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This paper presents a mapping scheme for the proposed implementation of
neural network models on systolic arrays. The mapping technique is illustrated
on the multilayer perceptron with back-propagation learning. Dependency
graphs have been given that represent the operations in the execution phases
of the neural network model and later suitable algorithms are presented to
realize the operations in a linear bidirectional systolic array. The speedup metric
has been used to evaluate the performance of the proposed implementation.
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1. INTRODUCTION

Artificial neural networks (neural nets) have emerged as a promising alternative
for solving real world problems such as speech and patter recognition, radar signal
tracking, and sonar target detection. They are able to satisfy the basic requirement
of real world problems, i.e., high execution speed. But, for solving any problem, first
a neural net has to be trained or the network weights have to be adjusted to
correctly classify a set of example patterns, an operation that is highly computation
intensive.

Uniprocessor simulation and the implementation on high speed hardware
platforms are both inappropriate for neural network implementation as they are
either very slow or rather inflexible. A compromise between these two is the
implementation on programmable parallel computers [3�11]. And, the systolic
array is one of the best parallel architectures for implementing neural nets. It can
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circumvent the communication problem encountered in neural net implementation
due to the high degree of interconnection among the neurons.

A number of systolic algorithms are available for matrix�vector multiplication,
the basic computation involved in the operation of a neural net. Using these, many
systolic algorithms have been formulated for the implementation of neural nets
[6�10]. In [7], Kung et al. have proposed a unified systolic architecture for the
implementation of neural net models. It has been shown that the proper ordering
of the elements of the weight matrix makes it possible to design a cascaded DG
(dependency graph) for consecutive matrix�vector multiplication, which requires
the directions of data movement at both the input and the output of the DG to be
identical. Using this cascaded DG, the computations in both the recall and the
learning iterations of a back-propagation algorithm have been mapped onto a ring
systolic array. The same mapping strategy has been used in [8] for mapping the
hidden Markov model (HMM) and the recursive back-propagation network (RBP)
onto the ring systolic array. The main drawback of the above implementations is
the presence of spiral (global) communication links. Thus, an important advantage
of the systolic architecture, i.e., use of a locally communicative interconnection
structure, is lost. In [10], a two-dimensional array is used to map the synaptic
weights of individual weight layers in the neural net. By placing side by side the
arrays corresponding to adjacent weight layers, both the recall and the learning
phases of the back-propagation algorithm can be executed efficiently. But, as the
directions of data movement at the output and the input of each array are different,
this leads to a very nonuniform design. Again, a particular layout can only implement
neural nets having identical structures. For neural nets that are structurally different,
another layout would be necessary.

In the current work, mapping schemes have been devised for the proposed
implementation of the multilayer perceptron with back-propagation learning (BP
net) on systolic arrays. DGs are derived for implementing operations in both the
recall and the learning phases of the back-propagation algorithm. All these DGs are
free from global connections. Later, these DGs are mapped onto a linear bidirectional
systolic array and algorithms have been presented for executing both the recall and the
learning phases efficiently. The issue of partitioned mapping has also been addressed.
Also, the P processor speedup of the proposed implementation has been estimated and
is plotted against both the number of neurons and the number of processors.

Section 2, following the Introduction, briefly discusses the multilayer perceptron
network and the back-propagation learning algorithm. The mapping strategy is
outlined in Section 3. In Section 4, a partitioning scheme is presented for the efficient
execution of large sized neural nets on smaller arrays. Finally, Section 5 concludes this
paper with discussions on the speedup performance of the proposed implementation.

2. MULTILAYER PERCEPTRON AND BACK-PROPAGATION
ALGORITHM

Multilayer perceptron is a popular neural net model widely used in pattern
classification or pattern matching [1]. It is trained using the back-propagation
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FIG. 1. Multilayer perception network.

learning algorithm [2]. Below, we discuss the structure and operation of the back-
propagation algorithm in brief.

Multilayer Perceptron

The multilayer perceptron consists of multiple neurons arranged in the form of
an input layer, a output layer, and one or more hidden layers. We assume that any
two adjacent layers are fully interconnected with weighted connections. One such
neural network of L+1 layers is shown in Fig. 1.

Back-Propagation Algorithm

The back-propagation algorithm operates in two distinct phases: (1) the forward
pass or recall phase and (2) the backward pass or learning phase. The recall phase
is used to compute the state values of the hidden and output layer neurons. In the
learning phase, the error values computed for the output layer neurons are propagated
backward to compute the error values of all the hidden layer neurons and to adjust
their input weights.

The notations and conventions used in presenting the algorithm are as follows:

1. The multilayer perceptron is assumed to have L+1 layers, numbered from
0 to L with Nl neurons in layer l. The layer numbered 0 is the input layer, layer
L is the output layer, and layers 1 to L&1 are the hidden layers.

2. The i th neuron in layer l, its state value, and its error value ($-value) are
given by nl

i , al
i , and $l

i , respectively.

3. Each neuron nl
i has a bias input %l

i .
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4. u l
i represents the weighted sum for n l

i .

5. The input weight of n l
i from the j th neuron of layer l&1 is denoted as

w j
i (l ).

6. t l
i stands for the i th element of the target pattern.

7. f is the nonlinear activation function used in the algorithm.

Using these notations, the state value computation, $-value calculation, and
weight adaptation are carried out using Eqs. (1), (2), and (3), respectively.

u l
i= :

N

j=1

w j
i (l) a l&1

j +% l
i

(1)
a l

i=f (u l
i )

$ l
j=(t j&a l

j ) f l (u l
j ), for l=L,

=_ :
N

i=1

$ l+1
i w j

i (l+1)& f l (u l
j ), 1�l�L&1. (2)

2w j
i (l )='$ l

ia
l&1
j , where ' is a learning constant. (3)

The multilayer perceptron network starts from an arbitrary set of weights which
is thereafter adjusted by repeatedly presenting it with a training set of input pattern�
target pattern pairs and executing the recall and the learning phases till the network
converges or the error is within an acceptable limit.

3. MAPPING OF THE BP NET

3.1. Systolic Design for the Recall Phase

The computations involved in the recall phase can be represented in the matrix
form as follows:

U l=W lAl&1+%t

(4)
Al=f (U l ).

In the above equation, Al and %l are vectors representing the state values and bias
inputs of layer l neurons and W l is a matrix representing the input weights of
layer l.

A DG for computing the state values of layer l neurons from the state values of
its preceding layer is shown in Fig. 2. Functions of the various nodes in this DG are
illustrated in Fig. 3. It can be observed that all the nodes are functionally identical
and differ only in the directions of data movement, which depend on the position
of a node in the DG. The above DG can be mapped onto a linear systolic array
in a straightforward manner. A projection can be taken in the vertical direction and
the schedule hyperplanes can be chosen in a direction parallel to the horizontal.
The mapping is such that the processor Pi stores the state values and all the input
weights of neuron n l

i for 1�l�L. This has been shown in Fig. 4 for mapping of a
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FIG. 2. DG for the recall phase.

BP net of six neurons per layer onto a six-processor array. It may be observed that
the first and the last links of the first and the last processor, respectively, are
shorted. Thus, for i=1, Pi&1=Pi and similarly for i=N, Pi+1=Pi . The operations
performed by a processor in the l th iteration are as given in Algorithm 1.

Algorithm 1. In the following algorithm it is assumed that the processors in
the linear array are represented as Pf (k) , where f (k)=k, 1�k�N�2, represents the
processors P1 , P2 , ..., PN�2 , and Pf (k) for f (k)=(N&k+1), 1�k�N�2, represents
the processors PN , PN&1 , ..., PN�2+1 . Using these notations, the algorithm for
computing the state values of layer l neurons from the state values of layer (l&1)
is as follows:

1. Each processor Pi initializes a variable ul
i=%l

i .

2. Pi multiplies al&1
i with w j

i (l ) and adds the product to ul
i .

3. Afterwards, each processor performs the following operations

(a) In any cycle, processor Pf (k) receives data al&1
j from Pf (k+1) and

updates: ul
i=ul

i+w j
i (l ) al&1

j . Pf (k) then sends al&1
j to Pf (k&1) .

(b) In addition to the above,

(i) for ( fk&1) clock cycles, starting with the second, processor Pf (k) ,
1�k�N�2, receives data al&1

n from Pf (k&1) and forwards it to Pf (k+1) .
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FIG. 3. Node functions in the DG of Fig. 2 for the node N(k, m). (a) 2�k�N�2, 2�m�k, and
N�2+2�m�N�2+k. (b) N�2+1�k�N&1, 2�m�N&k+1, and N�2+2�m�3N�2&k+1. (c)
1�k�N�2, m=1 and m=N�2+1. (d) N�2+1�k�N, m=1 and m=N�2+1. (e) 1�k�N�2, k+1
�m�N�2 and N�2+k+1�N. (f ) N�2+1�k�N, N&k+2�m�N�2, and 3N�2&k�m�N.
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FIG. 4. Implementation in a six-processor array.

(ii) In the (N�2+1)th clock cycle, Pf (k) sends the data al&1
j received

from Pf (k+1) in the previous cycle back to Pf (k+1) .

(iii) Again for ( fk&1) cycles, this time starting with the (N�2+2)th,
processor Pf (k) , 1�k�N�2, receives data al&1

n from Pf (k&1) and forwards it to Pf (k+1) .

4. After (N&1) clock cycles, the i th processor would have accumulated the
weighted sum ul

i=�N
j=1 w j

i (l ) al&1
j for the i th neuron. It then computes al

i by applying
the Sigmoid function to this weighted sum.

This algorithm is executed repeatedly with increasing values of l till the state
values of all the output layer neurons have been determined. It is assumed that the
state value al

i after its evaluation is stored in the processor Pi .

3.2. Systolic Design for the Learning Phase

Calculation of the lower layer $-values can be carried out using consecutive
vector�matrix multiplication as shown below.

$l=$l+1Wl+1 f l (Ul ). (5)

Adaptation of the input weights of layer l, on the other hand, needs the evalua-
tion of the outer product of two vectors as follows:

Wl=W l+'$lAl&1. (6)

In the above equations, $l is a vector representing the $-values of layer l neurons.
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FIG. 5. DG for $-value computation.

Calculation of $-values. A DG for calculating the $-values of layer l from the
$-values of its next higher layer has been shown in Fig. 5 and is found to be similar
to the DG for representing the operations in the recall phase, but possesses a
slightly different communication structure. The node functions are also similar and
the same MAC operation is performed in each of the nodes with a different set of
variables. When the learning phase starts, processor Pi , 1�i�N, will be having the
state value aL

i . This, together with ti , is used to compute the value of $L
i and adjust

the input weights of nL
i . Afterward, Algorithm 2 is repeatedly executed with

decreasing values of l, i.e., from l=L to l=2, in order to compute the $-values of
all the hidden layer neurons.

Algorithm 2. 1. Each processor initializes an accumulator Ai=w j
i (l ) $l

i .

2. Pi also initializes two more accumulators A1
i and AN

i to zeros and sends
them respectively to Pi&1 and Pi+1.

3. In each of the following (N&1) cycles,

(i) Processor Pi for 1�i�N�2 receives the accumulator A1
j from Pi+1 and

updates: A1
j =A1

j +w j
i (l ) $l

i . Pi then sends A1
j to Pi&1 .

(ii) Processor Pi for (N�2+1)�i�N receives the accumulator AN
k from

Pi&1 and updates: AN
k =AN

k +wk
i (l ) $l

i . Pi then sends AN
k to Pi+1.
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4. Additionally, in the (N�2+1)th cycle, processor Pi , 2�i�N�2, initializes
a variable AN

j =0 and sends it to Pi+1 and processor Pi , (N�2+1)�i�(N&1),
initializes a variable A1

k=0 and sends it to Pi&1 . In the above, j and k are indices
of the accumulators received in the previous cycle from processors Pi+1 and Pi&1 ,
respectively.

The following data transfers are also necessary to ensure the successful execution
of the algorithm:

(i) for (i&1) cycles, starting with the second, processor Pi , 2�i�N�2,
receives the data item An

k from Pi&1 and simply forwards it to Pi+1 and for (N&i)
cycles, starting with the second, Pi for (N�2+1)�i�(N&1), receives the data item
Ai from Pi+1 and forwards it to Pi&1 .

(ii) for (i&2) cycles, starting with the (N�2+2)th, processor Pi for 3�i�
N�2 receives the data item AN

j from Pi&1 and forwards it to Pi+1 and for (N&i&1)
cycles, starting with the (N�2+2)th, the processor Pi for (N�2+1)�i�(N&2)
receives the data A1

j from Pi+1 and forwards it to Pi&1 .

5. In the next cycle, the processor Pi for 1�i�(N�2&1) receives the
accumulator A1

i from Pi+1 and adds it to Ai . Similarly, in this cycle, processor Pi

for (N�2+2)�i�N receives AN
i from Pi&1 and adds it to A i .

Now, three partial sums, A1
j , AN

j , and Aj , exist for the j th neuron in the processors
P1 , PN , and Pj , respectively. It takes an additional N cycles to collect and add these
partial sums in the processor Pj to obtain the sum �N

i=1 $ l
iw

j
i (l). As al&1

j is already
available in Pj , it now proceeds to compute $ l&1

j .

Weight adaptation. The DG for weight adaptation is nearly identical to that for
the recall phase and can be derived from Eq. (3). The node functions are also
similar. This DG can be processed in the same bidirectional systolic array to adjust
the input weights of layer l.

4. PARTITIONING SCHEME

Choice of a suitable partitioning scheme is very important for the full utilization
of the systolic array [12]. Below, it is shown that the proposed mapping scheme
is useful even when a problem is to be mapped onto a smaller number of processors.
In fact, for mapping a neural net of N neurons per layer onto a P processor array, the
respective algorithms just have to be executed N�P times each for executing the recall
and the learning phase operations. The data assignment for mapping a multilayer
perceptron with 12 neurons per layer onto a 6-processor array is shown in Fig. 6.
It may be observed from this figure that the processor Pi now stores the neuron
ni mod P . The input weights of these neurons are stored in the memory of Pi in a
skewed manner. It is clear that now the respective algorithms have to be executed
twice each in order to process the recall and learning phases of the back-propagation
algorithm.
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FIG. 6. Partitioned implementation of a BP net with 12 neurons per layer onto a six-processor array.

5. RESULTS AND DISCUSSION

This paper presents mapping schemes for the proposed implementation of
artificial neural nets on systolic arrays. After deriving DGs for representing the
operations in the different execution phases, steps are outlined to execute the
back-propagation algorithm.

The performance of the proposed implementation has been evaluated by estimat-
ing the execution speedup of a linear array of T-805 transputers in executing the
recall and the learning phases of a single layer of the BP net. The T-805 is a 32-bit
microprocessor with four 20-Mbps serial bidirectional communication links. For
implementing a neural net of n neurons per layer on a P processor array, the time
for executing the back-propagation algorithm is given by: TP=tr+t$+tw , where
tr=(n�P)(n(ta+tm)+ts+CP), t$=(n�P)(n(ta+tm)+(ta+2tm)+2CP), and tw=
(n�P)(n(ta+2tm)+CP).

In the above ta , tm , and ts are respectively the time to add two 32-bit numbers,
the unit multiplication time, and the time to evaluate the Sigmoid function, the
nonlinear activation function used in the algorithm. C is the communication time
for data transfer to neighboring processors.

The uniprocessor time T1 is obtained putting P=1 and C=0 in the relation
for TP . And, the P processor is obtained as: S(P)=T1 �TP .
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FIG. 7. Speedup versus the number of neurons per layer for a 64-processor array.

For the T-805, ta=330 ns and tm=550 ns [13]. The time to transfer a 32-bit
number over the serial communication link is estimated to be 1.6 ms. Assuming the
Sigmoid function to be evaluated using a range-reduction technique [5], ts comes
out to be 5.2 ms. Using the timing parameters given above, speedup of the proposed
implementation has been estimated and is plotted for increasing values of n in
Fig. 7. Figure 8, on the other hand, shows the variation of the expected speedup
with the number of processors. Both the above figures prove that the use of the
proposed mapping scheme would result in an efficient and scalable implementation.

It is observed from Algorithms 1 and 2 that the operations in the execution
phases of the BP net are quite similar and involve the same communication pattern.
This is because the basic computation in both is the multiplicative addition operation.
In fact, this is the case with almost all of the existing neural network algorithms such
as the Hopfield net, the HMM, the RBP, and the Kohonen feature map. Therefore, the
proposed mapping scheme is actually valid for a wide class of neural net algorithms.
In the implementation of the Hopfield net, it is possible for the net to learn as and when
it is recalling a given input pattern [11]. It has also been shown that the above

FIG. 8. Speedup versus the number of processors.

687NEURAL NETWORK MODELS ONTO SYSTOLIC ARRAYS



scheme is useful for the partitioned implementation of large sized neural nets in
smaller processor arrays, a highly desirable feature.

In the above, only neuron level parallelism [3] has been used in the parallel
implementation of neural nets. Still another possibility is present in the parallel
implementation of the back-propagation algorithm, i.e., the pipelined execution of
a multiple number of exemplar patterns in the layers of the neural net [11].
Systolic architectures can exploit this possibility quite efficiently due to their highly
pipelined nature. The systolic array can execute the back-propagation algorithm in
a pipelined manner with unity pipeline period [7]. This can greatly reduce the
training time of multilayer neural nets.

The mapping scheme presented in this paper has been illustrated on uniformly
structured neural networks only, for the ease of explanation. The techniques are
equally valid even for nonuniformly structured networks with unequal number of
neurons in the different layers. For such networks, the layer size can be made the
same by adding dummy neurons with zero activation values in the layers having a
smaller number of neurons. The processing proceeds in the same way as before,
except that the weights between the real and dummy neurons are set to zeros. Of
course, this may lead to a slight deterioration in the performance of the implemen-
tation. Finally, it is to be noted that although the proposed implementation uses a
bidirectional systolic array, still, the locality property of interprocessor communication
in systolic arrays is preserved, which is highly desirable for VLSI implementation [6].
The fact that the learning phase requires N additional cycles would not matter
much once training is complete, because then the neural net has to execute the
recall phase only for multiple input patterns that are to be classified.
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