

 Int. J. Web and Grid Services, Vol. 3, No. 4, 2007 371

Grid middleware in China

Yongwei Wu*
Department of Computer Science and Technology
Tsinghua University
Beijing, 100084, China
E-mail: wuyw@tsinghua.edu.cn
*Corresponding author

Chunming Hu
School of Computer Science and Engineering
Beihang University
Beijing, 100083, China
E-mail: hucm@buaa.edu.cn

Li Zha
Institute of Computing Technology
Chinese Academy of Sciences
Beijing, 100080, China
E-mail: char@ict.ac.cn

Song Wu
School of Computer
Huazhong University of Science and Technology
Wuhan, 430074, China
E-mail: wusong@hust.edu.cn

Abstract: Grids aim at constructing a virtual single image of heterogeneous
resources and provide uniform interface for distributed internet applications.
China also devotes much passion and endeavour to the evolution of grid
projects. Based on the experience in building and enhancing Chinese grids in
collaboration with colleagues from around the globe, it is important to choose
grid technologies that support and work on a wide variety of resources.

Grid middleware research and development in China is described in this
paper. First we give the overview of the three government-sponsored grid
programmes, namely, China National Grid, ChinaGrid and NSFCGrid. Then
three representative grid middleware, ChinaGrid Support Platform (CGSP),
China National Grid Operation System (GOS), China Research and
Development Environment Over Wide-area Network (CROWN) are introduced
in detail from six aspects: design motivation, architecture, function modules,
main features, interoperability, current status and applications. Finally, we
abstract the main characteristics of these three middleware systems and put
forward a comparison among them.

Keywords: grid; grid computing; grid projects; grid middleware.

 Copyright © 2007 Inderscience Enterprises Ltd.

 372 Y. Wu, C. Hu, L. Zha and S. Wu

Reference to this paper should be made as follows: Wu, Y., Hu, C., Zha, L.
and Wu, S. (2007) ‘Grid middleware in China’, Int. J. Web and Grid Services,
Vol. 3, No. 4, pp.371–402.

Biographical notes: Yongwei Wu received his PhD degree from the Chinese
Academy of Sciences in 2002. Then, he worked in the Department of Computer
Science and Technology, Tsinghua University. His research interests include
grid computing and distributed and parallel computing. From 2004, he has been
involved in the research and development of the ChinaGrid Support Platform.

Chunming Hu is part of the research staff in the Institute of Advanced
Computing Technology at the Beihang University, China. He received his PhD
degree from the School of Computer Science and Engineering of the Beihang
University in late 2005. His research interests include peer-to-peer and grid
computing, distributed systems and software architecture.

Li Zha graduated with a PhD degree in the Department of Computer Science
and Technology at the Beijing Institute of Technology in 2003. From 2003,
he has worked as the leader of the VEGA grid system software project.
His research focused on large-scale distributed resource management,
which includes naming, organisation and policy mechanisms. His interest
also includes other classic issues in distributed computing and the grid
computing field.

Song Wu got his PhD degree in Computer Engineering from the Huazhong
University of Science and Technology in 2003. He is now an Associate
Professor in the same university and the Vice Head of the Computer Science
and Engineering Department. He has been a member of the ChinaGrid team
from 2003. His research interests include grid computing and distributed
storage system.

1 Introduction

Grid computing (Foster and Kesselman, 1999), which focuses on distributed large-scale
resource sharing, provides a new solution for professional and contemporary users who
want to effectively share and collaborate among themselves in the distributed and
self-maintained Virtual Organisations (VOs) (Foster et al., 2001).

In the past decade, both the research and industry fields showed great interest and
passion to push forward the quick growth of grid computing. Many governments and
organisations devote huge efforts to grid-related projects. The most famous ones from
research institutions are: Globus,1 TeraGrid,2 GIG,3 and OSG4 in the USA; e-Science
Program5 and Open Middleware Infrastructure Institute (OMII)6 in the UK; GridCOMP,7
EuroGrid8 and Enabling Grids for E-science (EGEE)9 in the European Union; National
Research Grid Initiative (NAREGI)10 in Japan and K*Grid in Korea. In addition to these
projects, there are some projects supported by other strengths: Unicore11 Program by
open source and GPE12 by Intel, for example.

It is important to choose grid technologies that support and work on a wide
variety of resources, which are heterogeneous in terms of various factors including
architecture, instruction set, configuration, node operating system and local resource
managers. Grid middleware provides a series of cooperating programmes, protocols and

 Grid middleware in China 373

agents designed to help users access the distributed resources transparently. There are
various grid middleware developed by the grid project introduced above. The most
influential middleware are described below.

Globus Toolkit by Globus Alliance includes software services and libraries for
many components, such as distributed security, resource management, monitoring
and discovery, and data management (Ghalem and Yahya, 2007). Coordinated TeraGrid
Software and Services (CTSS) by TeraGrid creates an integrated, persistent
computational resource for open scientific research. Storage Resource Broker (SRB) by
SDSC presents the user with a single file hierarchy for data distributed across multiple
storage systems, which has features to support the management, collaboration, controlled
sharing, publication, replication, transfer and preservation of distributed data.

GLite by EGEE provides a bleeding-edge, best-of-breed framework for building
grid applications tapping into the power of distributed computing and storage resources
across the internet. MyGrid by OMII-UK is building high-level services for data and
application resource integration such as resource discovery, workflow enactment and
distributed query processing. XtreemOS supported by the European Commission’s IST
programme is an open source grid operating system with native support for VO and
capable of running on a wide range of underlying platforms, from clusters to mobiles.
NAREGI middleware makes the various computational resources (heterogeneous
high-performance computers, high-end servers) appear as one huge virtual computing
resource to users. The Grid Component Model (GCM) implemented by GridCOMP
makes it possible to seamlessly compose applications and services deployed on
large-scale infrastructures, e.g., several thousand machines all over the world.

Unicore is now developing its latest version of software: Unicore 6.0. At the same
time, GPE has developed several implementations for other famous grid middleware,
for example: GPE4GTK. Other famous middleware products by companies include
WebSphere13 by IBM, Grid Engine14 by Sun, EGO/Symphony15 by Platform and
WebLogic16 by BEA.

In this paper, we try to roughly depict the whole picture of the grid middleware
research and development in China, and briefly introduce several key grid projects in
addition to grid middleware systems and give a glimpse of each of them. Then the
remainder of this paper is organised as follows: Section 2 presents the research status of
the Chinese main grid middleware. The three key Chinese grid middleware, CGSP, GOS
and CROWN are described in detail in Sections 3, 4 and 5. Section 6 abstracts their main
characteristics. Finally we conclude this paper in Section 7.

2 Main Chinese middleware

Just like the rest of the world, China also devotes much passion and endeavour to the
evolution of its grid projects and grid middleware. There are three nationwide projects in
China. They are China National Grid (CNGrid),17 China Education and Research Grid18
and Natural Science Foundation Grid (NSFCGrid). In this section, we will take a glimpse
at these related research projects in China.

 374 Y. Wu, C. Hu, L. Zha and S. Wu

2.1 Grid projects in China
2.1.1 CNGrid

The China National Grid, which is supported by the major project of National High-Tech
R&D Program (863 programme) of the Ministry of Science and Technology of China, is
a test bed which integrates high-performance computing and the transaction processing
capability of a new generation of information infrastructure. Through resource sharing
and technological innovation, CNGrid can effectively support scientific research,
resources and environment sharing, advanced manufacturing, information services
applications and promote the country’s development of the information industry and
related industries.

China National Grid is equipped with independently developed grid-oriented
high-performance computers (Legend deep Tang 6800, Dawn 4000A). These eight
nodes, including one in Hong Kong, constitute an open grid environment through
self-development of grid software. CNGrid is also responsible for the run of
grid-operating environment, grid middleware development and the construction of the
application grid.

2.1.2 ChinaGrid

ChinaGrid (Jin, 2004), an important 211 project in the Tenth Five-Year Plan Period of the
Chinese Ministry of Education, aims at constructing a public service system for higher
education. Through developing corresponding grid middleware, ChinaGrid aims to
integrate heterogeneous mass resources distributed in the China Education and Research
Network (CERNET), shares those resources in the CERNET environment effectively and
avoids the resource islands, provides useful services, and forms the public platform for
research and education in China.

The first phase of ChinaGrid is from 2003 to 2006, and the second phase is launched
in 2007. The ChinaGrid member universities also expanded from an initial 12 to 20 in
the first phase. To this day, the computing power gathered by ChinaGrid has reacted
170 teraflops and the storage capacity has exceeded 170 terabytes. In ChinaGrid, there
are five typical applications: Bioinformatics Grid, Computational Fluid Dynamics Grid,
Massive Information Processing Grid, Realcourse Grid (remote high education courses
online) and Image Processing Grid.

2.1.3 NSFCGrid

Network-based e-Science Environment (NSFCGrid) is a research programme funded by
the Natural Science Foundation Committee of China. The programme started in 2004,
and will end by the end of 2007. The main goal of this programme is to build a virtual
science and experiment environment to enable a wide-area research corporation such
as large-scale computing and distributed data processing. The research projects are
organised into three layers: basic theory and principles, general test bed and pilot
applications. Different from CNGrid and ChinaGrid, NSFGrid pays more attention on the
basic research of grid-related technologies.

The NSFCGrid (CROWN test bed) integrates 41 high-performance servers or
clusters distributed among 11 institutes in five cities (by April 2007). They are logically
arranged in 16 domains of five regions by using the CROWN middleware. The testing

 Grid middleware in China 375

environment is growing continuously and is becoming much similar to the real
production environment. The NSFCGrid (CROWN test bed) will eventually evolve into a
wide-area grid environment both for research and production.

In addition to the three projects mentioned above, there are still some projects
deserving mention here such as the ShangHai Grid, and Tsinghua Grid (TG). The
Shanghai Grid project, supported by the Science & Technology department of Shanghai,
aims to study the key technique of information grid, develop information grid system
software and application supporting environment, and establish an information grid
to support ‘city traffic service system’ that supplies the best traffic route. TG, as one
representative of Chinese campus grids, is one of the earliest efforts in grid computing in
China. It aims at aggregating various computing resources on the Tsinghua University
campus into a powerful computational environment and providing unified and transparent
interface for users.

2.2 Chinese key grid middleware

With powerful support of these projects, there are numerous grid middleware showing
up. We will describe them briefly in this section then go deep into the details of three of
them from Section 3 to Section 5.

2.2.1 CGSP

ChinaGrid Support Platform (CGSP)19 (Wu et al., 2005) is a grid middleware developed
for building the ChinaGrid. It integrates all sorts of heterogeneous resources, especially
education and research resources distributed over the CERNET, to provide transparent
and convenient grid services for science research and high education. In moving towards
this end, CGSP is developed based on the following motivations:

• Provide a platform for grid construction from the top portal to the integration of
bottom resources of the grid. Not only does CGSP support the uniform management
of heterogeneous resources, but it also supplies the portal building, job defining,
service packaging and grid monitoring.

• Support secondary development of grid service and improve the flexibility of the
system. Parallel programming interface and its running environment supply the
complicated application development based on deployed services in the grid.

• Follow the latest grid standard and integrate existing advanced technology to avoid
reduplicated works.

• Provide an extensible and reconfigurable grid framework, in order to fit the purpose
of ChinaGrid to cover the top 100 universities of China in the near future, and satisfy
the autonomy of each ChinaGrid application or unit.

• Avoid unnecessary data delivery over the grid. Data required by the computing job
not in stream with the job description file is delivered to the personal data space in
data manager first and real computing nodes could get it directly when the job begins
to be executed.

 376 Y. Wu, C. Hu, L. Zha and S. Wu

2.2.2 GOS

Grid Operating System (GOS)20 (Zha et al., 2004; Xu et al., 2005) serves as the
underlying system software of the CNGrid. It supports the loosely coupled, dynamic
and autonomous nature of the grid, while providing single system image and managed
services in wide-area distributed environment, GOS implements a novel resource
virtualisation mechanism to cope with computing, data, software and combined
resource-sharing issues, and provides secured, uniformed and friendly interfaces when
accessing these scientific computing and information integration resources, such as
high-performance computer centres (called grid nodes), file storage and databases. By
satisfying common requirements, different domain-specific applications are running on
CNGrid now.

Rather than taking the middleware or network approach, GOS takes the computer
systems approach (VEGA) to guide its design. Similar to traditional operating system, it
focuses on four key issues: naming, process/states, VO (something like file system), and
programming. Accordingly, GOS puts more emphasis on key abstractions and software
architecture, but not on some specified protocol or service development.

2.2.3 CROWN

CROWN21 is short for China Research and Development Environment Over Wide-area
Network. Generally, it includes a grid middleware suite to build a service-oriented grid
system, and a distributed CROWN test bed to enable the evaluation and verification of
grid-related technologies.

CROWN service grid middleware is the kernel on which to build an application
service grid. Basic features of CROWN are listed as follows. First, it adopts an
OGSA/WSRF compatible architecture; second, considering the application requirements
and the limitation of security architecture of OGSA/WSRF, more focus is put on the grid
resource management and dynamic management mechanism in the design stage. A new
security architecture with distributed access control mechanism and trust management
mechanism, which are proposed to support the sharing and collaborating of resources in a
loosely coupled environment is proposed in CROWN.

There are also many other efforts for grid middleware in China. Campus grid,
one independent grid software developed by the Tsinghua University, was one the
earliest efforts in grid middleware in China. GridDAEN (Xiao et al., 2003) is a data
grid middleware that can integrate various kinds of file systems and provide uniform
seamless access to distributed datasets. HowU, one network computing platform
developed by the Huazhong University of Science and Technology, is a global computing
paradigm based on a volunteer computing model. DartGrid (Huang et al., 2003;
Wu et al., 2003), built upon semantic web standards and grid technologies, aims at
providing a semantic heterogeneous solution that addresses the challenge of web-scale
cross-enterprise database integration.

 Grid middleware in China 377

3 CGSP

3.1 Design motivation

China Education and Scientific Research Grid Project – ChinaGrid aims at constructing a
public service system for higher education. Through developing corresponding grid
middleware, ChinaGrid integrates heterogeneous mass resources distributed in the
CERNET, shares those resources in the CERNET environment effectively and avoids
the resource islands, provides useful services, and finally forms the public platform for
research and education in China. CGSP is a grid middleware developed to build the
ChinaGrid. It integrates all sorts of heterogeneous resources, especially education and
research resources distributed over CERNET, to provide transparent and convenient grid
services for scientific research and education. More specifically, CGSP is developed
based on the following motivations:

• Providing a platform for grid construction from the top portal to the integration of
bottom resources

• Providing an extensible and reconfigurable grid framework, in order to fit the
purpose of covering the top 100 universities of China in the near future while
satisfying the autonomy of each unit

• Following the latest grid standard and integrating existing advanced technology

• Supporting independent development of grid service and improving the flexibility
of the system.

3.2 Architecture

You can see the overall structure of CGSP in Figure 1.

Figure 1 CGSP architecture

Domain Manager Grid Monitor

Execution
Management

Information
Center

Data
Manager

Security Manager

Service Container

CGSP System Modules
(Services)

Portal Grid Developing
Toolkits

User Developer

Interoperating B
roker

A
lien G

rid
C

lient

 378 Y. Wu, C. Hu, L. Zha and S. Wu

The CGSP software platform meets the OGSA and the WSRF criteria. All of the
resources such as software, hardware, storage and network are abstract to the form of
service. Through the difference of service, it supports the foundation and premise for the
sharing and cooperation of the resources.

The Container produces a basic environment for the installation, deployment, running
and monitoring of services, especially CGSP kernel services. The Security Manager
focuses on the user identity authentication, identity mapping, service and resource
authorisation, and secure message passing between CGSP nodes. The Information
Centre provides service registration, publishing, metadata management, service querying,
service matching and resources status collection for the CGSP services in a uniform way.
The Data Manager’s function is to shield users from the heterogeneousness of underlying
storage resources to provide a uniform storage resource access mode. Execution
Management accepts users’ job execution requests, and invokes relevant service
according to job description, and manages the job in its lifetime. The Heterogeneous
Database (HDB) aims to enable users in the grid environment to access various
heterogeneous database in a uniform way. Domain manager is in charge of the user
management, log and accounting, and user identity mapping between different CGSP
domains. The grid monitor, named ChinaGrid Super Vision (CGSV), mainly focuses on
the monitoring of CGSP resources load, quality of services, user actions, job status and
network, to ensure system running normally, and to enhance grid performance as well.
Portal is a webpage for visiting current CGSP service and also for providing some
support for new grid applications. GridPPI is a set of APIs that enable end users,
especially developers, to write grid-enabled parallel programs.

3.3 Function modules
3.3.1 Container

Container is the core component of CGSP that will be put on every node. As a
basic runtime environment of the services and supply ‘service-oriented facilities for
computing’, container is put on every node which supports the services.

According to the requirements of ChinaGrid, the Container should supply not
only the core functions of the services management, such as remote deployment, runtime
management, and service status monitor, but also hot deployment and dynamic
deployment of service. Hot deployment means that after the service being deployed, there
is no need to restart the Container to enable the service to be invoked by users; as hot
deployment is in the case, we need to employ a lock mechanism to ensure entirety of
service transaction.

3.3.2 Information Centre

Information Centre (IC) is responsible for providing information of all resources in
ChinaGrid, which have the nature of considerable diversity, dynamic behaviour, great
distribution and large number. The difficulties of design and implementation of the IC
come from the following goals:

• To support all kinds of resources

• To reflect the nearly recent state of resources

• To support query both within a domain and across domains

• To provide acceptable performance in large-scale use cases.

 Grid middleware in China 379

Information Centre consists of the following components: Domain Information Service
(DIS), Domain Registry Service (DRS), Node Registry Service (NRS) and Schema
Repository Service (SRS).

DIS provides information about domains in ChinaGrid. There are two kinds of
information about domains: the topology of domains, which indicates how the domains
are connected, and the configuration and deployment information of each domain, which
primarily concerns the addresses of CGSP modules, such as Job Manager, Data Manager
and so on.

DRS provides information about all kinds of resources. Based on DIS, DRS provides
a global view of all resources, including computing elements, services, databases,
devices, etc., within all domains in ChinaGrid. The schema used to describe resources in
DRS is provided by SRS.

NRS is responsible for maintaining information of resources and services in a local
node, and registers this information to DRS. To make the resource or service information
visible in a domain, it must be registered to the IC. NRS, deployed on each computing
node, automatically collects the service information in the CGSP container, resources and
services and periodically reports the collected and registered node information to the
IC’s DRS.

SRS stores all the schemas utilised to describe resources, each of which defines
how to describe a category of resources. Thus, a schema is associated with one or
more categories. The resources registered to Information Centre should follow a schema
in SRS according to its category, and users can make a query to DRS according to
this schema.

3.3.3 Security Management

Security Management in CGSP is designed for guaranteeing that the grid resource can be
registered and deployed by those who are authorised to do so. It offers protection for the
container, services and resources in CGSP, and also the security of message transmission
during all the communication between the different entities of CGSP.

There are four main modules of security management: user identity setting,
authentication in the container level, authentication of user token and authorisation
management in the service level. User identity setting module maps user id to group id
and adds these user identity information to the SOAP message. Authentication in
container level mainly uses XML encryption technology to take encryption, decryption,
signature and authentication in the SOAP message level. Authentication of the user token
module contrast user’s token and user information in the client side to authenticate user’s
identity. Authorisation management in the service-level module takes charge of taking
users authorisation according to the authorisation rules in service security descriptor.

3.3.4 Data Management

Data Management (DM) aims to provide virtual storage space and reliable data transfer
mechanism with high performance. The purpose of the storage virtualisation is to
integrate the heterogeneous storage resources distributed in the grid environment. In the
perspective of a grid user, DM provides a virtual file system. One can execute operations
on the virtual file system as he/she can do on local file systems. The requirements of the
data transfer in CGSP are efficiency, manageability and reliability. By managing each

 380 Y. Wu, C. Hu, L. Zha and S. Wu

process of data transfer as a WSRF resource, the creator of the resource is able to start,
suspend, restart, stop the transfer process and get its up-to-date status. The architecture of
the DM in CGSP is shown in Figure 2.

Figure 2 Architecture of data service in CGSP

UserSpaceService
(USS)

StorageResourceService
(SRS)

FileTransferService
(FTS)

Resource Status Report

Transfer Status Report

Storage Resource Storage Resource

Transfer ClientPortal

Third-part Data

Transfer

Replica

Management

Underlying Data

Transfer

Meta Data Management

Storage Resource

Replica

Management

Underlying Data

Transfer

DM consists of the WSRF service: UserSpaceService, which is responsible for user space
management, StorageResourceService, which is responsible for management of the
storage resources, and FileTransferService, which carries the physical data transfers
between storage resources.

The GUI of the virtual storage pool is a grid file system, which is shown in the CGSP
Portal. A legal user of CGSP Data Management will be allocated a grid file system. In the
system, a user can perform several basic file system operations: make a directory, delete
files/directories, search files/directories, upload files from users’ local file systems to the
grid file system, download files from the grid file system to users’ local file systems and
browse the grid file system.

3.3.5 Execution management

Execution management is a very important function module in CGSP, which consists of
many software components. Execution management, which is responsible for submitting,
scheduling, managing and monitoring jobs launched by end-users enables applications
to have coordinated access to underlying resources. It provides uniform interface of
job creation and monitoring (such as WS, WSRF, JSDL, Composite Service, etc.),
legacy binary program execution management, dynamic WSRF/WS service invocation,
distributed workflow engine management and distributed workflow balancing.

 Grid middleware in China 381

Execution management mainly consists of three types of software module roles,

which are supply side, broker side and demand side. On the supply side are services
that manage and supply resources such as CPU, disk, data, memory and services. On
the demand side are applications that consume the corresponding capabilities of
resources. The broker side is responsible for building the binding between them. As
Figure 3 illustrates, job executors, job manager and job submitter, respectively, serve
these roles in CGSP.

• Job submitter – facilitates end users to submit jobs. Job submitter includes Java
jars, GUI applications, command line applications and JSP pages. It can complete
job submission, job control, job state monitor, workflow deployment and
undeployment, and GridPPI job launch and monitor.

• Job Manager (JM) – receives job request submitted by users and is responsible for
finding job execution location, initiating the execution, managing and monitoring the
execution. JM’s main task is to do job scheduling. A schedule is a mapping (relation)
between services and resources. A schedule will typically attempt to optimise some
objective function such as execution time, cost, reliability, etc. When resource
selection generates the schedule, JM is responsible for enacting the schedule.
According to different types of job, JM will use different types of concrete job
managers to invoke job executors to complete the job.

• Job executors – are containers that carry out the execution of job. The containers
could be GRS, CGSP service container, Java WS Core in GT4.0.x, and Axis1.2.x.
GRS is for running legacy programs in Linux host. The CGSP service container
supplies the WSRF-compliant service to encapsulate applications.

Figure 3 Architecture of execution manager in CGSP

JobSubmitter

Submission Monitor Control Workflow
Monitor

GridPPI
Monitor

Submission
Agent

JobManager
Selector

JobManagers
Management

Legacy Job
Manager

Execution
Queue

Resource
Selection
Execution

Engine

Submission
Queue

GridPPI Job
Manager

Workflow Job
Manager

Service Job
Manager

JobExecutors
CGSP2.0
Service

Container

GT4.0.x
Java

WS Core

CGSP2.0
GRS

Service

AXIS1.2.x
Service

Container

Execution
Queue

Resource
Selection
Execution

Engine

Submission
Queue

Execution
Queue

Resource
Selection
Execution

Engine

Submission
Queue

Execution
Queue

Resource
Selection
Execution

Engine

Submission
Queue

Meta Scheduler
JobManager

-

Job State Database Job State Database Job State Database Job State Database

 382 Y. Wu, C. Hu, L. Zha and S. Wu

3.3.6 Heterogeneous Database

HDB aims to enable users in the grid environment to access the services provided by
various heterogeneous database more conveniently. HDB intends to provide users a
uniform, flexible and standard interface to access and integrate databases. To make this
standard interface, it has several unified accessing methods, which makes the data
integration possible and brings heterogeneity transparency, naming transparency and
distribution transparency. Hence, HDB is capable of being a supporting platform for
accessing the very large and basic heterogeneous databases.

Execution Engine, one of the most important modules in HDB, is dedicated to parsing
Perform Document, interpreting SQL statements, optimising conditions and schedule
jobs in order to undertake most of workload. It is made up of SQL Interpreter and SQL
Dispatch. When a user submits a request performed on a virtual table, SQL Interpreter
receives and parses the SQL statement contained in the Perform Document, then
partitions the statement into query plans whilst converting the operation referred to
virtual table to that associated with real physical table; finally if conditions exist in
the SQL statement, optimisation would be carried out. When the SQL Interpreter is
completed, SQL Dispatch dispenses query plans to target data services, and controls the
sequence of jobs execution, then constitutes retrieval data returned by distributed and
disparate databases to form the final results.

3.3.7 Portal

CGSP Portal provides an easy way to use the service of ChinaGrid. Portal is a
webpage not only for visiting current CGSP service but also for providing some support
for new grid applications. As shown in the function list in Portal, there are six main
functions: user and group management, grid services management, job management, data
management, heterogeneous database management and system module management.
From Portal, the users can manage ones’ user information and group information,
browse information centre, view ones’ data space, upload and download files with Http
or GridFtp, deploy ones’ own applications to the grid which is managed by CGSP GRS
service, submit jobs to applications and services, and can also view virtual tables in
CGSP environment.

3.3.8 GridPPI

As its name implies, GridPPI is a set of APIs that enable end users, especially developers,
to write grid-enabled parallel programs. Moreover, GridPPI is bundled with a
behind-the-scenes runtime framework that saves developers all the effort in finding a way
to run their programs in a parallel mode. Just follow several rules and instructions; a
program that fully exploits the services provided by CGSP is right at hand.

3.4 Main features
3.4.1 High-quality, low-cost computing services platform

CGSP is a platform rather than a toolkit. It tries to cover from the top user interface to the
bottom of integration of heterogeneous resource. It brings the user face to face with the
grid developers but also the field expert, who are familiar with specific fields but not
familiar with grid, and end users, who are ignorant of both specific field and grid but who
need to use the computing power.

 Grid middleware in China 383

3.4.2 Grid workflow with WSRF support

Since activities of grid workflows are often related to stateful services (WSRF-compliant
services), we enhance the support of WSA and add a new service invoking engine (for
orchestrating WSRF service) in ActiveBPEL engine, which can select proper service
invoking engine to complete the corresponding service invocation according to the
designation of the service type of partner service in the Process Deployment Description
file (PDD file).

3.4.3 JSDL job submission and legacy job execution using General Running
Service (GRS)

By providing support to JSDL, CGSP enables user and program to submit jobs using a
standard submission interface. CGSP uses GRS to perform real job execution. GRS is a
WSRF service designed and implemented according to specific CGSP requirements and
is able to take care of an instance of legacy job in its whole lifetime from application
deployment to job completion.

3.4.4 MPI-like Grid Parallel Program Interface (GridPPI)

GridPPI is a grid-enabled parallel programming environment. It is also a framework
designed for thread-level parallelism in Java. It provides a set of MPI-like Java APIs for
communication and collaboration among threads. It is mainly designed for advanced
Java/Grid application programmers to write fine-grained parallel programs.

3.4.5 Heterogeneous database integration

Based on the OGSA-DAI, heterogeneous database integration module is implemented for
accessing multiple heterogeneous databases and enables users in the grid environment to
use services provided by various databases through a uniform, flexible and standard
interface and integrate contents of them.

3.5 Interoperability

Interoperability can combine the unique capability of heterogeneous grid platforms and
enable grid systems to possess more resources in their own infrastructure. However,
because all grid platforms have their own applications, it is a nightmare to migrate
these applications to a new platform, and reprogramming the grid middlewares also
takes much time. Hence, to achieve interoperability between heterogeneous grids, the
following issues must be addressed: security, information service, job management and
data management.

Based on the concept of mediated bridge mechanism, we adopt virtualisation and
plug-in technologies to achieve interoperation among heterogeneous grids. In view of
compatibility with other grids and enabling integration of more grid platform in the
future, our proposed interoperability mechanism exploits current widely accepted
standards such as Job Submission Description Language (JSDL) for job description and
GLUE for resource description.

 384 Y. Wu, C. Hu, L. Zha and S. Wu

Our proposed interoperability mechanism adopts three layers of architecture, and
security, information service, job management, and data management are considered.
Heterogeneous grid platform layer refers to a set of distinct grid platforms built with
diverse grid middleware, each of which usually is autonomous with its own management
policy, its organisation architecture and its own implementation mechanism. Plug-in
layer serves as an intermediary, which bridges the underlying grid platforms and upper
virtual management layer, performing bidirectional information format translations, job
parameters-type translation, data staging, and information integration and dissemination,
etc. In the virtual management layer, Consistent Information Repository (CIR) and
service modules constitute a virtual grid management centre, which hides the
heterogeneity of underlying grid systems from users.

The main contributions of the proposed interoperability mechanism lie in the
following respects: Firstly, it implements the interoperation among heterogeneous grid
systems without any changes to them, keeping the independence of original grid
systems. Secondly, it periodically translates and caches the information and data retrieved
from grid platforms, helping to lower information querying latency, improve information
querying accuracy and speed up service access response. Finally, the interoperability
system that scales easily for the number of plug-ins only grows linearly in O(n).

3.6 Current status and applications

There are now five main grid applications with the support of CGSP: Image processing
grid, Bioinformatics grid, Course online grid, Computational fluid dynamic grid and
Large-scale information processing grid.

Image processing grid now can offer three types of image processing services:
three-dimension reconstruction of digital virtual human being, medical image diagnosis
and remote sensing image processing.

Bioinformatics grid develops computing grid-aided drug design systems based on
the integration of the techniques of assembled biology, assembled chemistry, and
computer-aided filter, sequence analysis and structure, to optimise drug design.

Course online grid has already provided about 300 courses and 3500-hour video from
12 universities for VOD and download. Users can get the courses VOD by IE using
Real Player.

Computational fluid dynamics grid integrates computational mathematics, computer
science, hydromechanics and computer visualisation.

Large-scale information processing grid includes three information-intensive grid
applications: university digital museum, which aims at sharing the cultural relics
effectively and to provide appropriate information service to users; high-energy physics
computing and alpha magnetic spectrometer experiment.

3.7 Future work

In the near future, we intend to further study the dynamic maintenance approach of grid
system at different levels (node, container and service), and implement a set of dynamic
maintenance schemes in CGSP.

 Grid middleware in China 385

4 GOS

4.1 Design motivation

As internet technologies advance, there are more and more distributed resources
to be shared and collaborated, which impose a great need for internet-based grid
system software to manage resources. A system software is needed to manage
large-scale distributed resource effectively, to provide a uniform approach accessing
the heterogeneous resources in grid and support internet-based resource sharing and
collaborating across administrative domains.

There is also a great need for easy-to-use grid. A grid system software is needed to
hide interior details for developers and administrators, to help developers lower their cost
for developing grid applications. The grid should be more convenient for end users by
multiple access modes, such as client/server mode, browser/server and others. In
high-performance computing field, batch mode and interactive mode are both needed to
develop, debug and submit jobs.

4.2 Architecture

GOS architecture (GOS) is illustrated in the left side of Figure 4, which is mainly based
on the GOS version 2 and version 2.1. GOS is totally four layers, including underlying
hosting environment as the bottom layer.

Figure 4 GOS hierarchical architecture and runtime stack

CNGrid
Hosting Env.

Core
Level

Services

Grip Container

Grip Container
Service

Servlet Based Scalable Grid Portal Engine

Grid Apps

Core Libs Core Service APIs, Core Exception Handling, Authentication and Authorization

Java J2SE, J2EE

Tomcat
(Apache)

WebSphere
(IBM)

WebLogic
(BEA) .NET

(Microsoft)

GT4
(Globus)

System and Application Service APIs, System Exception Handling, AC Handling

Batch Service Workflow Service etc.

User Libs

System
Level

Services

App Level
Services

Build-in Utility Collection Extended UtilitiesGrid
Portal

 Application Logic by Web Pages

BioInfo Service

OMII
(e-Science)

User
Customized
Applications

GSML
Browser

/Composer

Extended
System
Services

Information(MetaX)
Services

MetaDB
Service

MetaSys
Service

MetaFile
Service

etc.

CA&
Certificates

 Mgmt. Service

Base Services

Dynamic Deploy Service

System
Monitoring

Service

Logging&
Auditing
Service

File Service Database
Service

Messaging
Service

Router ServiceService Router

Agora Service Set

Agora Authorization
Authority Service

Agora Service

Agora User
Mgmt. Service

Agora Resource
Mgmt. Service

A
pp

lic
at

io
n

La
ye

r
Sy

st
em

La
ye

r
C

or
e

La
ye

r

Hardware

OS(Linux/Unix/
Windows)

J2SE(1.5), J2EE

Tomcat(5.0.28)+
Axis(1.2)

Axis Handles for
Message Level

Security

Core, System and
Application Level

Services

Grid Portal, GSML
Workshop and Grid

Application Based on
GOS APIs

The hosting environment mainly consists of the operating system, j2se, application server
and SOAP engine. GOS runs on the hosting environment and has its interface of support
portals to other hosting environments.

 386 Y. Wu, C. Hu, L. Zha and S. Wu

The core layer is something like the OS kernel, and provides common functionalities
required by grid applications, such as layered service address management, grid user
management and grid process (grip) manipulation. Also, the authentication and
authorisation are included in this layer. The core layer is composed of grip service, agora
service set and router service with wrapped client side API; user authentication and
service authorisation mechanisms implemented by Axis handler chains; and the GOS
exception handling extends from the Axis fault, which can help the developers in
accurately locating the service side exceptions and failures.

The system layer provides a collection of basic libraries to help programmers develop
grid applications quickly. Batch service accepts batch job submission, status query and
cancel request; forwards batch jobs to backend batch system and gets back results.
File service is based on local file system, organises plain files for user and provides
HTTP-based file transfer. Dynamic deploy service dynamically deploys a service
implementation (.jar file) into its hosted service container; updates and removes an
existing service. To support message subscribe and notification, messaging service
provides reliable messaging between peers by message queue and topic. Some services
are undergoing development, such as general metainfo service, CA service, Database
service listed in Figure 4.

The application layer is not constructed by services, but by API provided by system
layer and core layer. The grid portal developer or integrator can benefit from the Grid
Portal Engine by avoiding using the system or core layer API directly. Grid Service
Markup Language (GSML) workshop, which is composed of GSML browser and GSML
composer, is an agile integration toolset for grid applications development. There are
user-customised applications based on GOS API existing in the top layer also.

The right side of Figure 4 shows the GOS runtime stack. The axis handles, core
system and application level services are in the scope of the system software.
Applications are built on services provided by GOS. At runtime, applications will
invoke the core-, system- and application-level services to do authentication, services
discovery and policy decision. After the corresponding policy enforcement is done by
the axis handlers at the service side, the target service is invoked and the result
is returned.

4.3 Function modules
4.3.1 Resource and user management service

In GOS, resources are jointly managed by the router service and agora service. The
address (URI) of service is registered and virtualised by the router service. Each grid
router service can manage the meta information of domain-scoped services. By
incrementally propagating the difference between neighbour routers, each router keeps
the router ids (the virtualised router service access point which is created automatically
while the router starts for the first time) globally synchronised, that is to say, the
decentralised interlinked grid routers can provide a unique global (SSIed) meta
information space. The elements in this space are meta information of registered services,
which are identified by a combination of router id and service id.

According to some classifying rules, some virtualised services maintained in different
router services can be associated with certain users, therefore they generate a set of
specified permission policies. The classified service, user information and policies are all

 Grid middleware in China 387

stored in one agora service. Agora service is the implementation of the VO. An agora
service user is identified by a Distinguish Name (DN) in his/her certificate, and granted
different permission by his/her role.

4.3.2 Batch job execution service

GOS provides a job management system to aggregate local cluster job management
systems. It can support heterogeneous backend batch job systems such as OpenPBS, LSF
and NQS. The job management system is encapsulated as batch service for better sharing.
There is a metaschedule service to dispatch grid jobs to these batch services in CNGrid.
It will monitor and collect the load information of each node and make the dispatch
decision based on some default or user-defined custom policies.

The users can describe the job in standard JSDL language, submit it to the grid by
portal or the API, monitor the job status, and wait for the result. The job management
system will select a grid node, may be a cluster, to run the job. These candidate nodes
must have the corresponding software to execute the job and the grid user must have
local user accounts in that grid. The installed software and the user mapping information
are provided by two services maintained by local cluster administrator. Then the job
system will transfer the input files to an appropriate node, execute it and transfer the
output files to the predefined position. The files are transferred by a grid file management
system. After job submission, the accounting information of each node and each grid user
will be gathered. GOS allows customised accounting policies.

4.3.3 Distributed file management system

Composed of metafile service and file storage service, a distributed file management
system integrates local file systems and forms a logical global file system. Except for
remote file reading/writing function, it can provide remote file management interfaces
which include file upload/download, file/directory creation/deletion, file authorisation
and so on. The metafile service records the mapping between logical file name and
physical file name to maintain an independent space for each grid user. Physical file is
available at the file storage service side, and physical file name is the absolute location of
this file (/path/to/file or driver:\path\to\file). Virtual file name is the id of the virtualised
file storage service plus the file owner’s DN and relative path of the file in local file
system. The virtual file name can uniquely determine the location of the file and owner in
the grid. The file storage service handles the file transfer requests and organises the local
file system. Files are transferred by HTTP protocol to avoid firewall problems.

4.3.4 Grid system monitoring service

GOS provides a grid monitoring system based on SOA to monitor the CPU, memory
or disk usage of PC, cluster or supercomputer. The monitor system follows a hierarchy
architecture, including local monitor server – LMS and global monitor server – GMS.
LMS is responsible for collecting and storing local operating system-level status data,
such as loadavg, mem and CPU utilisation, etc.; while GMS is for gathering necessary
data from multiple LMS and supporting grid scope information retrieval. The LMS can
live alone and provide information of one grid node before being registered to a GMS.
Both LMS and GMS are equipped with web service front-end interface.

 388 Y. Wu, C. Hu, L. Zha and S. Wu

4.3.5 Security system

Especially, the security in a grid environment seeks to:

• provide authentication solutions that allow user and the resources accessed by that
user to verify each other’s identity

• provide agora-based authorisation mechanism

• allow local access control mechanisms at service side to be integrated into grid
security without changing the original source code.

Inside the security system, we have developed a CA service that is responsible for
certificate management, and have implemented WS security-compliant authentication,
authorisation, message-level secure communication, access control by handler chains
of axis.

The extensible message processing model is the key to the security system. This
model uses handlers and handler chains of axis that can enable the functionality to be
tailored to satisfy a wide variety of situations and requirements. A handler is an atomic
component that will operate on a specified part of a SOAP message. For example, a
handler can be in charge of performing authentication on a message sender before
allowing it to be processed by the provider. A special handler, the pivot handler (another
name for the service’s provider), is in charge of executing the service implementation
logic. It is called pivot handler because it is where the message’s processing cycle
changes from request processing to response processing.

4.4 Main features

GOS is featured by its design principles and key technologies. Some principles are
formed to guide its designs, including satisfying minimal common requirements, using a
computer system approach and adopting matured standards and technologies.

4.4.1 GOS components and resources are all encapsulated by service

The components of GOS and resources are encapsulated by service to provide uniformed
interface to a variety of resources and hide underlying resource heterogeneity. Services
are easy to integrate and expand owing to their loosely coupled features. These services
are WS-related and standards-compliant to allow better interoperability.

4.4.2 Layered resource spaces for virtualisation

GOS introduced a layered resource space called Effective-Virtual-Physical Service
Address Space to tackle the naming issue of grid resources. It is constructed by physical,
virtual and effective layer, and every upper layer is built on a lower layer. The physical
address layer is composed of the URL of the services. When a service is registered, it
will generate a unique global identifier, which is the virtual address. Multiple virtual
addresses having the same functions can be added to the agora and form a user-friendly
effective address, which is used by developers. Service address naming schemes in GOS
are as follows:

 Grid middleware in China 389

Physical: http://host_name_or_ip:port_number/suffix

Virtual: vres://router_id:service_id

Effective: eres://agora_name:service_name

The address space can separate resources and applications so that the application can
keep still while resources are changing. Furthermore, it can provide functions such as
resource selection, fault tolerance, authorisation and access control, and all these
functions can be made transparent to users.

4.4.3 Utilising several abstractions to simplify accessing grid

GOS proposed some key abstractions including agora and grip. ‘Agora’ is a type of
concrete implementation of ‘VO’. It is defined as a set of users, resources and policies. It
is used to aggregate and organise users and resources locally, establishing corresponding
relationship across them, such as roles, service category, service selection and
authorisation policy. Agora provides a standard way of sharing resources across real
administrative domains in grid. The administrator of a grid can just organise needed users
and resources in the same agora and define the appropriate access control polices. If the
resources trust the agora, then the users can share these resources in the same agora.

‘Grip’ is something like ‘Grid process’. It is used to maintain the conversation
between users and services at runtime. It holds necessary information about users and
services, such as user proxy, resource addresses in use during the grip’s lifetime and so
on. It provides a set of uniformed interfaces for accessing different services. Most
importantly, grip is used to manage the resources during an application’s running. It can
log the resource usage for audit or billing. It can revoke all the resources used when the
grip is killed.

4.4.4 Grid security mechanism that supports web services

GOS provides PKI-based authentication, which is WS security-compliant. GOS separates
authorisation decision and enforcement using SAML token. The authorisation policies
are defined in agora. When an application tries to bind a resource, the grip will ask the
agora to get corresponding policies about the resources. These policies will be formed as
a SAML token, signed by the agora. That is the process of decision. When invoking
services, the token will be passed on to the service side, then the service enforces the
access control polices according to both the SAML token and its local policies.

GOS supports flexible security features such as multiple access control enforcement
and SOAP message integrity verification by axis handler-chain mechanism. These
security features can be combined and configured during service deployment and are
independent with the service implementation.

4.4.5 Rich user environment

The most powerful interface is the API generated from the core, system-level services. It
can be used by developers to build their own grid applications, including some
applications already in the GOS itself. Based on these APIs, GOS provides a portal to
manage the grid. Grid administrators can use the portal to manage users, resources,
agoras, define policies and manage running grip, killing it for example.

 390 Y. Wu, C. Hu, L. Zha and S. Wu

The GSML Workshop, which includes composer and browser, is an agile integration
toolset for developing and running grid applications. It features reusable components,
event-driven programming model and WYSIWYG programming environment. The
GSML Workshop enables flexible application logic and collaboration mechanisms by
reusable components with an internal event-based model. These components provide
uniformed event interfaces to hide low-level technical details of resources. When these
components are together composed by connecting their event interfaces, loosely coupled
applications are produced that are represented by individual GSML documents. The
visual IDE helps the developers to edit, debug and run the applications intuitively.

Also, a grid SSH tool is built in the GSML workshop, which can help grid users
transparently log into multiple connected grid nodes. Once a grid users logs into one
node, he/she can freely login to other nodes in the grid and execute local command or
copy files between nodes.

4.5 Current status and applications

GOS version 2.1 has been released and deployed on the CNGrid platform in November
of 2006. In this version, the core abstraction has been refined and the performance and
robustness of the software have been improved. The software is easier to use. Also, the
stability of the batch system has been improved.

The application scope contains science research, manufacturing and resources and
environment. Some example applications are shown in Figure 5.

Figure 5 Application scope of GOS

 Grid middleware in China 391

Biological research is mainly focused on genome computing, genome sequence tracing
and computing. The manufacturing application in Figure 5 is aviation and space
simulation computing. There are some geological researches, such as underground water
evaluation. Figure 5 also shows some daily running weather forecast application.

4.6 Future work

The future work of GOS will include the following aspects. The first one is GOS key
abstraction and core-level service refinement, including ‘address space’, ‘grip’ and
‘agora’. The second is system-level service and functionality expanding, especially
database service, CA service, metainfo service, grid data management and workflow. The
third is application scope enlarging, from scientific computing area to general service
computing area.

5 CROWN

5.1 Design motivation

Since many researchers are focusing on technologies and applications of grid, the
interoperability and loosely coupled integration problem between different grid systems
are now becoming a hot topic. At the same time, the application and standardisation
of web services technology are developed rapidly, and Service-Oriented Architecture
(SOA) becomes an important trend in building a distributed computing environment for
wide area network, which helps the merging of grid and web services. Recently, Open
Grid Service Architecture (Foster, 2002) and Web Service Resource Framework22 were
proposed and have become two of the fundamental technologies in grid computing. SOA
and related standardisation work provide an important methodology to the research and
application of grid technology. First, the resources are encapsulated into services with
standardised interfaces, supporting the unified service management protocol, which helps
to solve the problem caused by the heterogeneity of resources. Second, the resources
are utilised through a service discovery and dynamic binding procedure, which helps
to set up a loosely coupled computing environment. However, the current resource
management mechanism is not enough for all the grid application scenarios because the
distributed and autonomic resource environment, and the existing security mechanism
cannot provide features such as privacy protection and dynamic trust relationship
establishment, which limit the further application of grid technology.

Actually, not only grid computing, but also peer-to-peer computing and ubiquitous
computing try to explore the internet-oriented distributed computing paradigm. The
common issue in these computing paradigms is how to use the capability of resources
efficiently in a trustworthy and coordinated way in an open and dynamic network
environment. As we know, the internet (especially the wireless mobile network) is
growing rapidly, while it lacks effective and secure mechanisms to manage resources,
especially when the resource environment and relationship between different autonomic
systems are changing constantly. At this point, three basic problems, namely,
cooperability, manageability and trustworthiness are proposed. The cooperability
problem is how to make the resources in different domains work in a coordinated
way to solve one big user’s problem. The manageability problem is how to manage

 392 Y. Wu, C. Hu, L. Zha and S. Wu

heterogeneous resources and integrate the resources on demand in a huge network
environment, which is a basic condition for building an internet-oriented distributed
computing environment. The trustworthiness problem is how to set up a reliable trust
relationship between cross-domain resources when they are sharing and collaborating.

From 2002, based on our previous work on web service supporting environment
(Shu et al., 2004), and OGSA/OGSI-compatible service grid middleware WebSASE4G
(Hu et al., 2004), a WSRF-compatible CROWN grid middleware (Huai et al., 2006;
Hu et al., 2005; Sun et al., 2005) is proposed. On the basis of the three basic problems,
several key issues have been explored, such as resource management of service grid,
distributed access control, cross-domain trust management, grid service workflow and
service orchestration-based software development.

5.2 Architecture

Grid computing started from metacomputing in the 1990s. In recent years, the grid
has changed from metacomputing to computing grid and service grid, but the basic
architecture of such a computing paradigm has not changed much. In 2001, the five-layer
sandglass architecture was proposed and accepted generally. With the application and
standardisation of the grid, the architecture and its supporting technology has become
an important research issue. OGSA is a service-oriented architecture, which adopts
the service as the unified resource encapsulation format to provide better extensibility
and interoperability between grid resources. WSRF refines the service interface and
interoperating protocols of OGSA, and makes the OGSA a web service-compatible
implementation framework, which helps the merging of grid and web service technology
more smoothly.

Actually, the five-layer sandglass architecture just proposed an abstract functionality
structure for the service grid. OGSA/WSRF provided an implementation framework
based on service concept, and a set of grid service interfaces, neither of which discussed
the design principles, middleware component definitions, and the detailed solutions
for access control and trust management in the service grid. In this paper, we analyse
the requirements from typical grid applications, and provide a detailed introduction of
CROWN middleware and its architecture, design principles and kernel technologies
based on the OGSA/WSRF service grid architecture.

Generally, there are three kinds of services in an OGSA/WSRF service grid: general
services, resource encapsulating services and application-specific services. General
services, such as grid job broker service, metascheduling service, and grid information
services (GISs) are an important part of a service grid middleware. In a typical
application grid scenario (see Figure 6), a user first submits a job to the metascheduling
service, then gets the job status and result from the job broker service; metascheduling
service retrieves the resource requirements from the job description language, queries
GIS to discover the necessary service, submits the job to the service and traces the status
of the job execution.

On the basis of the above analysis, we provide a layered architecture for CROWN
and compare it with the five-layer sandglass architecture (see Figure 7). In Figure 7,
service grid middleware covers resource layer, collective layer and application layer. In
our system design, services in resource layer (e.g., resource encapsulation service),
collective layer (e.g., grid information service, metascheduling service and job broker
service) and part of services in application layer are OGSA-compatible grid services,

 Grid middleware in China 393

using information service to obtain the capability of registration and dynamic discovery.
Grid application support tools are used to enable the interoperation between the collective
layer and application layer (for example, the application-specific developing framework,
routines, and web-based grid application portals, etc.).

Figure 6 CROWN-based service grid application pattern

??????

Grid Information
Service

Service Registration
& Resource Status Update

Service
Discovery

Service Access

??????

Grid Information
Service

………

Information
Exchange

Service Provider

Service Index Centre

Meta Schedule
Service

User Proxy

Job
Submission

Service Requester

Grid Job Proxy

Resource
Encapsulation Service

Asynchronous
Notification

Query Job Status
& Get Job Result

????Grid
Resource

Resource
Monitor

??????

Grid Information
Service

Service Registration
& Resource Status Update

Service
Discovery

Service Access

??????

Grid Information
Service

………

Information
Exchange

Service Provider

Service Index Centre

Meta Schedule
Service

User Proxy

Job
Submission

Service Requester

Grid Job Proxy

Resource
Encapsulation Service

Asynchronous
Notification

Query Job Status
& Get Job Result

????Grid
Resource

Resource

Create/Manage

Figure 7 CROWN-based service grid application

Fabric Layer

Connective Layer

Resource Layer

Collective Layer
(Common Funciton)

Application Layer

Collective Layer
(Field related Layer)

Computation
Resource

Storage
Resource

Apparatus
Equipment

Program
Resource

Data
Resource

Service Interoperation Service (SOAP £ ¬WS -Security etc. £ ©

Service Encapsulation based OGSA Grid Service Interface

G
rid Inform

ation Service

Meta Schedule
Service

Grid Job
Proxy Service

Application
Service

Customized
Schedule
Service

Other Application Service

Other Common
Service

Other Tools £ P̈rogramming Model

Web Portal Other User Proxy

Various Applications

Fabric Layer

Connective Layer

Resource Layer

Collective Layer
(Common Function)

Application Layer

Collective Layer
(Field related Layer)

Computation
Resource

Storage
Resource

Apparatus
Equipment

Program
Resource

Data
Resource

Service Interoperation Service (SOAP, WS-Security, etc.)

Service Encapsulation based OGSA Grid Service Interface

G
rid Inform

ation Service

Meta Schedule
Service

Grid Job
Proxy Service

Application
Service

Customised
Schedule
Service

Other Application Service

Other Common
Service

Other Tools (Programming Model, Application Framework, etc.)

Web Portal Other User Proxy

Various Applications

5.3 Function modules

There are 11 components in total in CROWN service grid middleware analysed
as follows:

 394 Y. Wu, C. Hu, L. Zha and S. Wu

1 Node server

It provides a basic runtime environment for grid service. Using node server, the
underlying resources can be encapsulated into grid services. Node server provides all
the generic functionalities when running a service instance, such as SOAP message
processing, service instance management; instance/invoke life cycle management
and notification mechanism. Based on Globus Toolkit 4.0, the node server adds lots
of features such as remote and hot service deploying, resource status monitoring and
reporting, logging and remote control and management. By adding security modules,
the node server can provide features such as PKI/Kerberos-based authentication,
fine-grained authorisation, trust management and Automatic Trust Negotiation
(ATN), which could guarantee the security and privacy effectively when resources
are used by remote users or cross-domain resources.

2 Resource locating and description service

It is a distributed information service system for service registration and discovery.
Multiple Resource Locating and Description Service (RLDS) instances use
information exchange and topology maintenance protocol to build the hierarchical
architecture and the overlay network at runtime as needed to get better performance
of resource management and service discovery.

3 CROWN Scheduler

It is a metascheduling service in CROWN that queues and schedules user’s jobs
according to a set of predefined strategies, interoperates with RLDS to get current
service deployment information and job status, uses predefined scheduling policy
(random policy, load balancing policy, etc.) to do the matchmaking, and performs
the service invocation. CROWN scheduler supports two types of job, POSIX
application invocation and grid service invocation. Job Submission Description
Language (JSDL) is used to describe the QoS requirements and security demands
of the jobs.

4 CROWN CommSec

It is a plug-in for the node server and a generic web service to provide the basic
security communication feature such as building and verifying of certificate chains.
Administrators can edit the predefined policy file according to complex security
requirements to provide independent, extensible and feasible security solutions.

5 CROWN Authz Service

It is a generic service using an XACML-based authorisation policy description
language and provides the capability of authorisation decision and policy
management. It supports the multigranularity access control policy and domain
access control policy.

6 CROWN CredMan

It is used to manage user credentials. Through the agent certificate issue, the
identified subjects can be managed especially when the job is submitted from the
web portal or in the mobile networks.

 Grid middleware in China 395

7 CROWN CredFed

It contains a plug-in for the node server and a credential mapping service. It can
be used to map credentials from different security infrastructures (such as PKI
and Kerberos) to enable the identity mapping between two security domains.
Administrators can modify the mapping policy to control the behaviour of CredFed.

8 CROWN ATN

It contains a plug-in for the node server and a set of generic services. The ATN
establishes the trust relationship between strangers on the internet, protecting the
privacy (for example, the information on attributes-based certificates and the
negotiation policies) of both sides. It provides a security decision and trust
management mechanism for open network environment.

9 CROWN Portal and Rich Client Framework

The two tools provide a unified user interface to service grid to support the job
parameter configuration, job submitting, JSDL generating and result demonstration.
CROWN Portal provides a web-based interaction model for the applications, and
Rich Client Framework provides a Java-based application framework for
applications, which has extensive visualisation and interaction demands (such as
complex visualisation). The framework can be customised according to the
application scenario to speed up the application development.

10 CROWN Designer

It is a grid service developing and deploying tool based on the Eclipse platform.
A set of wizard and dialogues provided make the development and deployment
of grid service much easier. By using the remote and hot deploy feature of the
node server, the designer provides drag-and-drop features to deploy the GAR file.
In the near future, more service orchestration tools will be integrated into the
CROWN Designer.

11 CROWN Monitor

It is an Eclipse RCP-based client tools written in Java. It is used to retrieve, store and
analyse events/information from different grid entities, and to show current runtime
information using map and chart. We can also adjust parameters of the tool to change
the monitor behaviour to the target service grid systems.

Based on these middleware modules, CROWN is designed as shown in Figure 8. There
are three layers in a service grid. CROWN middleware connects resources in a resource
layer. The application grid uses a web portal or other customised client interfaces to
submit jobs and solve the user’s problem. First, the node server should be deployed
on each resource to support service deploy and runtime management. Second, all the
grid resources are divided into multiple domains; at least one RLDS instance should
be deployed into each domain, and all the RLDS instances have to be configured into a
predefined architecture to form a distributed information systems. Third, CROWN
scheduler will be deployed into the grid, to get the job request from the user and to find
the proper services for each job; finally monitoring and developing tools simplify the
building procedure of a service grid and its applications.

 396 Y. Wu, C. Hu, L. Zha and S. Wu

Figure 8 Service grid design principle based on CROWN middleware

5.4 Main features

CROWN adopts an OGSA/WSRF-compatible architecture, with the following features.

5.4.1 Overlay-based distributed resource management

Overlay technique is an effective way to support new applications as well as protocols
without any changes in the underlying network layer. The basic idea of the overlay
network is to build a new network over the existing physical network nodes according
to some selected logical rules. In CROWN, resources are managed by an information
service overlay consisting of a set of RLDS services. These RLDS instances are linked
with each other according to a tree-based topology with carefully selected short cuts,
exchanging resource and request information with their logical neighbours. Such a fully
decentralised structure can provide better performance with the avoidance of single point
of failure at information systems.

5.4.2 Remote and Hot Deploy with Trust (ROST)

Traditionally, the remote service deployment is supported in a cold fashion, which means
deploying a new service, and the service runtime environment needs to be restarted.
Therefore, the hot service deployment has become increasingly important, which does
not need to restart the runtime environment while deploying services. To achieve this
feature, an archive format called GAR file (Grid Archive) is proposed to encapsulate all
the necessary files and configurations for a grid service. The GAR file can be moved to
the target service container through SOAP/HTTP protocols. The target service container
receives the GAR file and uncompresses it to update the container information without
stopping the container.

 Grid middleware in China 397

Security issues are guaranteed through the trust negotiation using the ATN technique.

ATN is a new approach to access control in an open environment, which, in particular,
successfully protects sensitive information while negotiating a trust relationship. With
ATN, any individual can be fully autonomous. Two individuals, which are not in
different security domains, try to set up a trust relationship by exchanging credentials
according to respective policies.

With the availability of remote and hot service deployment, many applications will
benefit, such as load balancing, job migration and so on.

5.4.3 JSDL-based job submission and BES-based job scheduling

Job Submission Description Language (JSDL) and Basic Execution Service (BES) are
adopted in the CROWN scheduler, with extension to web service-based job submission.
Jobs can be submitted to the CROWN scheduler via any JSDL-compatible clients, such
as GridSAM, and gLite using a BES interface. Interoperability demonstrations are
proposed in AHM 2006 and SC 2006, organised by High Performance Computing Profile
(HPCP) working group in OGF.

5.4.4 Security architecture supporting domain interoperability

CROWN uses a federate construction to form the virtual organisation. We use the term
‘region’ to denote the area with homogenous security infrastructure such as PKI or
Kerberos, and the term ‘domain’ to denote the area of autonomous organisation. When
grid services are deployed in different domains, each domain may have their own security
concerns about the services. CROWN provides a fine-grained and extensible architecture
that maximises the separation of service administrators and service developers.

Besides this, CROWN allows that the same implemented service be deployed into
those PKI domains as well as Kerberos domains without having to modify the source
code of the service. Furthermore, CROWN-ST also supports users from domains with
heterogeneous security infrastructures to access the resources from other domains.

5.5 Interoperability

The interoperability of CROWN middleware can be described in several aspects.
From the architecture layer, CROWN follows the service-oriented architecture with
OGSA/WSRF-compatible design principles. Grid services developed for CROWN can be
reused in other WSRF-compatible service containers. From the message layer, CROWN
middleware adopts many widely used standards and specifications, such as SOAP,
WSDL, and WS-Security specifications, which helps CROWN to interoperate with other
web service-based grid system (such as OMII and GoS) at the message layer. From the
implementation layer, CROWN Node Server is an enhanced Globus Toolkit 4.0 core,
which brings better interoperability with other GT-based systems.

5.6 Current status and applications

CROWN is now becoming one of the important e-science infrastructures in China.

 398 Y. Wu, C. Hu, L. Zha and S. Wu

We have developed and deployed a series of applications from different disciplines,
which include Advanced Regional Eta-coordinate numerical prediction Model (AREM),
Massive Multimedia Data Processing Platform (MDP), gViz for visualising the
temperature field of blood flow, Scientific Data Grid (SDG) and Digital Sky Survey
Retrieval (DSSR) for virtual observatory. These applications are used as test cases to
verify the technologies in CROWN.

AREM uses the grid as a tool to study and refine the numerical prediction model of
weather and climate. Several numerical models are worked out by meteorologists during
their research and prediction work. Typically these models use the raw weather data from
national meteorology authority as input, and simulate the weather transformation based
on the laws of atmospheric physics and fluid dynamics. The output can be used as a
prediction result of future weather. The simulations are all based on complex numerical
calculations and need large quantities of computing power and storage capacities. By
using the resource organisation, job scheduling technologies provided by CROWN,
we successfully developed the AREM research system. We encapsulated the Fortran
compiler, visualisation tools (GrADS) and the simulation framework of AREM as
services; a unified raw weather data centre is also deployed. Meteorologists can submit
simulation jobs to the system and refine the numerical models according to the results.
Since the jobs are executed by using the resources provided by the CROWN test bed, the
execution procedure can be parallel, the execution time can be much reduced and the
efficiency of weather system research and prediction model refinement is improved.

Large amounts of storage capability and computing power is needed when
performing multimedia data processing, such as content recognition of voice or video.
Traditionally a central processing model is applied and pieces of data are collected
and processed in a single point. When the input data increases, this method provides
little scalability especially for the real-time applications. We combine the service grid
technologies with the massive data processing and implement the MDP platform for
multimedia data processing. MDP has been deployed into CROWN and provides service
since 2005. We encapsulate the related algorithms into services and deploy then on many
grid nodes. Users can provide many ways of multimedia data and submit jobs to the grid
scheduling system. After analysing the workload of grid nodes, available resources can
be found automatically and data can be processed by invoking corresponding services.
Since the platform is deployed in a wide-area environment, we also introduced the trust
management and negotiation mechanisms. These technologies protect the user data and
make the processing trustworthy. By using MDP, the resources that can be used to
process multimedia data increase apparently, and the throughput and dependability of
processing can be much improved.

CROWN interoperates with other grid middleware through specifications. The test
bed also links to some famous grid test beds. For example, gViz application is deployed
both in CROWN and White Rose Grid (WRG), which is a part of the UK National Grid
Service (NGS). We demonstrated the application on UK e-Science All Hands Meeting
2005 to show the interoperability of heterogeneous and autonomic grid systems.

The experience of system development and deployment mentioned previously shows
that CROWN provides the capability of resource management, distributed access control
and trust management and negotiation. It can be used to support applications that are
computation-intensive and/or data-intensive. Eleven applications had been deployed into
CROWN by April 2006 and more than 25 000 requests has been processed.

 Grid middleware in China 399

5.7 Future work

We are currently focusing on the fundamental problems of resource collaboration,
system management and trust to establish a trustworthy virtual service computing
environment. A further step of research includes the overlay-based and dynamic
resource organisation and allocation model, management of QoS and protocol
computing-based interdomain trust management and access control mechanisms. We
are also developing a fast application development method and tool that is based on
service composition technologies. More applications from more disciplines will also be
deployed into CROWN.

6 Comparison

From details discussed previously, we can compare these three projects of main
middleware in China as shown in Table 1.

Table 1 Comparison among three middleware in China

Item CGSP GOS CROWN

Intent Enable 100 Chinese
universities to
collaborate on scientific
research, and high
education

Construct a distributed
high-performance
environment to support
various applications

Build a virtual
environment for
research and scientific
experiments

Dates 1st phase: 2003–2006

2nd phase: 2007–

1st phase: 2002–2006

2nd phase: 2006–

1st phase: 2003–2007

Developers 42 developers from
20 ChinaGrid member
universities

More than 20
universities, institutions
and enterprises in
mainland China and
Hong Kong

More than 12
universities and
institutions in
mainland China

Container GT WS Java Core

Hot deploy

Remote deployment

Tomcat 5.0.28+Axis 1.2 Extension of GT 4 WS
Java core

Information
service

ChinaGrid topology
maintainer

Service and resource
information manager

Grid Router with
distributed meta
information
management

RLDS network with
topology management

SQL-like resource
query language (RIQL)

Data manager Storage broker

File transfer

Heterogeneous
databases integrator
based on OGSA-DAI

Grid File Management
System which can
individual file systems

Meta Data Service and
Local Data Service,
with extended P-FTP
implementation,
support the file sharing
and transfer

 400 Y. Wu, C. Hu, L. Zha and S. Wu

Table 1 Comparison among three middleware in China (continued)

 CGSP GOS CROWN

Execution
Manager

JSDL Supporting

Legacy and MPI
program execution

WSRF and WS
invoking

Job define tools

Job manager

Batch Job Service and
batch system drivers
that can accept JSDL
jobs and communicated
with backend batch
system

CROWN Scheduler
and node server
extension, enable the
execution of legacy
code and web services

Workflow BPEL for WSRF

Distributed Workflow
Engine

N/A BPEL-based service
composition and
distributed execution

Job Types JSDL Job

WSRF Service

GRS Application
(Legacy Programs)

JSDL Job

Web service
implementation (.jar)
for dynamic
deployment

POSIX Job (legacy
code and patch
program), pure WS,
WSRF services

Programming
Interface

GridPPI GSML and GOS APIs Java API to interact
with CROWN
modules

Security Support Identity mapping

Access control

WS-Security+SAML Identity mapping,
distributed access
control and trust
negotiation at runtime

Interoperability GPE

ProActive

GT4

GT4;

OMII

Support BES/JSDL
spec, Interop demo
with Globus, gLite,
Unicore, OMII in
SC’06 and OGF 20

7 Conclusion

In recent years, grid computing has become a rapidly growing research area. With the
pace of the whole world, we need grids for greater computing capacity, resource sharing
and collaborative work. China views the grid as an important opportunity for many fields
and contributes huge effort to the development of grid middleware as well as grid
computing technology. The rapid development and growth of grid projects inspire more
concern on grid middleware.

In this paper, we mainly focus on the introduction of Chinese main grid middleware.
Three representatives, CGSP, GOS and CROWN, are discussed in detail from design
motivation, system architecture, main functions, key features, interoperation with others
and related applications.

Grid technologies have been attracting more and more attention from various
distributed applications. China views the grid as the national information infrastructure.
Many national plans and industrial projects have been launched for building grid
middlewares to push practical applications.

 Grid middleware in China 401

Acknowledgements

This work is supported by the ChinaGrid project of the Ministry of Education of China,
Natural Science Foundation of China (90412006, 90412011, 60573110, 90612016,
60673152, 60673174), National Key Basic Research Project of China (2004CB318000,
2003CB317007), and National High Technology Development Program of China
(2006AA01A108, 2006AA01A111, 2006AA01A101, 2006AA01A106, 2006AA01A115).

References
Foster, I. (2002) ‘The physiology of the grid – an open grid service architecture for distributed

systems integration’, Open Grid Service Infrastructure WG, Global Grid Forum.

Foster, I. and Kesselman, C. (1999) ‘The grid: blueprint for a new computing infrastructure’,
San Francisco, CA: Morgan Kaufmann Publishers, Inc.

Foster, I., Kesselman, C. and Tuecke, S. (2001) ‘The anatomy of the grid: enable scaleable virtual
organizations’, Journal of High Performance Computing.

Ghalem, B. and Yahya, S. (2007) ‘A hybrid approach to replica management in data grids’,
International Journal of Web and Grid Services (IJWGS), Vol. 3, No. 1.

Hu, C., Zhu, Y., Huai, J., Liu, Y. and Ni, L.M. (2005) ‘Efficient information service management
using service club in CROWN grid’, Proceedings of the 2005 IEEE International Conference
on Service Computing (SCC 2005), in conjunction with the 2005 IEEE International
Conference on Web Services (ICWS 2005), pp.5–12.

Hu, C.M., Huai, J.P. and Sun, H.L. (2004) ‘Web service-based grid architecture and its supporting
environment’ [in Chinese], J of Software, Vol. 15, No. 7, pp.1064–1073.

Huai, J., Hu, C., Sun, H., Li, J., et al. (2006) ‘CROWN: a service grid middleware with trust
management mechanism’, Science in China F: Information Science, English ed., Vol. 49,
No. 6, pp.731–758.

Huang, C., Wu, Z., et al. (2003) ‘Dart: a framework for database resource access and discovery’,
Proceedings of the Second International Workshop on Grid and Cooperative Computing,
Lecture Notes in Comput. Sci. 3032/3033, Shanghai, December,.

Jin, H. (2004) ‘ChinaGrid: making grid computing a reality’, International Collaboration and
Cross-Fertilization.

Shu, J., Hu, C.M., Ge, S., et al. (2004) ‘Research and implementation of web service runtime
platform’ [in Chinese], J Computer Research Development, Vol. 41, No. 3, pp.442–450.

Sun, H., Hu, C., Zhu, Y., Huai, J., Liu, Y., Li, Y. and Li, X. (2005) ‘Early experience of remote
& hot service deployment with trustworthiness in CROWN grid’, Proceedings of 6th
ACM International Workshop on Advanced Parallel Processing Technologies (APPT’05),
Hong Kong, October, pp.301–312.

Xiao, N., Li, D., Fu, W., Huang, B. and Lu, X. (2003) ‘GridDaen: a data grid engine’, Proceedings
of the Second International Workshop on Grid and Cooperative Computing, Lecture Notes in
Comput. Sci. 3032/3033, Shanghai, December.

Wu, Y., Wu, S., Yu, H. and Hu, C. (2005) ‘Introduction to ChinaGrid support platform’, Lecture
Notes in Computer Science, (ISPA2005), Vol. 3759, pp.232–240.

Wu, Z., et al. (2003) ‘Knowledge base grid: a generic grid architecture for semantic web’, Journal
of Computer Science and Technology, July.

Xu, Z., Li, W., et al. (2004) ‘Vega: a computer systems approach to grid computing’, Journal of
Grid Computing, Vol. 2, No. 2, pp.109–120.

Zha, L., Li, W., et al. (2005) ‘System software for China national grid’, IFIP International
Conference on Network and Parallel Computing (NPC 2005), LNCS 3779, Beijing, China,
pp.14–21.

 402 Y. Wu, C. Hu, L. Zha and S. Wu

Bibliography
Graham, F.S., Kesselman, C., Maguire, T., Sandholm, T., Snelling, D. and Vanderbilt, P. (2004)

‘Open grid services infrastructure’, OGSI V.1 Specification: GFD.15.

Li, M., Liu, H., Jiang, C., et al. (2003) ‘ShanghaiGrid in action: the first stage projects towards
Digital City and City Grid’, Proceedings of the Second International Workshop on Grid and
Cooperative Computing, Lecture Notes in Comput. Sci. 3032/3033, Shanghai, December.

OGSA, http://www.globus.org/ogsa/.

Tang, F., Li, M. and Cao, J. (2003) ‘A transaction coordination mechanism and its compensation
technology in grid environment’ [in Chinese], Journal of Computer Research and
Development, December.

Tang, F., Li, M. and Cao, J. (2003) ‘A transaction model for grid computing’, Proceedings of the
Fifth International Workshop on Advanced Parallel Processing Technologies, Lecture Notes
in Comput. Sci. 2834, September.

Tang, F., Li, M., et al. (2003) ‘Coordinating business transactions for grid service’, Proceedings of
the Second International Workshop on Grid and Cooperative Computing, Lecture Notes in
Comput. Sci. 3032/3033, Shanghai, December.

Wu, Y., Wu, S., Yu, H. and Hu, C. (2005) ‘CGSP: an extensible and reconfigurable grid
framework’, Lecture Notes in Computer Science, (APPT2005), Vol. 3756, pp.292–300.

Notes
1 Globus, http://www.globus.org.

2 Teragrid, http://www.teragrid.org.

3 GIG, http://www.nsa.gov/ia/industry/gig.cfm.

4 OSG, http://www.opensciencegrid.org.

5 E-Science, http://www.rcuk.ac.uk/escience/.

6 OMII, http://www.omii.ac.uk.

7 GridComp, http://gridcomp.ercim.org/.

8 EuroGrid, http://www.eurogrid.org.

9 EGEE, http://www.eu-egee.org/.

10 NAREGI, http://www.naregi.org.

11 Unicore, http://www.unicore.eu/.

12 GPE, http://gpe4gtk.sourceforge.net/.

13 Websphere, http://www.ibm.com/software/websphere.

14 GridEngine, http://gridengine.sunsource.net.

15 Platform, http://www.platform.com.cn/Products/Platform.Symphony/Home.html.

16 WebLogic, http://www.bea.com.cn/products/beawebLogic/index.jsp.

17 CNGrid, http://www.cngrid.org/.

18 ChinaGrid, http://www.chinagrid.edu.cn.

19 CGSP, http://www.chinagrid.edu.cn/cgsp/.

20 GOS, http://www.cngrid.org/en_resource.htm.

21 CROWN, http://www.crown.org.cn.

22 WSRF, http://www.globus.org/wsrf/.

