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Czech Technical University

Department of Cybernetics, FEE
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Abstract

This article gives a brief overview of theoretical ad-
vances, computing trends, applications and future perspec-
tives in parallel genetic algorithms. The information is seg-
regated into two periods before and after the year 2000 and
in all chapters. The second period is more interesting and
of higher importance, because it highlights recent research
efforts and gives some hints about possible future trends.
That is why we devote much space to the second period. As
there is no such an overview of the recent period of parallel
genetic algorithms, we find our investigation to be impor-
tant in many aspects.

1. Introduction

Parallel genetic algorithms (PGAs) are parallel stochas-
tic algorithms. Like sequential genetic algorithms
(GAs) [27, 32, 41, 59], they are based on the natural evolu-
tionary principle. Better individuals survive and reproduce
themselves more often than the worse ones. To speed up
the processing of generations of populations, we can split
the population into several sub-populations and run them in
the parallel way. PGAs have often been applied to various
hard optimatization problems, machine learning, prediction
problems and they have given interesting and good results.

1.1 Basics of Genetic Algorithms

In this part we will review some important basic
terms [27, 41], that we could be able to use them later. We
would like to note that PGA has a lot of things in common
with a sequential or a simple GA, so we are going to start
with them.

Genetic Algorithms In the beginning, there are ran-
domly generated individuals. All those individuals create

a population. The population in certain time is called a gen-
eration. According to their qualities they are chosen by op-
erators for creation of a new generation. The quality of the
population grows or decreases and give limits to some con-
stant. Every individual is represented by its chromosome.
Mostly chromosomes represented as a binary string. Some-
times there are more strings which are not necessarily of a
binary type. The chromosome representation could be eval-
uated by a fitness function. The fitness equals to the quality
of an individual and is an important pick factor for a selec-
tion process. The average fitness of a population changes
gradually during the run. Operating on the population, sev-
eral operators are defined. After choosing randomly a pair
of individuals, crossover executes an exchange of the sub-
string within the pair with some probability. There are many
types of crossovers defined, but a description is beyond the
scope of this report. Mutation is an operator for a slight
change of one individual/several individuals in the popula-
tion. It is random, so it is against staying in the local min-
imum. Low mutation parameter means low probability of
mutation. Selection identifies the fittest individuals. The
higher the fitness, the bigger the probability to become a
parent in the next generation. There are different types of
selection, but the basic functionality is the same.

Parallel Genetic Algorithms In PGA, there is always a
selection-crossover-mutation cycle as in GAs, but you must
meet new terms there. They are a deme, a migration and a
topology. A deme is one separated population (subpopula-
tion) in many deme populations. Migration means an ex-
change rate of individuals between the demes. It is of two
types-synchronous/asynchronous. Migration has a huge im-
pact on speed reaching the solution. It is a new process
which describes how many migrants will be exchanged be-
tween the demes, when there is the right time for migration
and which type of the migration schemes is useful. In par-
allel computation, topology is an important characteristics
and like in the PGA. There are many types of topologies
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between nodes/demes. Static and dynamic topologies could
be used. It is worth to note that the topology brings a new di-
mension to GAs, because we have got several demes instead
of one. Demes exchange individuals among themselves and
are not anymore controlled “globally”.

1.2 Parallelization and Classification

Genetic algorithms are easily parallelized algorithms.
There are two kinds of possible parallelism—data paral-
lelism and control parallelism [23]. Data parallelism in-
volves the execution of the same procedure on multiple
large data subsets at the same time.

In contrast, control parallelism involves the concurrent
execution of multiple different procedures. At a given time
instant each of the p processors executes a different proce-
dure on its corresponding data set.

Naturally, data parallelism is essentially sequential; only
data manipulation is parallelized and the algorithm executes
one procedure in a certain period. It is the main advantage
of data parallelism. The exploiting control parallelism must
be carefully parallelized. The effectiveness of the control
parallelism depends on several aspects of the underlying ar-
chitecture of the parallel system (inter-processor topology).
Data parallelism is independent of the architecture of the
parallel system and simpler than the control parallelism.

In early days, most genetic parallelism was data based
parallelism due to the relative simplicity. Later, some ex-
periments with control parallelism were carried out. At
present, hybrid parallelism approaches are also published
to the employ advantages of both streams.

Gains from the running genetic algorithms in the parallel
way are many—run time savings, speedup of finding solu-
tions, search of greater problem space, following various
diversified search paths, maximal utilization of computing
machinery, increase of computational efficiency, and so on.

Many classifications, surveys, taxonomies, syntheses
and overviews [15, 17, 19, 28, 44] have appeared. Ac-
cording to them, parallel genetic algorithms can be divided
into global, fine-grained, coarse-grained and hybrid mod-
els. The classifications are also based on a walk strategy1

(single, multiple) and on the type of (parallel) computing
machinery used.

Many published papers and reports about PGAs have
been applied to various theoretical problems, challenging
and interesting practical applications. The publications con-
cerning of theoretical advances are not very common as
their application counterparts. We are going to start with
known theory, then to move to parallel computing trends,
applications and perspectives.

1The term of a walk strategy is derived from a simple random walk.
If metaheuristic searches a problem space with one “thread”, only then it
uses a single walk strategy. If there are more threads, which are searching
the problem space concurrently then a multiple walk strategy is used.

2 Theoretical Advances

(Before 2000) Bethke (1976) [9] described global paral-
lel implementation of a conventional GA and a GA with a
generational gap. He also showed the analysis of efficiency
of using the processing capacity. He identified some bottle-
necks that limit the parallel efficiency of PGAs.

Grefenstette (1981) [29] proposed four PGA types and
the first three were a sort of global PGAs. They differed in
accessing to (global) shared memories. The fourth type was
a conventional coarse-grained GA. Many new questions of
this PGA were raised during Grefenstette’s research.

Grosso (1985) [30] proposed an implementation of a
serial simulation for a concurrent formulation. Tanese’s
(1987) [57] and Pettey’s (1987) [49] works are two of
the earliest parallel implementations. The population of
a GA was divided into a relatively small number of sub-
populations. Each element in the architecture was assigned
an entire sub-population and executed in a rather standard
GA.

Cohoon (1987) [18] showed that the punctuated equilib-
ria theory of the natural systems transfers to parallel imple-
mentation of evolutionary algorithms (EAs) and leads to ex-
pansion of evolutionary progress. Belding(1989) [8] imple-
mented PGA on a hypercube parallel computer. Manderick
and Spiessens (1989) [40], Gordon (1992) and Adamidis
(1994) created the term of the island model parallel GA.

Very important theoretical questions were raised about
comparison of quality solutions between a PGA and a clas-
sic GA by Starkweather, Whitley and Mathias (1999) [54].
They claimed that relatively isolated demes converge to dif-
ferent solutions and that migration and recombination com-
bine partial solutions. A complete summary of the advances
of the research in parallel genetic algorithms till 2000 could
be found in [15, 17, 19].

(2000 and after) The number of papers, dissertations
and books on the theory of parallel genetic algorithms have
been increasing [2, 5, 15, 50, 51]. Some of them are briefly
reviewed in the following.

One of the very fruitful studies was the dissertation of
Cantú-Paz (2000) [15]. The dissertation brought many new
principles of the rational design of fast and accurate paral-
lel genetic algorithms. It helped many researchers to decide
a configuration of the many options of topologies, migra-
tion rates, number and size of demes. The important find-
ings were brought to light as importance of accurate pop-
ulation sizing for PGA, an equivalent scalability of single
and multiple demes, impracticability of isolated demes, im-
provement quality and efficiency by migration, advantage
of fully connected topologies, studies of effects of topology
and optimal allocation computing resources.

Sefrioui and Périaux (2000) [51] proposed Hierarchical
Genetic Algorithms (HGAs) with multi-layered hierarchi-
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cal topology and multiple models for optimization prob-
lems. The architecture allowed mix of a simple and com-
plex models, but it achieved the same quality as reached by
only complex models. This solutions gave the same quality
results of the nozzle reconstruction but it was three times
faster when compared with the complex models.

Rivera (2001) [50] investigated how to implement par-
allel genetic algorithms with obtaining quality of solutions
efficiently. Rivera reviewed the state-of-the-art in parallel
genetic algorithms, parallelization strategies, emerging im-
plementations and relevant results. Rivera discussed impor-
tant issues regarding the scalability of parallel genetic algo-
rithms.

Alba and Troya (2001) [2] proposed a common frame-
work for studying PGAs. The authors analyzed the im-
portance of synchronism in the migration step of various
parallel distributed GAs. This implementation issue could
affect the evaluation efforts and also provoke some differ-
ences in the search time and speedup. A set of popular evo-
lution schemes relating to panmictic (steady-state or gen-
erational) and structured-population (cellular) GAs for the
islands were used. Alba and Troya extended the existing
results to structured-population GAs and demonstrated lin-
ear and even super-linear speedup when run in a cluster of
workstations. In this paper, a study of several types of par-
allel genetic algorithms (PGAs) was published.

Alba and Troya (2002) [5] tried to bring some uni-
formity to the proposal, comparison, and knowledge ex-
changes among the traditionally opposite kinds of serial and
parallel GAs. Alba and Troya comparatively analyzed the
properties of steady-state, generational and cellular genetic
algorithms and extended the idea to consider a distributed
model consisting in the ring of the GA islands. The an-
alyzed features were time complexity, selection pressure,
schema processing rates, efficacy2 in finding the optimum,
efficiency, speedup and resistance to scalability. Besides
that, they briefly discussed how the migration policy affects
the search. Also, some of the search properties of cellular
GAs were investigated.

Giacobini at al. (2003) [25] presented a theoretical study
of the selection pressure in asynchronous cellular (also
fine-grained) evolutionary algorithms (cEAs). The authors
searched for a general model for asynchronous update of
individuals in cEAs and for better models of selection in-
tensity. The authors also characterized the update dynamics
of each algorithm variant.

Xiao and Amstrong (2003) [61] proposed a new model
of parallel evolutionary algorithms (EAs) called a special-
ized island model (SIM). The model is derived from the is-
land model, in which an EA is divided into several subEAs

2Efficacy means having the power to produce a desired effect. It is a
measure that calculates the number of hits in finding a solution of a prob-
lem.

that exchange individuals among themselves. In SIM, each
subEA is responsible for optimizing the subset of objec-
tive functions in the initial problem. Seven scenarios of the
model with a different number of subEAs, communication
topology and specialization are tested and the results are
compared.

Gagné at al. (2003) [24] argued that the classic master-
slave distribution model was superior to the currently more
popular island-model when exploiting Beowulfs and net-
works of heterogenous workstations. They identified the
key features of a good computing system for evolution-
ary computation- transparency, robustness and adaptivity.
As far as hard failures caused by the network problems
are concerned, they adjusted and extended the master-slave
model [15] in order to considerate the possibility of those
failures.

3 Trends in Computing

This section reviews some trends and fundamental issues
in parallel (genetic) computing. Those are related to the de-
signs, implementation and characteristics of parallel algo-
rithms. Here, we will mention computer architectures, type
of the computers used, network topologies and parallel lan-
guages commonly used.

3.1 Architectures

The architectures of parallel machines have emerged
in the ninetities [31, 58]. Computer architectures are
of Single-Instruction-Multiple-Data (SIMD) and Multiple-
Instruction-Multiple-Data (MIMD) models3. The SIMD is
known as a simpler (or a weaker) case of a parallel computer
with one instruction unit and several processing units. On
the other hand, the MIMD processors execute their tasks in
the memory (with easy direct access), so no additional unit
is necessary. As it seems that the SIMD is a weaker model
than the MIMD, it can be shown that this model is equiva-
lent up to a constant factor slowdown.

In the shared-memory machines (SIMD), all processors
are able to address the whole memory space and com-
munication between the tasks is done through read and
write operations on the shared memory. The distributed-
memory machines (MIMD) have their memory physically
distributed among the processors. Each processor can only
address its own memory, and communication among the
processes executed on different processors is performed by
messages passed through the communication network.

(Before 2000) The MIMD family evolved from shared-
memory machines with a few processors (Sequence
Balance, Encore Multimax) to distributed-memory ma-
chines with hundreds or more processors interconnected

3According to the Flynn’s taxonomy.
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by different topologies (hierarchical ring-the KSR3, two-
dimensional grid–the Intel Paragon, three-dimensional
tore–the CRAY T3D/E, multi-stage switches the IBM-
SP/SP2, Fujitsu AP1000 and so on) [8, 54, 57]. The
SIMD family has been represented by massively parallel
machines [7, 9, 20, 34, 40, 60] with up to 65536 (4- or 8-bit)
processors such as MasPar-1 resp. 2 (MP-1, 2), the Connec-
tion Machines 1 resp. 2 (CM-1, 2).

At that time [11, 22, 55], transputer4 networks, networks
of microcomputers, have appeared as a possibility for paral-
lel computing. They have offered fast I/O operations, huge
performance and construction of a variety of networks with
themselves.

(2000 and after) The end of the nineties has wit-
nessed the resurgance of the shared-memory multiproces-
sor machines (Symetric MP or SMP). They have been
equipped with two up to several hundred processors (Silicon
Graphics–SGI Origin, SGI Altix 3x, Sun Microsystems-
SunFire Server) [47]. But the distributed-memory machines
also carry on with 64-bit RISC series (IBM pSeries, HP Al-
phaServer) and “clustering” series (IBM xSeries, HP RX,
Dell PowerEdge, Apple Xserve) [2, 5, 15].

In recent years, the newest innovation is the connec-
tion of SMP machines via the fast local networks (Myrinet,
SCI, ATM, Gigabit Ethernet) and the connection of gen-
eral purpose machines via the international high speed net-
works. They provide scalability, fault-tolerance, excellent
cost/performance ratios and so on. This has led to the emer-
gence of clusters of computers [56] (based on Linux OS,
Myrinet, off-the-shelf PCs) and has become the current hot
trend in parallel computing [16, 36, 48, 52]. Cluster systems
are currently among the fastest and most powerful comput-
ers according to various benchmarks5.

3.2 OS and Topologies

(Before and after 2000) Parallel computers, clusters and
transputer networks executed a type of UNIX4 operating
system with a sort of X-Window based interface or at least
with some alike an UNIX operating system. On the market,
there are also other operating systems than the UNIX/Linux
mainstream such as Microsoft Windows 2003 Server, Ap-
ple Mac OS, Open VMS, but they do not compete success-
fully in High-Performance Computing due to various rea-
sons (price, hardware support, scalability, maintenance).

Common underlying network topologies for parallel ge-
netic algorithms have been multi-grids (2-D), cubes, hy-
bercube (4-D), various meshes, toruses, pipelines, bi-

3KSR stands for Kendall Square Research.
4http://www.inmos.com
5http://www.top500.org
4IBM SP2, pSeries–AIX; “clustering” machines–Linux clones; SGI–

Irix, Sun–Solaris and INMOS Transputers–MINIX.

directional and uni-directional rings. It is given by the type
of a parallel computer and its feasibility. See more in [58].

3.3 Libraries and Programming

(Before and after 2000) Basically, there are three ways
to develop a parallel program. The first one is to use a paral-
lel programming language. It is a sequential language aug-
mented by a set of special system calls-Linda, OpenMP,
HPF, Parallel C and OCCAM (both for transputer net-
works). The second way is that the tasks communicate by
exchanging messages invoked from C/C++, FORTRAN 90,
Java using communication libraries MPI (Message-Passing-
Interface)6, Express MPI, P4 (Portable Programs for Paral-
lel Processors) or PVM (Parallel Virtual Machine) [26]. Fi-
nally, the increase of the SMP clusters is leading to the use
of lightweight processes such as POSIX threads and Java
threads on SMP machines. The concept of thread was ex-
tended to distributed-memory machines with tools such as
Cilk, Charm++/Converse [47], Athapascan, PM2 or Java
threads. More about the parallel algorithms, computation,
libraries, tools, see footnote 7.

To increase efficiency in solving problems with paral-
lel genetic algorithms, many parallel genetic libraries8 have
been implemented in the course of the “parallel genetic”
years. Their characteristics are in Table 1.

# Name Language Comm. OS

1 DGENESIS C sockets UNIX
2 GAlib C++ PVM UNIX
3 GALOPPS C/C++ PVM UNIX
4 PGA C PVM Any
5 PGAPack C/C++ MPI UNIX
6 POOGAL C++/Java MPI Any
7 ParadisEO C++ MPI UNIX

Table 1. Parallel genetic libraries and their
characteristics (name, native programming
language, inter-process communication and
operating system).

Within the genetic domain, there are two main program-
ming models: centralized and distributed. The central-
ized model, also called master-slave or client-server, han-
dles data by one processor (master) or stored in a shared
memory. The distributed model is characterized by a lack
of global data, either shared or centralized. Information is
shared or made global by the exchange of messages among

6http://www.mpi.nd.edu/lam
7http://wotug.ukc.ac.uk/parallel/
8http://www.aic.nrl.navy.mil/galist/src/
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the processors. With the advent of clusters of SMP ma-
chines, many research works implemented a hybrid model-
a centralized model within each SMP machine, but running
under a distributed model within machines in the cluster.

4 Applications

Applications of PGAs (GAs) are regularly wide and
range from Numerical Mathematics and Graph Theory (nu-
merical function optimatizations, graph bipartity, graph
partitioning problem, scheduling problems, mission rout-
ing problems), through Computer Science (searching for
weights of neural networks, optimization of server load or
database queries), Finance and Economics (financial bal-
ancing problems, transport problems, modelling systems,
predictions of time series) to Technology and Engineering
(optimization of VLSI circuits, optimization of car wheels,
optimization in Material Engineering).

(Before 2000) A very good overview of applications of
parallel genetic algorithms was published in [15, 17, 19].

(2000 and after) Solano at al. (2000) [53] worked on
an approach to implement, in real-time, a parametric spec-
tral estimator method using genetic algorithms (GAs) and
to find the optimum set of parameters for the adaptive fil-
ter that minimises the error function for Doppler ultrasound
signals. The primary aim was to reduce the computational
complexity of the conventional algorithm by using the sim-
plicity associated to GAs and exploiting its parallel charac-
teristics.

Oyama at al. (2000) [46] applied PGA to a practical
three-dimensional shape optimization for aerodynamic de-
sign of a transonic aircraft wing. The authors called the
algorithm-ARGA (Real-coded Adaptive Range Genetic Al-
gorithm), which had both binary and real value represen-
tations. Aerodynamic optimization gave a very enhanced
wing design, which has shown feasibility of the parallel ge-
netic approach.

Moser and Murty (2000) [42] applied a scalable dis-
tributed genetic algorithm to a very large-scale feature se-
lection. The domain application was a classification sys-
tem for Optical characters, namely hand-written digits. The
algorithm was capable of reduction of the problem com-
plexity significantly and scale very well according to very
large-scale problems.

Alba and Troya (2000) [1] considered both panmictic
and structured-population algorithms as two reproductive
loop types executed in the islands of a parallel distributed
GA. Their aim was to extend the existing studies from more
conventional sequential islands to other kinds of evolution.
A key issue in such a coarse grain PGA was the migration
policy, since it governs the exchange of individuals among
the islands. They also investigated the influence of migra-
tion frequency and migrant selection in a ring of islands

running either steady-state, generational, or cellular GAs
with different problem types, namely easy, deceptive, mul-
timodal, NP-Complete, and epistatic search landscapes in
order to provide a wide spectrum of problem difficulties to
support the results.

Chalermwat at al. (2001) [16] presented 2-phase se-
quential and coarse-grained parallel image registration al-
gorithms using GAs as optimization mechanism. In its first
phase, the algorithm found a small set of good solutions us-
ing low-resolution versions of the images. Based on these
candidate low-resolution solutions, the algorithm used the
full resolution image data to refine the final registration re-
sults in the second phase. Experimental results were pre-
sented and revealed that algorithms had yielded very accu-
rate registration results for LandSat Thematic Mapper im-
ages9, and the parallel algorithm scaled quite well on the
Beowulf parallel cluster.

Bevilacqua at al. (2001) [10] investigated the improve-
ment obtained by applying a distributed genetic algorithm
to a problem of parameter optimization in the medical im-
ages analysis. The authors set a method for the detection
of clustered microcalcifications in digital mammograms,
based on statistics and multi-resolution analysis by means
of wavelet transform. A distributed genetic algorithm su-
pervised the process of fluctuation of detection parameters
to improve detection results.

Olague (2001) [45] implemented a system for placing
cameras in order to satisfy a set of interrelated and compet-
ing constrains for three-dimensional objects. The system
provided the attitude of each camera in the network, taking
into account the imaging geometry, visibility, convergence
angle and workspace constraints.

Alba and Troya (2002) [4] implemented a distributed
PGA in Java that run at the same time on different machines
linked by different kinds of communication networks. This
algorithm benefited from the computational resources of-
fered by modern LANs and by the Internet. They analyzed
the way in which such heterogeneous systems affect the ge-
netic search for two problems.

Fan at al. (2002) [21] used PGAs for mutual
information-based registration of medical image data of dif-
ferent modalities and multiple times from computer tomog-
raphy and magnetic-resonance imaging sources as a part of
medical image analysis. The presented genetic strategy pro-
duced extremely robust results with super-linear speedup in
the subpopulation manner.

Pelikan at al. (2002) [47] described an implemen-
tation of a fine-grained parallel genetic algorithm. The
fine-grained genetic algorithm implemented in Charm++, a
message-driven parallel language based on C++, was de-
scribed. The implementation was fully asynchronous and
distributed. Thus, it scaled well, even for a very large num-

9http://www.landsat.org/
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ber of processors. The performance results for up to 64
processors on an Origin2000 verified scalability hypothesis.
The implementation allowed solutions represented by bi-
nary strings and decision graphs with Boolean, real-valued,
and integer attributes. Fitness functions included a simple
linear problem for binary strings and classification of data
sets which are dynamically loaded from a specified data file.
Any of the components could easily be extended by deriv-
ing a new class for the representation and fitness functions.

Jelasity at al. (2002) [33] proposed a tool for automatic
learning of algorithm components based on distributed evo-
lutionary algorithms for problem classes. The tool was
called DRM (distributed resource machine) as a part of the
DREAM project [6]. DRM, a supporter of the conceptual
framework of the multi-agent system implemented in Java,
was capable of running distributed experiments on the In-
ternet, ideally suited for algorithm learning. Tool tests were
run against a subset sum problem.

Arenas at al. (2002) [6] released DREAM10 (Distributed
Resource Evolutionary Algorithm Machine) framework for
the automatic distribution of evolutionary algorithm pro-
cessing through a virtual machine built from a large num-
ber of individual computers on the Internet. The framework
contained five user entry points to access it. The highest
level used evolutionary algorithms within the graphical dis-
plays. The lowest level of the framework was a Peer to Peer
mobile agent system that could distribute a class of evolu-
tionary algorithm processes.

Pereira (2003) [48] explored the use of the Island Ge-
netic Algorithm (IGA), a coarse-grained parallel GA model,
comparing its performance to that obtained by the appli-
cation of a traditional non-parallel GA. The optimization
problem consisted of adjusting several reactor cell parame-
ters, such as dimensions, enrichment and materials, in order
to minimize the average peak-factor in a three-enrichment
zone reactor, considering the restrictions on the average
thermal flux, criticality and sub-moderation. The IGA im-
plementation was run as a distributed application on a con-
ventional local area network (LAN), avoiding the use of
expensive parallel computers or architectures. After ex-
haustive experiments, the IGA provided gains not only in
terms of computational time, but also in the optimization
outcome.

Kwon and Moon (2003) [38] proposed a neuro-genetic
daily stock prediction model. Traditional indicators of stock
prediction are utilized to produce useful input features of
neural networks. The genetic algorithm optimizes the neu-
ral networks under a 2D encoding and crossover. A parallel
genetic algorithm was used on a Linux cluster. A notable
improvement on the average buy-and-hold strategy was ob-
served.

10http://www.dcs.napier.ac.uk/benp/dream/dream.htm

5 Discussion

In the theory, we can observe many parallel genetic mod-
els to understand their behaviour, speed-up of solution gen-
eration and use an appropriate type of PGAs for a special
problem. As has been reviewed, there are models like prin-
ciples of a rational design, accurate prediction models, hier-
archical genetic algorithms, quality of solutions and others.
As far as the parallel genetic computing platform is con-
cerned, Linux clusters with Myrinet (or Gigabit Ethernet)
or SMP clusters are the main stream these days. Develop-
ing tools are Java, C/C++ and MPI and also Java threads.

Applications have diversified in many new application
areas. Based on the article, the applications were from the
following areas: optimization of ultrasound signals, opti-
mization of aerodynamic design of an ultrasonic aircraft
wing, optical large-scale feature selection, image registra-
tion, medical images analysis, a system for placing cames,
using computing sources of the Internet-grid computing, au-
tomatic learning algorithms, optimizations in nuclear engi-
neering, stock prediction and software development of par-
allel evolutionary libraries.

6 Perspectives

In this section, we forecast the directions of research of
parallel genetic algorithms till the year 2005. We expect
many more theories of PGAs based on various approaches.
Only a brief list of possible theories is given: representa-
tion theories, operator theories, convergence theory, theory
of structured algorithms, theory of fitness landscape, unifi-
cation theory, working models theories and speciation the-
ories and niches.

In our view, approximations and approximation theories
based on a population size, problem difficulty, topology,
time bounding, parallel computer parameters are among the
most important and useful ones.

In parallel computing, we expect more development and
use of powerful Linux clusters, new parallel object-oriented
languages [12, 47] and Java language with OO design
and parallel threads, support of distributive computing and
support of various other standards and technologies(XML-
processing, J2EE, RMI).

Also, new parallel programming libraries, like PVM and
MPI have been, may appear. One of them is OpenMP11. It
is a set of compiler directives and library routines to express
shared memory parallelism. The majority of OpenMP is a
set of compiler directives that says to a sequential program
which parts will be run concurrently and where to put syn-
chronization points. OpenMP gives a chance to parallelize
the existing sequential software.

11http://www.openmp.org
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The emergence of evolutionary algorithm libraries and
frameworks is also expected similar to DREAM [6, 33],
ParadisEO [13, 14] or further expansion of the existing
ones. Generally, the frameworks will be tightly connected
with the object-oriented paradigm, C++/Java programming
languages, a wide distributed environment-Internet and
easy web access and use.

In the application area, we expect many more applica-
tions of parallel genetic algorithms in the domains of knowl-
edge discovery and data mining as shown in [23, 39]. These
days, there is a huge amount of data stored in real-world
databases and the amount grows very fast. The need is to
discover the knowledge hidden in these databases by intel-
ligent automatic methods. If such important knowledge dis-
covery has been made, the decision making process will be
improved. The applicability in the business world is enor-
mous with increasing potential in the future.

The research fields, which deal with image information
like computer recognition, computer vision and image pro-
cessing [10, 16, 21, 42, 45], have been extremely promising
targets for parallel genetic algorithms. Relevant fields like
signals filtering and processing [53, 60] will also be more
frequently targeted.

7 Conclusion

The article is a survey of past and recent developments
in parallel genetic algorithms. The main focus has been
developing since the year 2000. The relevant issues con-
nected with parallel genetic algorithms were highlighted.
The survey hinted several views, whose range from new ge-
netic theories over parallel computing and wide and var-
ious ranges of real-world applications to future develop-
ments, challenges and perspectives for parallel (genetic)
metaheuristcs.
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