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Abstract. We describe a system for querying 3D model databases using
the spin image representation as a shape signature for objects depicted
as triangular meshes. The spin image representation facilitates the task
of aligning the query object with respect to matched models (coarse-
grain registration). The main contribution of this work is the
introduction of a three-level indexing schema based on artificial neural
networks. The indexing schema improves significantly the efficiency in
matching query spin images against those stored in the database. Our
results are suitable for content-based retrieval in 3D general object
databases. A particular application to molecular databases is also
presented.

1 Introduction

Retrieving objects by their content as opposed to keyword indexing or simple
browsing has become an important operation, and consequently, an active field of
research. After more than a decade of intensive research, content-based image
retrieval (CBIR) technology moved out of the laboratory and into the marketplace, in
the form of commercial products like QBIC [1] and Virage [2]. CBIR draws many of
its methods from the field of image processing, computer vision, pattern recognition,
and database technology.

As web-based repositories of multi-dimensional scientific data continue to grow,
so does the need for content-based retrieval of three-dimensional (3D) scalar data.
One of the most prevalent source of volumetric data is medical and biological
imaging. During the last decade bioscientists have witnessed an spectacular growth of
molecular databases. Molecular databases store in some cases (Protein Data Bank [3])
thousands of molecular complexes described as three dimensional datasets. Public
access to these repositories boosts research targeted at the discovery of new drugs and
medicines. Certainly, content-based retrieval would provide scientists with a valuable
tool that facilitates, for example, the task of finding molecules that are structurally
similar to a given one. To do so, different features are used to represent the content of
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a 3D object. Among them, shape is the most relevant attribute for the task of object
recognition. There exist a number of CBIR systems that use different shape features
in order to perform similarity retrieval in 3D general model databases. Most of them
use the object�s surface (e.g: VRML description) to derive a signature that represents
its shape. Some examples are Nefertiti [4], the Ferret Project [5], or the 3D search
engine depicted in [6]. Other systems are tailored to domain-specific databases of
volumetric datasets. In [7] a 3D neuroradiologic image retrieval system is presented.
It deals directly with multimodal 3D brain images. They use thematic data and image-
based descriptors in order to better characterize pathological versus normal brains.
This is a good example of how a CBIR system is perfectly adapted to a particular
application domain. Nevertheless, it results hard to figure out how to extend their
developments to other 3D model databases. Ankerst et al. [8] introduced a novel
approach for similarity search in 3D protein databases. Shape histograms and
chemical properties of proteins form the objects´ feature vectors. The shape
histograms are built from partitioning the 3D space into concentric shells and sectors.
They assume proteins to be given as sets of 3D points. However, we still believe that
some difficulties may appear from using that shape signature since it is neither scale-
invariant, nor translation invariant. Also, it does not provide a description of the
protein�s shape at the local level. This issue is quite important as many molecular
interactions take place at very precise locations on the protein surface (active sites).

In the present manuscript, we describe a system for querying 3D model databases
using the spin image representation [9]. The spin image representation provides a
local description of the surface that is translation/rotation-invariant. A normalization
step is used in order to make it invariant to scale changes. Nevertheless, the main
contribution of this work is the introduction of a 3-level indexing schema based on
artificial neural networks. The indexing schema improves significantly the efficiency
in matching query spin images against those stored in the database. Our schema
makes the spin image representation potentially suitable for content-based retrieval in
large 3D model databases
The rest of the paper is organized as follows. Section 2 is devoted to briefly analyse
the representation of 3D free-form objects and to describe the spin image
representation. Then, the indexing mechanism is presented (section 3). Our system is
tested with some small 3D object databases in section 4. The paper concludes with the
main conclussions and some guidelines for future work (section 5).

2 Object Representation and Shape Features

Three-dimensional object recognition uses the true 3D shape of objects in its model
representation. 3D data can come in the form of depth-maps, isolated 3D points and
lines, or 3D intensity images, depending on the sensor and sensing algorithm. In this
work, we will consider the shape as a geometric concept derived from the object�s
surface. Definitions of free-form surfaces and objects are often intuitive rather than
formal. Besl [10] stated, �a free-form surface has a well defined surface normal that is
continuous almost everywhere except at vertices, edges and cusps�. Many other
definitions exist though.
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2.1 Object Representations in Computer Vision

Unfortunately, most 3D file formats (VRML, 3Dstudio, etc) have been designed for
visualization. They contain only geometric and appearance attributes, and usually lack
of semantic information that would facilitate object recognition. In a computer vision
context [11], the object representation is designed for use in the specific vision
application (such as navigation, recognition, or tracking), and visual fidelity may not
be a criterion of interest. On the other hand, efficient execution, saliency and locality
are desirable features. Several surface representations in the context of computer
vision have been proposed in the literature [12]. Among those that adopt complete
mathematical forms, parametric surfaces, algebraic implicit surfaces, superquadrics
and generalized cylinders are the most popular ones.  They all are global and compact
representations but lack of some characteristics. For example, only parametric forms
allow local control of the surface, but in contrast, they are difficult to fit to the actual
object�s contour. Polygonal meshes have become a popular representation for 3D
objects. Meshes allow local control of the surface and can faithfully approximate
complex free-form objects to any desired accuracy given sufficient space to store the
representation. In the past this was their major limitation, but with the decreasing cost
of computer memory and advances in hardware for computer graphics, even very
dense meshes have become practical. In our system, we will assume 3D objects to be
represented as polygonal meshes (also known as polygon soups). A polygonal mesh is
defined by two components: a list of 3D vertices and an indexed list of polygons each
specified as al list of vertex indices. We restrict polygons to be triangles because
triangle meshes are easy to manipulate and efficiently rendered.

2.2 The Spin Image Representation

The problem of determining the similarity of two shapes is a fundamental task in
shape-based recognition, retrieval, clustering, and classification [13,14]. In general,
matching methods are grouped according to their representation of shape: 2D
contours, 3D volumes, 3D surfaces, structural models and statistics. Unfortunately,
most of the methods for 2D shape matching are not extensible to the 3D case.
Nevertheless, a number of methodologies have been proposed for three-dimensional
shape matching  [14]. For the present work we have chosen the spin image
representation [9]. This model-based representation combines the descriptive nature
of global signatures with the robustness to partial views and clutter of local features.
The representation allows achieving both object recognition and coarse-grain
registration. Also, as no assumptions about the topology or shape are made, arbitrarily
shaped objects can be recognized.

Given a polygonal mesh, an oriented point O on the surface is specified by its 3D
position p and surface normal n (fig. 1). We have chosen the centroids of triangles in
the mesh as the location of oriented points and the corresponding triangle�s normals
as their associated direction. Thus, a given object has as many oriented points as the
number of triangles that form the mesh. Each oriented point defines a local coordinate
system using the tangent plane P through p oriented perpendicularly to n and the line
L through p parallel to n. The two coordinates of the basis are α, the perpendicular
distance to the line L, and β the signed perpendicular distance to the plane P. There is
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an unique function (�spin map�) that maps each 3D point x on the surface into (α , β)
coordinates with respect to the oriented point p. The spin map provides a mapping
from points on the surface into a two-dimensional space where some of the 3D metric
is preserved. A 2D histogram can be built from the spin map by accumulating 2D
positions into discrete bins. Bilinear interpolation of the spin-map coordinates is used
in order to reduce the effects of possible noise in the data. This histogram is called
�spin image� and it is unique for each oriented point in the surface. For each oriented
point on the surface of the object, its spin image is computed. The set of all spin
images forms the �spin image stack� and it is a global description of the object�s
shape.

Fig. 1.  For each oriented point (triangle center) on the triangular mesh, a spin map can be
computed by an unique mapping into a 2D space. The spin map is discretized into bins so that
the spin image from that oriented point is obtained

A spin image is an object centered (i.e: pose-independent) encoding of the shape of an
object because the spin-map coordinates of a point with respect to a particular
oriented point basis are independent of translational and rotational transformations.
However they are still scale-dependent since the α,β values depend on the scale of the
original 3D space. To avoid this, we normalize each vector (spin image) to unit
length. As a consequence, spin images are much more robust against resolution
changes. The resolution of a mesh is commonly defined as the average length of its
edges for uniformly distributed meshes. Let�s suppose two meshes representing the
same object but one surface has a richer sampling than the other. Without
normalization, their spin images would be different due to the difference in their
ranges. Normalization also makes spin images to be scale-invariant and less sensitive
to the metric that will be used thereafter for comparison. In [9] a modified version of
the linear correlation coefficient is used as metric distance between two images. The
metric considers the amount of overlap in the comparison of two spin images, which
is important for partial matching purposes. In our case, Euclidean distance produced
excellent results quite similar to those obtained with the linear correlation coefficient.

Oriented point

Original 3D model Spin Map Spin Image
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3 Artificial Neural Networks for Efficient Indexing

At recognition time, spin images from points on the model are compared to spin
images from points in the scene. When two spin images are similar enough, the object
(or a partial view of it) is recognized and a point correspondence between model and
scene is established (registration). Models are stored together with their spin images
stacks in a database. The user presents a query object to the database and ask for a
�top list� of similar objects as well as which surface regions of the query object
resemble to those of the retrieved objects. Efficiency is a critical factor in this
procedure. The worst case computational cost of the query is O(NdbNq), where Ndb is
the total number of spin images stored in the database and Nq the number of spin
images that were selected from the query object. It is essential to provide some
indexing mechanism in order to quickly match scene spin images to model ones.
Moreover, in [15] the authors pointed out that spin images coming from the same
surface can be correlated for two reasons: first, spin images generated from oriented
point bases that are close to each other on the surface will be correlated. Second,
surface symmetry and the inherit symmetry of spin image generation will cause two
oriented point bases on equal but opposite sides of a plane of symmetry to be
correlated. Even more, surfaces from different objects can be similar on the local
scale. Therefore, it may exist a correlation between spin images of small support
generated from different objects. We can benefit from this correlation to make spin
image comparisons more efficient through mapping the total number of spin images
into a reduced representative set of them. A different approach is proposed in [9].
Spin images are compressed to reduce the amount of correlation among them. Spin
images can be considered as p-dimensional vectors. Principal component analysis
(PCA) was used in order to map p-dimensional vectors into s-dimensional space
where s<p.

Artificial neural networks (ANN) have been applied in similar contexts [16,17]. In
this work we propose an improved indexing method based on ANN to efficiently
access to spin images. Our method achieves both compression and indexing of the
original set of spin images. Basically, a self-organized map (SOM) is built from the
stack of spin images of a given object. This is a way of �summarizing� the whole
stack into a set of representative spin images. Then, a clustering algorithm (kcmeans)
is applied in order to group representative views in the SOM map into a reduced set of
clusters (fig. 2). At query time, spin images will be first compared with the clusters
centers resulting from the kcmeans method and subsequently with the SOM map if
finer answer is requested.

3.1 Self-Organizing Feature Maps (SOM)

The Self-Organizing Map is a neural network that simulates the hypothesized self-
organization process carried out in the human brain when some input data are
presented [18]. The structure of this neural network is composed of two layers: an
input layer formed by a set of units (on for each component of the input vector) and
an output layer formed by units or neurons arranged in a low dimensional grid
(usually two-dimensional). The algorithm maps a set of input vectors (spin images in
our case) onto a set of output vectors (neurons), but unlike other mapping algorithms,
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the output response is ordered according to some characteristic feature of the input
vectors. It can be interpreted as a nonlinear projection of the p-dimensional input onto
an output array of nodes. Each neuron has a vector of coefficients associated with it
(vi∈ℜp) usually known as �code vectors�.

Fig. 2. Three-level indexing mechanism. A self-organized 2D map �summarizes� the
information provided by spin images. Each output vector has an attached set of spin images.
The third-level of indexing clusters the map into a reduced set of representative images (centers
of clusters)

The functionality of the algorithm can be described as follows: when a spin image
(xi∈ℜp) is presented to the net, the neurons in the output layer compete with each
other and the winner (whose code vector has the minimum distance from the input
spin image) as well as a predefined set of neighbor code vectors update themselves.
This process is continued until some stopping criterion is met, usually, when code
vectors �stabilize� or when a number of iterations are completed. Details of the
algorithm can be found in [18]. The result of applying SOM to the spin image stack is
a reduced set of spin images that represent the inherent clustering in the original set.
At this level of indexing, comparison with a given object is reduced from thousands
of spin images to less than two hundreds.

3.2 Kernel Probability Density Estimator Clustering Algorithm
(Kernel C-means)

Kernel c-means clustering algorithm is a process of grouping similar objects into the
same class by maximizing an objective function explicitly designed to estimate a set
of the cluster�s centers whose probability density function resembles as best as
possible the probability density of the input data. The theoretical basis of these
methods has been reported in detail elsewhere [19,20] and will only be briefly
reviewed here. Given n data items of dimension p, Xi∈ℜp·1 with i=1�n, the problem
is to find c surrogate �representative� data items (centroids), Vi∈ℜp·1 with j=1�c,
such that the estimated probability density:
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= −∑X X V . (1)

where K is a kernel function, with α>0 the kernel width parameter that controls the
smoothness of the estimated density. Intuitively, the kernel estimator can be seen as a
sum of �bumps� placed at the observations (data). The kernel function K determines
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the shape of the bumps while the parameterα determines the width. A commonly used
kernel function is the well-known Gaussian kernel. In general, let D(X;θ) be the
probability density for the random variable X, where θ  is some unknown parameter
vector. Let Xi∈ℜp·1, i=1�n, denote the data items then:
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is the likelihood function, and the most common statistical estimator for θ  is obtained
my maximizing eq. 1. Note that in this case the parameter vector is composed by the
(code vectors) Vi∈ℜp·1 and the Kernel width α, i.e: θ={{Vj},α}. The log-likelihood is:
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The Kernel c-means algorithm consists of an iterative optimization of the above
objective function (eq. 3). As a result, we add an additional level of indexing
following the self-organizing map to further reduce the number of comparisons to be
done at query time. The indexing will be defined by two parameters (d,c) where d is
the number of nodes in the self-organizing map (second level) and c the number of
clusters produced by the kcmeans algorithm (third level).

Efficiency in accessing to stored spin images is thus related to these parameters. As
said above, if no indexing mechanism exists worst case computational complexity is
O(NdbNq) where Ndb is the total number of spin images in the database. More
particularly:

_
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i

N N obj
=
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With our methodology, the parameter Ndb is reformulated as Ndb = dNobj at the
second level, and Ndb = cNobj at the third one. The reader should note that the number
of �original� spin images per object equals to the number of triangles (which is quite
often in the range of thousands). On the other hand, we have performed efficient and
accurate retrieval with (d,c) parameters in a range of 150 and 10 feature vectors
respectively.

4 Experiments

Our system was tested against three small databases (fig. 3). The aircraft and
molecular database contains very similar objects. It was intentionally done in order to
measure the accuracy in the recognition process. The database of macromolecules
was built from real datasets depicted as volumetric density images. A method for
obtaining a density-oriented mesh representation from volumetric datasets is detailed
in [20].

For each query object the complete spin image stack is computed. The accuracy is
defined by the number of query spin images that were correctly classified when
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compared to the third level of indexing. All the experiments were performed with
(p,c)=(150,10). Note that the number of comparisons per object is reduced from
several thousands to 10.

Fig. 3. Three test databases (one per row). Each object was presented to the database as a query
input. The query object was retrieved in first place 100% of times. Similarity between the query
object and target is measured (average recognition accuracy, a.r.a for short). (a) Molecular
database (first row). 7 models, a.r.a: 70% (b) Mixture database (second row). 14 models, a.r.a:
92% (c) Aircraft database, 17 models a.r.a: 73%. Note that recognition accuracy is lower than
that for molecular and aircraft databases since they contain very similar objects. Nevertheless,
for all query examples the similarity value with the second best matched object is lower than
10%. No ambiguity in the answer is possible

Given an arbitrarily shaped query object, a number of spin images are calculated.
Let be Tobj={t}, the set of triangles t that compose the mesh of such object and
SPobj={s} the corresponding set of spin images where spin image si corresponds to
triangle ti. The query spin image set QSPobj is a subset of SPobj. This is important as
the user might be interested in retrieving those objects in the database that have
similarity to a particular surface patch of the query object. Thus, locality is well
supported.

At query time, Euclidean distance of spin images in QSPobj and those at the 3rd (or
2nd) level of indexing is computed. A vote is added to the database object with closest
spin image. The average recognition accuracy is the number of spin images in QSPobj
that were correctly classified assumed that the query object was already stored in the
database (fig. 3). Another interesting way of visualizing the query result is by the use
of locality. Triangles associated to spin images in QSPobj might be colored according
to the color assigned to the three best-matched objects in the database (fig. 4).

5 Conclusions and Future Work

In this work we have presented a shape-based retrieval system that is suitable to both
general and domain-specific 3D object databases. It assumes free-form 3D objects to
be provided as triangular meshes. The spin image representation has been employed
as a robust shape signature. Our main contribution is the use of a self-organizing map
and a clustering algorithm as an indexing mechanism so that the overall number of
comparisons is significantly reduced. Thus, our method achieves indexing and data
compression as only �representative� spin images are chosen. Also, it increases the
robustness against noise (non-representative spin images). The experimental results
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confirm a remarkable improvement in the efficiency of the comparison procedure so
that interactive queries are possible. Even more, the recognition accuracy penalty is
minimum. An important issue for further work is to incorporate metrics (better than
euclidean distance) at the indexing level that would allow to retrieve objects when
only partial views are provided. Also, we plan to provide the user not only with a top
list of matching objects but with the rigid transformations that would align the query
object with the target. Application to large molecular databases is underway.

Fig. 4. An additional advantage of our system is that spin images support locality. A new plane
is presented to the aircraft database (a). When compared with the third indexing level
(kcmeans), the three most similar aircrafts are shown with a.r.a 27%(b) 13%(c) and 12%(d).
Triangles in the query object were colored (d) according to the correspondence of their
associated spin images with respect to matching items
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