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his article proposes a novel evolutionary algorithm, called 
accelerated evolutionary programming (AEP), which im- 
proves evolutionary programming in terms of convergence 

speed and diversity. Comparison between the proposed algo- 
rithm and evolutionary programming is carried out for five 
widely used test functions to show the effectiveness of the 
proposed algorithm. The proposed algorithm is applied to the 
identification of a seven-parameter friction model of an X-Y 
table, which is adopted from the results of recent tribology 
studies. Based on the identified friction model, a compensator is 
designed for the control of the X-Y table without stick-slip 
motion at very low velocity. Experimental results on the X-Y 
table demonstrate the effectiveness of the proposed scheme, 
especially for very-low-speed tracking. 

Introduction 
Friction is a natural phenomenon that is quite hard to model. 

The Coulomb + static +viscous friction model is most commonly 
used in engineering, which is based on the static mapping be- 
tween the relative velocity and friction force. The friction pa- 
rameters may be identified either off-line, following a data 
gathering experiment, or continuously, on-line as part of opera- 
tion of the machine. In a Coulomb + static + viscous friction 
model, all the parameters are used in a linear fashion for friction 
modeling and may thus be identified by a standard identification 
technique [ 1,2]. 

Since the linear model does not represent the friction charac- 
teristics sufficiently, we might consider as an alternative a seven- 
parameter friction model developed using theory and 
experiments by many researchers [3] .  In other words, the pa- 
rameters that represent a nonlinear relationship with the friction 
torque cannot be identified by linear identification schemes. To 
identify these parameters, nonlinear techniques should be used. 
Cheok et al. [4] employed the simplex method as a nonlinear 
identification technique to determine the parameters of a Kar- 
nopp friction model [ 5 ] .  They pointed out that multiple local 
minima were observed and would have arrested a gradient tech- 
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nique. The presence of noise in the data was thought to have 
introduced local minima. 

In this article, we first consider an identification problem of 
the seven-parameter friction model of an X-Y table with ball- 
screw type mechanism by using an evolutionary algorithm 161. 
Identification of the friction parameters is formulated as a non- 
linear optimization problem. To solve this problem, an improved 
evolutionary algorithm, called “accelerated evolutionary pro- 
gramming” (AEP), is proposed as a nonlinear identification 
algorithm. Comparison between the proposed algorithm and 
MetaLN EP [7] is carried out for five widely used test functions 
to illustrate the relative effectiveness. Based on the identified 
parameters of the seven-parameter friction model of the X-Y 
table, a compensation scheme is designed for the control of the 
X-Y table without stick-slip motion at very low velocity. The 
control law is composed of the conventional PD (proportional 
and derivative) control and the friction compensator which ap- 
plies a forcekorque command equal and opposite to the estimated 
instantaneous friction force. The applicability of the proposed 
scheme is demonstrated by experiments on the X-Y table for 
very-low-speed tracking without stick-slip motion. 

Evolutionary Optimization Problem 
A simple parameter optimization problem may be stated as 

Determine the values of the ordered set of n parameters 
follows: 

(1) T z = [ZI, 22, 23, ..., Zn] 

which minimize/maximize the cost function f(z). 
For convenience, here we consider the optimization algorithm 

as a function minimizer. When optimizing a function, one gen- 
erally has to find a good tradeoff between convergence and 
diversity. The convergence means fast convergence even to a 
local optimum. On the other hand, the diversity guarantees high 

article focuses on finding an optimization algorithm which sat- 
isfies both convergence and diversity. 

Recently, evolutionary algorithms which include genetic al- 
gorithms (GA), evolution strategies (ES), evolutionary program- 
ming (EP), etc., have emerged as practical, robust optimization 
and search methods. The binary representation traditionally used 
in GA has some drawbacks when applied to multidimensional, 
high-precision numerical optimization problems [8]. When ad- 
dressing real-valued optimization problems, the solution is most 
appropriately represented in a real-valued vector as in ES or EP. 

probability of finding the global optimum. The first part of this 
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Both EP and ES use mutations as search mechanisms and 
selection to direct the search toward the prospective regions in 
the search space. One can control either the convergence or the 

from the parents and/or by modifying the selection mechanism. 
Many modifications have been suggested to the standard EP or 
ES to improve its performance. 

age‘ [k]  = 1;  

V i e  ( 1 , 2  ,..., N, , } ,b ’ j~  { 1 , 2  ,.., n }  
else: agei[k] = a& - 11 + 1, 

diversity by changing the generation method of the Offspring where z j  [ k ]  denotes thejth parameter in the ith vector among N,, 

vectors at the 

direction of z j [ k ] ,  and “sgn” is a sign function. 

generation, dir(Zj[k])  denotes the evolving 

Based on Rule 1, the mutation occurs as follows: 
Rule 2: 
If 

Accelerated Evolutionary Programming 
For the problem above, AEP based on EP is developed for the 

improvement of the convergence speed without decreasing the 
diversity among the individuals. The proposed AEP uses two 
variation operators according to the evaluation conditions. One 
is a direction operator which determines the direction of the 
search according to the fitness score. The other is a zero-mean 
Gaussian operator, which is used as a perturbation and added to 
a parent in order to generate an offspring as in the EP. Another 
variable, “age,” is introduced which enhances the diversity of the 
search and prevents individuals from remaining in the local 
minima. The Gaussian operator is incorporated with both the 
direction operator and the variable age. A selection mechanism 
of the AEP is also different from that of the EP. In AEP, only one 
child is generated from a parent. New parents are selected by 
one-to-one competition between a child and its parent. An off- 
spring is selected if it wins in the competition with its parent. 
This scheme does not eliminate the individuals with lower rank 
which have a lower fitness Score in the hope of generating a 
global optimum. 

The proposed AEP is a stochastic optimization technique for 
finding the extrema of an arbitrary function. The typical AEP 
paradigm is an iterative procedure, consisting of the evaluation 
of a function at an initial set of solutions in parameter space, 
generation of a child from a parent through random perturbation, 

retention of survivals for future solution generation and func- 
tional re-evaluation, The process is then repeated. The AEP has 
several positive aspects, including the facility to encode real-val- 
ued parameters (phenotype) and the ability to escape local min- 
ima of the function as well as a fast convergence compared to 
Et? 

AEP incorporates the “direction” of evolution and the “age” 
concept into the vector to be optimized in order to improve the 
convergence speed without losing a diversity among the indi- 
viduals. The vector of the solution can be extended for the ith 
vector as: 

= 1, 
then: oi = PI . , f (z i [k])  , 

else: (si = p2 .Az i [k l )  . agei ,  

zj [ k ]  = z j [k  - 11 + N(  0 7 q 7  

Vi E {I, 2, ..., N ~ } ,  Vj  E ( 1 ~ 2 ,  ..., n}  

where I . I denotes an absolute value, dir(zj].lN(O, oi)( is a 

realization of a Gaussian-distributed random variable which is 
polarized in the direction of dir(zj), and pi, i = 1, 2, are positive 

constants. 
Rule 1 indicates that if the performance of a newly generated 

child is better than that of its parent, the previous search direction 
is retained toward the prospective regions in the search space by 
memorizing the sign of each parameter’s evolution direction as 
in “then” part of Rule 2. The “then” part shows that the random 
variable is generated only in one region, either a positive or 
negative region, depending on the sign of the direction. In this 
case, the age of the child is set to 1. 

Of the parent is better 

is increased by 1 as in “else” part of Rule 1. Associated with the 
increased age is the standard deviation of the Gaussian-distrib- 
uted random variable. As the age increases, its standard deviation 
becomes larger as “else” part of Rule 2 shows. The “else” parts 
of the two conditions give an individual a chance to get out of 
the local minima, Le., to have a high probability of finding the 
global minima. 

In general, if an individual is caught in a local minimum, its 
standard deviation becomes small because it depends on the 
relatively small fitness scoref(zi). Thus, it can not easily escape 
from the local minimum. In AEP, however, the standard deviation 
increases gradually as the duration time, Le., the age of the 
individual in local minimum, increases, which guarantees a 
higher probability of finding the global minimum. This means 
that the algorithm with “age” has more diversity than the algo- 
rithm without “age.” However, it should be noted that the age 
concept used here is different from that in GAVaPS [9]. They 
introduced the concept of age of a chromosome, which is equiva- 
lent to the number of generations the chromosome stays “alive,” 
to the selection mechanism, 

Fig. 1 illustrates the selection mechanism. In AEP, only one 
child is generated from a parent. By one-to-one competition 
between a child and its Corresponding parent, new parents are 
selected. When a child survives its corresponding parent, evolv- 
ing directions of its parameters are computed according to Rule 
1 and its age is set to 1. In Fig. 1, for example, parents have been 

On the Other hand, if the 

one-to-one competition between a child and its parent, and the than Or equal to that Of its generated the parent’s age 

. .  T 
z~ = [ z ; ,  ..., 21, di+i), ..., di+:), age‘] 

where d i i ( z { )  E {-1, l} for all Z; is the evolving “direction” of 

the jth parameter zj in the ith vector, and agei denotes the 
duration of the life in an integer type in the ith vector. The 
following two are employed for perturbing the parents to 
generate their offspring. 

Rule 1: 

If f ( z i [ k ] )  < f ( z ‘ [ k  - 11) , 
then: d i r ( z j [ k ] ) =  s g n ( z j [ k ] - z ~ [ k - l ] ) .  
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Fig. I .  Illustration of the selection mechanism. 

sorted from the rank of 1st to the rank of Npth according to the 
fitness scores from 0.1 to 1.93. The parents are mutated by Rules 
1 and 2 such that their children are generated. By one-to-one 
competition between a child and its parent, a parent with fitness 
score 0.1 survives its child with fitness score 0.2 for the first case, 
a child with fitness score 0.105 survives its parent with fitness 
score 0.1 2 for the second case, and so forth. In other words, the 
better one is always selected. Through the one-to-one competi- 
tion, temporary parents, which are not sorted, are generated. 
After being sorted according to their fitness scores, new parents 
are defined and go through the same procedure as above. For 
further details, the reader is referred to [lo]. 

The procedure of the AEP is similar to that of the EP, which 
is summarized as follows: 

1. (Initialization) Generate an initial population of Np trial 
solutions with a uniform distribution within the given domain for 
the ith individual vector 

Algorithm Comparison 
Performance evaluation of probabilistic search algorithms is 

not an easy task in itself. To evaluate them, a performance 
measure and a representative suite of test functions are needed. 
As a performance measure, an average cost value of the best 
individuals was used. In this subsection we describe an evalu- 
ation of the proposed algorithm and MetaLN EP [7] for the 
following test problems. 

Problem 1: Minimize 

3 

i=l 

subject to: 

-6.0 4 zi 5 6.0, i = 1, 2, 3. 

Problem 2: Minimize 

subject to: 

-6.0 I zj I 6.0, i = 1,2. 

Problem 3: Minimize 

subject to: 

-6.0 5 zi 5 6.0, i = 1, ..., 5, 

where 1.1 takes only an integer part from the argument. 
Problem 4: Minimize 

i=l 

subject to: 
where zj and di#), Vj  t (1, 2, ..., n}  are randomly initialized 

and agei is initially set to 1. 

the given cost functionf(z'). 

by using Rules 1 and 2 successively. 

-1.28 I zi I 1.28, i = 1, ..., 30. 

2. (Evaluation) Evaluate the fitness Of each parent solution by whereN(0, 1) is a realization of a Gaussian random variable with 
mean zero and standard deviation one. 

3. (Mutation) For each of the Np parents zl, generate a child problem 5: Minimize 

4. (Evaluation) Evaluate the fitness of each new offspring. 
5. (Selection by one-to-one comparison) If the newly gener- 

1 
f&1> z 2 )  = 1 

( Z i  - ated child is better than its parent, then select the child and 
discard the parent, else vice versa. New parents are composed of 
Np vectors selected among 2Np vectors by one-to-one compari- 
son. The new N/, parents are sorted by fitness score. 

6. (Termination check) Proceed to step 3 unless available 
execution time is exhausted or acceptable solution has been 
discovered. 

subject to: 

-651zi565,  i = 1 , 2  
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Fig. 2. The mean best score in the population averaged over 50 trials 
executed on junction,fl. 
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Fig. 4. The mean bestscore in the population averaged over 50 trials 
executed on,function f3. 

where 
~ j l  = { -32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32, 

-32,- 16,0,16,32,-32,-16,0,16,32}, 

0,0,16,16,16,16,16,32,32,32,32,32}. 
= {-32,-32,-32,-32,-32,-16,-16, -16,-16,-16,0,0,0, 

Problems 1-5 have been widely used for GA benchmarking 
[ I  I]. The functionfi tests simple sum of squares with aminimum 
at zi = 0, i = 1, 2, 3. The functionfi is the classical two-dimen- 
sional function of Rosenbrock and Chebyquad that is unimodal, 
yet difficult to minimize. The next, f 3 ,  is the plateau function 
generated as a sum of integer threshold values. The five-dimen- 
sional space has one minimum and is discontinuous. The func- 
tion,fi is a noisy quartic function of 30 variables. While the intent 
of this function is to determine an optimizer's performance in the 
presence of noise, this function is perhaps flawed, as no definite 
global minimum exists. ,f5 spans a 2-dimensional space with a 
global minimum = 0.998004, which has 25 local minima. 

Figs. 2 through 6 illustrate the performances of the two 
algorithms on corresponding functions .fi through fs. The solid 
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Fig. 3. The mean best score in the population averaged over 50 trials 
executed on.functionf2. 
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Fig. 5. The mean best score in the population averaged over 50 trials 
executed on function f4. 

lines represent the results of the AEP, and the dotted lines denote 
the results of the MetaLN EP. The abscissa indicates the number 
of generations, while the ordinate shows the mean best score in 
the population averaged over SO trials. For all test problems, the 
population size, Np, was fixed at 40. No determination was made 
to find optimal population sizes. TO remove the effect of the 
different random initial starting points, both algorithms used the 
same initial population. Unless specified otherwise, PI = 5 and 
PZ = 0.05 were used for the AEP and ol[O] = 2.5 was used as an 
initial value for the MetaLN EP, which is the same condition as 
in [7]. 

In Problem 1, both algorithms easily found a global minimum 
0.0. 

In Problem 2, EP found a solution (1.00002796,l .0000SS06) 
and the value of the objective function is f2 = 1.96246028 x 
in 2,000 generations. The AEP, however, found a solution 
(1.00000000, 1.00000000) withfz= 1.95556153~ 10 29.Clearly, 
Fig. 3 shows that AEP performs better than EP. 
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Fig. 6. The mean best score in the population averaged over SO triuls 
executed on functionfs. 

Next, in Problem 3, both algorithms found a global minimum 
0.0 after around 40 generations, but EP found the global mini- 
mum in I18 generations once out of the SO runs, as shown in Fig 
4. 

Since EP could not minimize the function f4 with the given 
initial parameter, we replaced it by 0’[0] = 0.25, which was the 
same case as in [7]. The mean best fitness scores of f4 were 
2.42449246 x lo-’ and 4.99929185 x which were returned 
by EP and AEP, respectively, in 1,000 generations. Fig. S shows 
better performance of AEP than EP. 

In Fig. 6 for Problem 5, a line with ‘‘0” marks represents the 
result of EP with the preassigned parameters. In this case, EP 
could not find the global minimum. We applied another set of 

the same function ,fs which is represented by the line with “x” 
marks. Then, EP could find a global minimum quickly, but still 
failed to find the global minimum three times out of the 50 runs. 
However, AEP shows very good performance in Fig. 6 regardless 
of the variation of the “strategy” parameters PI  and p2, where a 
solid line represents the result of the AEP with the preassigned 
parameter values and a dot-dashed line, for comparison purpose 
only, denotes the result of the AEP with {PI = 30, p l  = 0.31, 
respectively. As the figure shows, AEP is quite robust to the 
parameter variation. 

All through the test problems, always the proposed algorithm 
found the global minimum. In summary, the simulation results 
on the five test functions show that AEP is effective in terms of 
convergence, diversity, and solution accuracy for function opti- 
mization. 

Friction Compensator Design 
In this section, we describe a seven-parameter friction model 

which is to be identified by using the AEP described in the 
previous section. The compensation scheme is designed based 
on the identified friction model. 

Seven-Parameter Friction Model 
The 1 degree of freedom (DOF) mechanical plant under 

investigation is a mass constrained to move in one dimension 
with friction present between the mass and the supporting sur- 
face, as shown in Fig 7. The equation for this model is : 

mi( t )+  FS(.)= F,(t) (4) 

where m is a mass, x(t)  is a relative displacement, F’(.) is a friction 
force, and F,,(t) is a force applied to m. 

The friction model used in this article is the seven-parameter 
friction model, which consists of pre-sliding displacement and 
Coulomb + viscous + Stribeck friction terms. The model is 
summarized as follows [3]: 

(pre-sliding displacement): 

(Coulomb + viscous + Stribeck): 

with 

where FA.) is the instantaneous friction force, Fcis  the Coulomb 
friction force*, Fv is the viscous friction force’:, Fs,b is the 
magnitude of the Stribeck friction, Fs,a is the magnitude of the 
Stribeck friction at the end of the previous sliding period, F.y,a is 
the magnitude of the Stribeck friction after a long time at res?, 
kr is the tangential stiffness of the static contact , xs is the 
velocity of the Stribeck friction*, T L  is the time constant of 
frictional memory-, y is the temporal parameter of the rising 
static frictionx, t?; is the dwell time, Le., time at zero velocity, x 
is the relative displacement, and 

+1 x>o 
sgn(x)= 0 X = O  I -1 x<0. 

Displacement, velocity 

x ,  x 
I -- 
I 

I -1 Control Force Friction Force 

Fig. 7. The I DOF mass plant. 

42 IEEE Control Systems 



4 
' Fslip 

Fig. 8. The Stribeck effect (negative viscous friction). 

The parameters marked with (*) are friction model parame- 
ters, and the other variables are state variables. The friction model 
parameters are to be identified by using the AEP. The friction 
model above is briefly described in the following. 

1. Pre-sliding displacement. It is well known that contacts 
are compliant in both the normal and tangential directions. 
Johnson [12] and Dah1 [ 131, studying experimental observations 
of friction in small rotation of ball bearings, concluded that for 
a small motion a junction in static friction behaves like a spring. 
There is a displacement (pre-sliding displacement) which is an 
approximately linear function of the applied force up to a critical 
force, at which breakaway occurs. When a control force Fu(t) is 
applied, the asperities will deform, but recover when the force is 
removed, as does a spring. The tangential force is governed by 

Fu(t) = krx 

where F,(t) is the applied tangential force, kt is the tangential 
stiffness of the static contact, andx is the displacement away from 
the equilibrium position. Fu(t) and x 
refer to the force and displacement 
in the contact before sliding begins. 
When the applied force exceeds the 
breakaway force, the junctions 
break and true sliding begins. 

2. Stribeck effect. The Stribeck 
effect is shown in Fig. 8. Because of 
the Stribeck effect, the friction force 
decreases with increasing of the 
relative velocity within the low-ve- 
locity sliding region. This phenome- 
non is due to partial fluid lubrication 
in solid-to-solid contact and may be 
one of the main reasons of stick-slip 
motion [14]. The curves in the 
dashed circles of Fig. 8 are repre- 
sented mathematically as: 

F s ( i )  = 

where is is the characteristic velocity of the Stribec.. friction. 
3. Frictional memory. The Stribeck curve shows a depend- 

ence of friction upon relative velocity. If there is a change in 
velocity, one might presume the corresponding change in friction 
force to occur simultaneously. In fact there is a delay in the effect 
on the friction. This phenomenon is dominant in the lower 
velocity region and can be included into Equation (9) in the 
manner 

Fs(X) = 

where TL represents a frictional memory. 
4. Rising static friction. Let us consider a 1 DOF plant that 

exhibits cyclic stick-slip motion. The dwell time t2  is defined as 
the time duration when relative velocity X = 0. The static friction 
force increases with increasing of the dwell time t2, and this 
accounts for the larger limit cycle at a lower velocity. The 
relationship between the static friction force and dwell time t2  is: 

where Fs,b is the magnitude of the Stribeck friction, Fs,. is the 
magnitude of the Stribeck friction at the end of the previous 
sliding period, FS,- is the magnitude of the Stribeck friction at tz 
= 03, and y is the temporal parameter of the rising static friction. 

Fig. 9. The friction model-based compensation scheme. 
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Fig. IO .  Experimental setup. 

Friction Compensation Scheme 

When an identified friction model is available, it is possible 
to compensate friction by applying a forcekorque command 
equal and opposite to the estimated instantaneous friction force 
as shown in Fig. 9. We should know the values of parameters 
X , t2, and F,y,a to evaluate the friction force expressed by Equa- 
tions (7-9). In this subsection, we first describe how to obtain the 
parameters from the transition of motion states. The motion state 
“sw” is defined as: 

0 
1 otherwise: slip 

if 1x1 5 V,, : stick 

(12) 

where Vc, is pre-specified by the resolution of a velocity sensor. 
From the above equation, t 2  and Fs,a are obtained as follows: 

sw: 0 tf 0 ,  t2 e t2 + T, i sw: 0 H 1, compute Fr,b 

and t2 e 0  I sw: 1 ts 1 ,  No operation 

where T, is the sampling time of the control system, and “H” 
denotes the state transition. 

Thus, the measured velocity X(t) can be used to evaluate the 
friction force. Consequently, the control input u(t)  is 

where f i f ( , )  is the estimated friction and upg(t) is the output of 
the conventional PD controller. Fig. 9 shows a friction model- 
based compensation scheme. 

Application 
In this section, we describe the application of the scheme 

developed in the previous section to the identification and control 
of the X-Y table with ball-screw type positioning mechanism for 
very-low-speed tracking without stick-slip phenomena. 

10 I I 

Fig. 11. Training I/O sample data. 

Experimental Environment 
The experimental setup is shown in Fig. 10. The plant consists 

of the positioning mechanism, a position sensor system, a servo 
amplifier, and an IBM-compatible PC equipped with a custom 
board containing a 24-bit counter and a 1-channel DA conversion 
circuit for 1-channel analog voltage output. As shown in Fig. 10, 
the X-Y table has two linear motion mechanisms which are 
composed of a DC servo motor, a screw, and a sensor. The DC 
servo motor is connected with ball-screw through a coupler. A 
linear encoder with one-micrometer (pm) resolution, equipped 
in the X-axis mechanism, is used as a position sensor. 

We can obtain the voltage-current characteristics of the cur- 
rent servo amplifier by measuring the current supplied to the DC 
motor. The amplifier model is included into the mathematical 
plant model in computer simulation. The main control algorithm 
is implemented via the PC with the Intel i486DX-66 microproc- 
essor. The sampling time used here is 5 (msec). The proposed 
algorithm is written in the C language. 

Identification Problem 
Problem Statement 

Let a vector z denote a set of unknown plant parameters in 
Equation (4). The vector z consists o f  an equivalent mass me and 
seven friction parameters that were discussed in the previous 
section: 

where all the parameters are positive. Let us define the mis- 
matched displacement error between the plant output and the 
identification model output as follows. 

where denotes the estimate of z ,  x(z, ti) is a displacement of 
the plant, xm(Z, ti) is a displacement of the identification model 
at a sample instant ti, which depends on the actual z and the 
estimated vector 2 ,  respectively, and Nx is the total number of 
sample data. Consider the cost function of the squared errors 
given by 
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Fig. 12. Outputs of the X-Y table and the identi3ed model after 250 
generations. 

i=l 

Then, the parameter identification problem can be posed as an 
optimization problem as follows: 

Mjn J ,  (2) 
2 

Choice of 'Ikaining YO Sample Data 
The choice of the training I/O sample data is an interesting 

aspect of both linear and nonlinear system identification prob- 
lems. Successful identification of the plant parameters requires 
the proper choice of training I/O data. There are two different 
kinds of parameters in the model under investigation: one asso- 
ciated with linear characteristics and the other with nonlinear 
characteristics. A solution to the suitable choice of the training 
I/O data would be a set of I/O data which exhibits the stick-slip 
motion in the region of lower velocity, i.e., nonlinear charac- 
teristics, and the fast motion for parameters with linear charac- 
teristics. Considering this aspect, training I/O sample data, Nr = 
8,000, were collected from four operating regions, each consist- 
ing of 2,000 sample training points, as shown in Fig. 11. The first 
of three blocks of sample data in Fig. 11 are mainly for the 
nonlinear characteristics, and the last one is for the linear char- 
acteristics of the X-Y table. These I/O sample data could be 
obtained through the application of PD control to the X-Y table. 
Since the sampling time is 5 (msec), the run time of each block 
of 2,000 sample training points is 10 (sec). 

Results of Identification 
We tried to identify the parameters of the system by using the 

MetaLN EP for the same 8,000 training points; however, the 
obtained results showed that the EP could find only the local 
minima even by many trials. The parameters of the local minima 
caused a large identification error, so the wrongly identified 
model could not be used in the control. 

On the other hand, the result of identification using the AEP 
is shown in Fig. 12, and the equivalent mass and the estimated 
friction parameters after 250 generations are: 

me = 0.034 Kg 
F c  = 0.4040 Kgf 
Fv = 0.4244 Kgf . sec/cm 
Fs,- = 0.4260 Kgf 
is = 0.0001 c d s e c  
TL = 25 msec 
y = 0.0089 msec 
kt = 7173 Kgf/cm . 
From Fig. 12, we can see that the response of the identified 

model is almost the same as that of the X-Y table for the wide 
range of operating points which can reveal both linear and 
nonlinear characteristics. This indicates that the friction of the 
X-Y table is well identified by the integrated friction model. The 
estimated friction will be used in a control law to eliminate the 
actual friction present in the X-Y table, whereas the estimated 
equivalent mass me is used only for the identification of the 
friction model. 
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Fig. 13. Output responses for a ramp input with the slope of 0.1 
cdsec .  
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Control with the Friction Compensator 
For simplicity, we applied the proposed control scheme only 

to the X-axis positioning system. As we used only a position 
sensor with one-micrometer resolution and 5 (msec) sampling 
time, we could detect a slip motion with a resolution of 0.02 
(cdsec).  Considering the noise sensitivity, however, the V,, 
which is used to determine the state of the plant in Equation (12) 
was set to 0.06 (cdsec),  and the desired velocity Xd was used 

to evaluate the control input instead of x in Equation (14). The 
gains of PD controller used here were KP = 0.1 and KD = 0.1. 

The results of the PD control and the proposed compensation 
scheme are shown in Figs. 13,14, and 15 for x d ( t )  = 0.1 (cdsec),  
x d ( t )  = 0.05 (cdsec),  and x d ( t )  = 0.01 (cm/sec), respectively, to 
verify that the estimated friction can represent the actual proper- 
ties of the friction in the ball-screw contact. Note that the linear 
velocities 0.1, 0.05, and 0.01 (cdsec)  correspond to 12, 6, and 
1.2 (rpm), respectively, because a lead pitch of the ball-screw is 
5 (mm), where a lead pitch is defined as a linear distance per 
motor revolution. From the experimental results, we can see that 
the proposed friction compensation scheme eliminates the stick- 
slip output responses of the PD controller at lower tracking 

Fig. 16. Experimental results of PD control without friction 
compensation. 

15000 I 

Desired posilion - 
Proposed controller 

c 0 
+- 

10000 - 

2 
$ 5000 - / 

2 
E 
- E 0 :  

-5000 ~ 

-1 0000 - 

0 2 4 6 8 1 0 1 2 1 4  
Time (sec) 

(a) Position Output 

1.5 

1 

0.5 

0 

-0.5 

-1 

.1 5 I 
2 4 6 8 10 12 14 

Time (sec) 

(b) Control Input 

Fig. 17. Experimental results of the proposed scheme. 
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velocity. This means that most of the friction present in the X-Y 
table system is well compensated by the proposed scheme so that 
the motion dynamics are governed by a simple linear algebraic 
equation. Thus, the control problem of low-speed tracking be- 
comes trivial. 

The proposed scheme can be also applied to eliminate stick- 
slip at standstill, which occurs with velocity reversal. From Fig. 
16, we can see there exist standstill phenomena with velocity 
reversal when PD control is applied without friction compensa- 
tion. However, the stick-slip at standstill is almost avoided by the 
proposed scheme as shown in Fig. 17. 

Conclusions 
We have proposed an evolutionary optimization algorithm, 

called uccelerated evolutionary programming, which can be 
applied to the identification and control of a broad class of 
nonlinear systems. To show the effectiveness of the AEP, we have 
compared the AEP with the MetaLN EP for the widely used test 
problems. The friction compensation scheme has been proposed 
based on the identified friction model obtained by the AEP. We 
have shown the effectiveness and applicability of the proposed 
control scheme via experiments on the X-Y table positioning 
control of very-low-speed tracking without stick-slip phenom- 
ena. 
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