method in Sect.
4. We conclude our paper in Sect. 5.

2 Bayesian Networks and the Local Propagation

We use U = {z1, ..., x,} to represent a set of discrete variables. Each x;
takes values from a finite domain denoted V,,. We use capital letters such as
X to represent a subset of U and its domain is denoted by Vx. By XY we
mean X UY. We write z; = o, where o € V;,, to indicate that the variable
x; is instantiated to the value «. Similarly, we write X = 3, where 0 € Vx, to
indicate that X is instantiated to the value . For convenience, we write p(x;)
to represent p(z; = «) for all @ € V,,. Similarly, we write p(X) to represent
p(X = p) for all g € Vx.

A Bayesian network (BN) defined over a set U = {x1, ..., x,} of vari-
ables is a tuple (D, C). The D is a directed acyclic graph (DAG) and the
C = {p(zilpa(z;)) | i € U} is a set of conditional probability distributions
(CPDs), where pa(x;) denotes the parents of node x; in D, such that p(U) =
[T, p(;|pa(z;)). This factorization of p(U) is referred to as BN factorization.
Probabilistic reasoning in a BN means computing p(X) or p(X|E = e), where
XNE=0,X CU, and E CU. The fact that FE is instantiated to e, i.e., F = e,
is called the evidence.

The DAG of a BN is normally transformed through moralization and triangu-
lation into a junction on which the local propagation method is applied [1]. After
the local propagation finishes its execution, a marginal distribution is associated
with each node in the junction tree. p(X) can be easily computed by identifying
a node in the junction tree which contains X and then do a marginalization; the
probability of p(X|E = e) can be similarly obtained by first incorporating the
evidence E = e into the junction tree and then propagating the evidence so that
the junction tree reaches an updated consistent state from which the probability
p(X|E = e) can be computed in the same fashion as we compute p(X). It is
worth emphasizing that this method for computing p(X|E = e) needs to ap-
ply the local propagation procedure every time when new evidence is observed.
That is, it involves a lot of computation to keep the knowledge base consistent.
It is also worth mentioning that it is not evident how to compute p(X) and
p(X|E = e) when X is not a subset of any node in the junction tree [6]. A more
formal technical treatment on the local propagation method can be found in [1].

The problem of probabilistic reasoning, i.e., computing p(X|E = e), can then
be equivalently stated as computing p(X, E) for the set X U E of variables [6].
Henceforth, probabilistic reasoning means computing the marginal distribution
p(W) for any subset W of U.



3 Probabilistic Reasoning as Database Queries

In this section, we show that the task of computing p(X) for any arbitrary subset
X can be conveniently expressed and solved as database query.

3.1 Hypertrees, Junction Trees, and Markov Networks

A hypergraph is a pair (N, H), where N is a finite set of nodes (attributes) and
H is a set of edges (hyperedges) which are arbitrary subsets of N [4]. If the
nodes are understood, we will use H to denote the hypergraph (N, H). We say
an element h; in a hypergraph H is a twig if there exists another element h; in
H, distinct from h;, such that (U(H — {h;})) Nh; = h; N h;. We call any such h;
a branch for the twig h;. A hypergraph H is a hypertree [4] if its elements can be
ordered, say hi, ha, ..., by, so that h; is a twig in {hq, ho, ..., h;}, fori = 2,...,n—1.
We call any such ordering a hypertree (tree) construction ordering for H. It is
noted for a given hypertree, there may exist multiple tree construction orderings.
Given a tree construction ordering hi, ho, ..., h,, we can choose, for each ¢ from
2 to N, an integer j(i) such that 1 < j(i) <4 — 1 and hj(;) is a branch for h; in
{h1, ha, ..., h;}. We call a function j(i) that satisfies this condition a branching
for the hypertree H with hq, hs, ..., by, being the tree construction ordering. For a
given tree construction ordering, there might exist multiple choices of branching
functions. Given a tree construction ordering hi, ho, ..., h, for a hypertree H
and a branching function j(¢) for this ordering, we can construct the following
multiset: L(H) = {hj(2) N ha, hj3) N hs, ..., hjmy Ny} The multiset £(H) is the
same for any tree construction ordering and branching function of H [4]. We call
L(H) the separator set of the hypertree H.

Let (N, H) be a hypergraph. Its reduction (N, H') is obtained by removing
from H each hyperedge that is a proper subset of another hyperedge. A hyper-
graph is reduced if it equals its reduction. Let M C N be a set of nodes of the
hypergraph (N, H). The set of partial edges generated by M is defined to be the
reduction of the hypergraph {hN M | h € H}.

Let H be a hypertree and X be a set of nodes of H. The set of partial edges
generated by X is also a hypertree [7]. A hypergraph H is a hypertree if and
only if its reduction is a hypertree [4]. Henceforth, we will treat each hypergraph
as if it is reduced unless otherwise noted.

It has been shown in [4] that given a hypertree, there exists a set of junction
trees each of which corresponds to a particular tree construction ordering and
a branching function for this ordering. On the other hand, given a junction
tree, there always exists a unique corresponding hypertree representation whose
hyperedges are the nodes in the junction tree.

Ezample 1. Consider the hypertree H shown in Fig 1 (i), it has three corre-
sponding junction trees shown in Fig 1 (ii), (iii) and (iv), respectively. On the
other hand, each of the junction trees in Fig 1 (ii), (iii) and (iv) corresponds to
the hypertree in Fig 1 (i). The hypertree in Fig 1 (v) will be explained later.



A "

i 0 0

KRG
(o)™ (ac)

Fig. 1. (i) A hypertree H, and its three possible junction tree representations in (ii),
(iii), and (iv). The pruned hypertree with respect to b, d is in (v).

We now introduce the notion of Markov network. A (decomposable) Markov
network (MN) [3] is a pair (H, P), where (a) H = {hili = 1,...,n} is a
hypertree defined over variable set U where U = UhieH h; with hy, ..., hy asa
tree construction ordering and j(¢) as the branching function; together with (b)
aset P = {p(h) | h € H} of marginals of p(U). The conditional independencies
encoded in H mean that the jpd p(U) can be expressed as Markov factorization:

__ p(ha) -p(h2)- ... p(hn)
p(U) a p(hg n hj(g)) . p(hn n h](n))

Recall the local propagation method for BNs in Sect. 2. After finishing the local
propagation without any evidence, we have obtained marginals for each node
in the junction tree. Since a junction tree corresponds to a unique hypertree,
the hypertree and the set of marginals (for each hyperedge) obtained by local
propagation together define a Markov network [1].

(1)

3.2 An Illustrative Example For Computing p(X)

As mentioned before, the probabilistic reasoning can be stated as the problem
of computing p(X) where X is an arbitrary set of variables.

Consider a Markov network obtained from a BN by local propagation and
let H be its associated hypertree. It is trivial to compute p(X) if X C h for
some h € H, as p(X) = >,y p(h). However, it is not evident how to compute
p(X) in the case that X ¢ h. Using the Markov network obtained by local
propagation, we use an example to demonstrate how to compute p(X) for any
arbitrary subset X C U by selectively pruning the hypertree H.

Ezxample 2. Consider the Markov network whose associated hypertree H is shown
in Fig 1 (i) and its Markov factorization as follows:

p(abed) = p(ab)-p(ac)-p(ad) 2)

p(a)-p(a)

Suppose we want to compute p(bd) where the nodes b and d are not contained
by any hyperedge of H. We can compute p(bd) by marginalizing out all the



irrelevant variables in the Markov factorization of the jpd p(abed) in equation
(2)-

Notice that the numerator p(ac) in equation (2) is the only factor that in-
volves variable c¢. (Graphically speaking, the node ¢ occurs only in the hyperedge
ac). Therefore, we can sum it out as shown below.

— plab)-p(ac)-p(ad) _ P ab)
p(bd) - Za, c p(a)‘p(a) Z
p(ab)-p(ad) p a p ab)
= 2a T pe Z a)

Note that % = p(abd) and this is a Markov factorization. The above
summation process graphically corresponds to deleting the node ¢ from the hy-
pertree H in Fig 1 (i), which results in the hypertree in Fig 1 (iv). Note that after
the variable ¢ has been summed out, there exists p(a) both as a term in the nu-
merator and a term in the denominator. The existence of the denominator term
p(a) is due to the fact that a is in L(H). Obviously, this pair of p(a) can be can-
celed. Therefore, our original objective of computing p(bd) can now be achieved
p(al;)(f)(ad)

by working with this “pruned” Markov factorization p(abd) = whose

hypertree is shown in Fig 1 (iv).

3.3 Selectively Pruning the Hypertree of the Markov Network

The method demonstrated in Example 2 can actually be generalized to compute
p(X) for any X C U. In the following, we introduce a method for selectively
pruning the hypertree H associated with a Markov network to the exact por-
tion needed for computing p(X). This method was originally developed in the
database theory for answering database queries [7].

Consider a Markov network with its associated hypertree H and suppose we
want to compute p(X). In order to reduce the hypertree H to the exact portion
that facilitates the computation of p(X), we first mark those nodes in X and
repeat the following two operations to prune the hypertree H until neither is
applicable: (opl): delete an unmarked node that occurs in only one hyperedge;
(op2): delete a hyperedge that is contained in another hyperedge. We use H to
denote the resulting hypergraph.

Note that the above procedure possesses the Church-Rosser property, that
is, the final result H is unique, regardless of the order in which (opl) and
(op2) are applied [4]. It is also noted that the operators (opl) and (op2) can be
implemented in linear time [7]. It is perhaps worth mentioning that (opl) and
(op2) are graphical operators applying to H. On the other hand, the method in [8]
works with BN factorization and it sums out irrelevant variables numerically.

Let Ho, Hi, ..., Hj, ..., Hm represent the sequence of hypergraphs (not
necessarily reduced) in the pruning process, where Ho = H, H,, = H,1<j<
m, each H; is obtained by applying either (opl) or (op2) to H;_1.



Lemma 1. Each hypergraph H;, 1 <¢ < m, is a hypertree.
Lemma 2. L(H') C L(H).

Due to lack of space, the detailed proofs of the above lemmas and the fol-
lowing theorem will be reported in a separate paper.

For each h; € H', there exists a h; € H such that h; C h;. We can com-
pute p(h;) as p(h;) = Zhj_h/_ p(hj). In other words, the marginal p(h;) can be
computed from the original mlarginal p(h) supplied with the Markov network H.
Therefore, after selectively pruning H, we have obtained the hypertree H' and
marginals p(h;) for each h; eH.

Theorem 1. Let (H, P) be a Markov network. Let H' be the resulting pruned
hypertree with respect to a set X of variables. The hypertree H :{hll, hIQ, e hlk}
and the set P' = {p(h;) | 1 <i < k} of marginals define a Markov network.

Theorem 1 indicates that the original problem of computing p(X) can now be
answered by the new Markov network defined by the pruned hypertree H . Tt
has been proposed [5] that each marginal p(h) where h € H can be stored
as a relation in the database fashion. Moreover, computing p(X) from H' can
be implemented by database SQL statements [5]. It is noted that the result of
applying (opl) and (op2) to H always yields a Markov network which is different
than the method in [8].

4 Advantages

One salient feature of the proposed method is that it does not require any re-
peated application of local propagation. Since the problem of computing p(X |E =
e) can be equivalently reduced to the problem of computing p(X, E), we can uni-
formly treat probabilistic reasoning as merely computing marginal distributions.
Moreover, computing a marginal distribution, say, p(W), from the jpd p(U) de-
fined by a BN, can be accomplished by working with the Markov factorization
of p(U), whose establishment only needs applying the local propagation method
once on the junction tree constructed from the BN. It is worth mentioning that
Xu in [6] reached the same conclusion and proved a theorem similar to Theorem
1 based on the local propagation technique on the junction tree.

Computing p(W) in our proposed approach needs to prune the hypertree H
to the exact portion needed for computing p(WW) as Example 2 demonstrates
if W ¢ h for any h € H. A similar method was suggested in [6] by pruning
the junction tree instead. Using hypertrees as the secondary structure instead of
junction trees has valuable advantages as the following example shows.

Ezample 3. Consider the hypertree H shown in Fig 1 (i), it has three correspond-
ing junction trees shown in Fig 1 (ii), (iii) and (iv), respectively. The method in
[6] first fixes a junction tree, for example, say the one in Fig 1 (ii). Suppose we
need to compute p(bd), the method in [6] will prune the junction tree so that any
irrelevant nodes will be removed as we do for pruning hypertree. However, in this



junction tree, nothing can be pruned out according to [6]. In other words, p(bd)
has to be obtained by the following calculation: p(bd) =3, I;((‘;b)) S p(a;)(f)(ad) .
However, if we prune the hypertree in Fig 1 (i), the resulting pruned hypertree
is shown in Fig 1 (v), from which p(bd) can be obtained by equation (3). Obvi-
ously, the computation involved is much less. Observing this, one might decide
to adopt the junction tree in Fig 1 (iii) as the secondary structure. This change
facilitates the computation of p(bd). However, in a similar fashion, one can easily
be convinced that computing p(bc) using the junction tree in (iii), computing
p(ed) using the junction tree in (iv) suffer exactly the same problem as comput-
ing p(bd) using junction tree in (ii). In other words, regardless of the junction
tree fixed in advance, there always exists some queries that are not favored by
the pre-determined junction tree structure. On the other hand, the hypertree
structure always provides the optimal pruning result for computing marginal
[7].

5 Conclusion

In this paper, we have suggested a new approach for conducting probabilistic
reasoning from the relational database perspective. We demonstrated how to
selectively reduce the hypertree structure so that we can avoid repeated ap-
plication of local propagation. This suggests a possible dual purposes database
management systems for both database storage, retrieval and probabilistic rea-
soning.

ACKNOWLEDGMENT. The authors would like to thank one of the review-
ers for his/her helpful suggestions and comments.

References

[1] C. Huang and A. Darwiche. Inference in belief networks: A procedural guide.
International Journal of Approzimate Reasoning, 15(3):225-263, October 1996.

[2] S.L. Lauritzen and D.J. Spiegelhalter. Local computation with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society, 50:157-244, 1988.

[3] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann Publishers, San Francisco, California, 1988.

[4] G. Shafer. An axiomatic study of computation in hypertrees. School of Business
Working Papers 232, University of Kansas, 1991.

[5] S.K.M. Wong, C.J. Butz, and Y. Xiang. A method for implementing a probabilistic
model as a relational database. In Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 556-564. Morgan Kaufmann Publishers, 1995.

[6] H. Xu. Computing marginals for arbitrary subsets from marginal representation
in markov trees. Artificial Intelligence, 74:177-189, 1995.

[7] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Very Large Data
Bases, Tth International Conference, September 9-11, 1981, Cannes, France, Pro-
ceedings, pages 82-94, 1981.

[8] N. Zhang and Poole.D. Exploiting causal independence in bayesian network infer-
ence. Journal of Artificial Intelligence Research, 5:301-328, 1996.



