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Chapman-Enskog theory for a granular binary mixture of hard

spheres

We write now the set of coupled linear integral equations from which we solve the
unknowns Ai(V ), Bi(V ), Ci(V ), and Di(V ) Garzó & Dufty (2002):

[
−ζ(0) (T∂T + p∂p) + L1

]
A1 + M1A2 = A1 +

(
∂ζ(0)

∂x1

)

p,T
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[
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p
C1, ( 2a)

[
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p
C2, ( 2b)
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B1, ( 3a)

[
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2
ζ(0)

]
C2 + M2C1 = C2 −
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2T
B2, ( 3b)

[
−ζ(0) (T∂T + p∂p) + L1

]
D1 + M1D2 = D1, ( 4a)

[
−ζ(0) (T∂T + p∂p) + L2

]
D2 + M2D1 = D2. ( 4b)

In the above equations, ζ(0) is the cooling rate of the HCS and the inhomogeneous terms
Ai, Bi, Ci, and Di are given by
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V , ( 5)
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where I denotes the unit tensor in d dimensions. In addition, we have introduced the
linearized Boltzmann collision operators

L1X = −
(
J11[f

(0)
1 , X ] + J11[X, f

(0)
1 ] + J12[X, f

(0)
2 ]

)
, ( 9)

M1X = −J12[f
(0)
1 , X ]. ( 10)

The corresponding expressions for the operators L2 and M2 can be easily obtained from
( 9) and ( 10) by just making the changes 1 ↔ 2.

Also, the procedure to get the leading order contributions to the NS transport coeffi-
cients in the modified first Sonine approximation follows similar mathematical steps as
the ones previously used in the standard first Sonine approximation. Only some technical
details will be provided here.

Our modified Sonine approximation consists in taking f
(0)
i as the weight function in

the Sonine expansion used in the functions Ai, Bi, Ci, Di,kℓ(V ), instead of the simpler
Maxwellian form fi,M . Thus, in the case of the mass flux, the quantities Ai, Bi, Ci are
approximated by the lowest degree polynomials

A1(V ) → −f
(0)
1 V

m1m2n

ρn1T1
D, A2(V ) → f

(0)
2 V

m1m2n

ρn2T2
D ( 11)

B1(V ) → −f
(0)
1 V

ρ

pn1T1
Dp, B2(V ) → f

(0)
2 V

ρ

pn2T2
Dp ( 12)

C1(V ) → −f
(0)
1 V

ρ

Tn1T1
D′, C2(V ) → f

(0)
2 V

ρ

Tn2T2
D′. ( 13)

Note that equations ( 11)–( 13) are consistent with the orthogonality conditions (3.5)–
(3.7). The expressions (3.11)–(3.13) for D, Dp, and D′ can be easily obtained when one
multiplies the integral equations ( 1)–( 3) by m1V and integrates over V . In order to
obtain γ1 and the partial derivatives appearing in these integral equations we use the
first order Sonine approximations of the partial cooling rates (A2)–(A4) in the condition

ζ
(0)
1 = ζ

(0)
2 (A12). The expression of the collisional frequency νD appearing in (3.11)–

(3.13) is given by

νD =
1

dn1T1ν0

∫
dV 1m1V 1 ·

[
L1(f

(0)
1 V 1) − δγM1(f

(0)
2 V 2)

]
, ( 14)

where δ = n1/n2 and γ = T1/T2. The evaluation of the collision integral ( 14) is made
in the next section and the result is given by (B1). Using all these results together in
(3.11)–(3.13), we can obtain the explicit dependence of D, Dp, and D′ on the parameters
of the mixture.

In the case of the shear viscosity, the simplest approximation for the function Di,kℓ is

Di,kℓ(V ) → −f
(0)
i

ηi

T
Ri,kℓ(V ), (i = 1, 2) ( 15)

where

Ri,kℓ(V ) = mi

(
VkVℓ −

1

d
V 2δkℓ

)
, ( 16)

and

ηi = −
1

(d − 1)(d + 2)

T

niT 2
i

1

1 + ci

2

∫
dvRi,kℓ(V )Di,kℓ(V ). ( 17)

The choice ( 16) preserves the solubility conditions (3.5)–(3.7). The shear viscosity coef-
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ficient is given by

η =

2∑

i=1

niT
2
i

T

(
1 +

ci

2

)
ηi. ( 18)

Analogously to the case of the transport coefficients associated with the mass flux, the
coefficients ηi are determined from the integral equations ( 4) when one takes into account
the modified first Sonine approximation ( 15) for Di,kℓ. After some calculations, one gets
the expressions (3.15a) and (3.15b) for η∗

1 = (1+ c1

2 )η1 and η∗

2 = (1+ c2

2 )η2, respectively,
where

τ11 =
1

(d − 1)(d + 2)

1

1 + c1

2

1

n1T 2
1 ν0

∫
dv1R1,kℓL1

(
f

(0)
1 R1,kℓ

)
, ( 19)

τ12 =
1

(d − 1)(d + 2)

1

1 + c2

2

1

n1T 2
1 ν0

∫
dv1R1,kℓM1

(
f

(0)
2 R2,kℓ

)
, ( 20)

The integrals ( 19), ( 20) are calculated analogously to the integral ( 14), that is explained
in the next section.

The case of the heat flux is more involved since it requires going up to the second
Sonine polynomial approximation. In this case, the quantities Ai, Bi, Ci are taken to be

A1(V ) → f
(0)
1

[
−

m1m2n

ρn1T1
DV + d′′1S1(V )

]
, A2(V ) → f

(0)
2

[
m1m2n

ρn2T2
DV + d′′2S2(V )

]

( 21)

B1(V ) → f
(0)
1

[
−

ρ

pn1T1
DpV + ℓ1S1(V )

]
, B2(V ) → f

(0)
2

[
ρ

pn2T2
DpV + ℓ2S2(V )

]

( 22)

C1(V ) → f
(0)
1

[
−

ρ

Tn1T1
D′V + λ1S1(V )

]
, C2(V ) → f

(0)
2

[
ρ

Tn2T2
D′V + λ2S2(V )

]
.

( 23)
In these equations, it is understood that D, Dp and D′ are given by (3.11), (3.12), and
(3.13), respectively. The (modified) Sonine polynomial Si(V ) has the same polynomial
structure as the standard one Si(V ), but is chosen to verify the conditions (3.5)–(3.7).
A simple calculation yields

Si(V ) = Si(V ) −
d + 2

4
ciTiV , ( 24)

where

Si(V ) =

(
1

2
miV

2 −
d + 2

2
Ti

)
V . ( 25)

The coefficients d′′i , ℓi and λi are defined as



d′′i
ℓi

λi



 =
2

d(d + 2)

mi

niT 3
i

1

1 + d+8
4 ci

∫
dv Si(V ) ·




Ai

Bi

Ci



 , ( 26)

where nonlinear terms in ci and the sixth cumulants of f
(0)
i have been neglected in these

relations. Let us introduce the dimensionless coefficients d∗i , ℓ∗i , and λ∗

i :

d∗i ≡

(
1 +

d + 8

4
ci

)
Tν0d

′′

i , ℓ∗i ≡

(
1 +

d + 8

4
ci

)
pTν0ℓi, λ∗

i ≡

(
1 +

d + 8

4
ci

)
T 2ν0λi.

( 27)
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The coupled set of six equations verifying the (reduced) coefficients {d∗1, d
∗

2, ℓ
∗

1, ℓ
∗

2, λ
∗

1, λ
∗

2}
can be obtained by taking the modified Sonine approximation ( 21)–( 23) in the integral
equations ( 1)–( 3), multiplying these equations by Si and integrating over velocity. By
using matrix notation, the coupled set of six equations for the above six quantities can
be written as

Λσσ′Xσ′ = Yσ, ( 28)

where Xσ′ is the column matrix defined by the set {d∗1, d
∗

2, ℓ
∗

1, ℓ
∗

2, λ
∗

1, λ
∗

2} and Λσσ′ is the
square matrix

Λ =





ν11 −
3
2ζ∗ ν12 −

(
∂ζ∗

∂x1

)

p,T
0 −

(
∂ζ∗

∂x1

)

p,T
0

ν21 ν22 −
3
2ζ∗ 0 −

(
∂ζ∗

∂x1

)

p,T
0 −

(
∂ζ∗

∂x1

)

p,T

0 0 ν11 −
5
2ζ∗ ν12 −ζ∗ 0

0 0 ν21 ν22 −
5
2ζ∗ 0 −ζ∗

0 0 ζ∗/2 0 ν11 − ζ∗ ν12

0 0 0 ζ∗/2 ν21 ν22 − ζ∗





,

( 29)
and the column matrix Y is given by (B7)–(B12). The value of ω12 is given by

ω12 =
2

d(d + 2)

m1

n1T 2
1 ν0

[∫
dv1S1 · L1(f

(0)
1 V 1) − δγ

∫
dv1S1 · M1(f

(0)
2 V 2)

]
. ( 30)

The corresponding expression for ω21 can be deduced from ( 30) by interchanging 1 ↔ 2.
The solution to ( 28) is

Xσ =
(
Λ
−1

)
σσ′

Yσ′ . ( 31)

From this relation one gets the expressions (3.19), (3.20), and (3.21) for the coefficients
d∗i , ℓ∗i and λ∗

i , respectively. In these expressions, the (reduced) collision frequencies νij

are given by the integrals

ν11 =
2

d(d + 2)

1

1 + d+8
4 c1

m1

n1T 3
1 ν0

∫
dv1S1 · L1

(
f

(0)
1 S1

)
, ( 32)

ν12 =
2

d(d + 2)

1

1 + d+8
4 c2

m1

n1T 3
1 ν0

∫
dv1S1 · M1

(
f

(0)
2 S2

)
, ( 33)

whose calculation is analogous to that of νD, carried out in the next section.

Collisional integrals

The different collision integrals defining the collision frequencies appearing along the
main text are evaluated in this Appendix by using the modified first Sonine approxima-
tions for the functions {Ai, Bi, Ci,Di}. To simplify all the integrals, we use the property

∫
dv1h(V 1)Jij [v1|fi, fj] = σd−1

ij

∫
dv1

∫
dv2fi(V 1)fj(V 2)

×

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)

[
h(V

′′

1 ) − h(V 1)
]

, ( 1)

with

V
′′

1 = V 1 − µji(1 + αij)(σ̂ · g12)σ̂ . ( 2)

This result applies for both i = j and i 6= j.
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Let us start with the collision frequency νD defined in ( 14). Using the property ( 1)
and performing the angular integration in ( 14) gives

νD =
m1

dn1T1
B3σ

d−1
12 µ21(1 + α12)

∫
dV 1

∫
dV 2 g12

[
f

(0)
1 (V 1)f

(0)
2 (V 2)(V 1 · g12)

−δγf
(0)
1 (V 1)f

(0)
2 (V 2)(V 2 · g12)

]
, ( 3)

where δ = n1/n2 and (Ernst & Brito 2002)

Bk ≡

∫
dσ̂ Θ(σ̂ · g12) (σ̂ · ĝ12)

k = π(d−1)/2 Γ
(

k+1
2

)

Γ
(

k+d
2

) . ( 4)

Next, we introduce the reduced velocities V ∗

i = V i/v0 and use the first Sonine approxi-

mation for f
(0)
i , equation (3.1). The latter form is conveniently rewritten as

f
(0)
i (V 1) = ni

(
mi

2πTi

)d/2 (
1 +

ci

4
∆i

)
e−θiV

∗2

, ( 5)

with

∆i ≡ θ2
i

∂2

∂θ2
i

+ (d + 2)θi
∂

∂θi
+

d(d + 2)

4
. ( 6)

Using ( 5) one gets

νD =
m1

dn1T1
B3σ

d−1
12 µ21(1 + α12)n1n2(θ1θ2)

d/2v3
0

[(
1 +

c1

4
∆1 +

c2

4
∆2

)
I
(1)
D (θ1, θ2)

−δγ
(
1 +

c1

4
∆1 +

c2

4
∆2

)
I
(2)
D (θ1, θ2)

]
, ( 7)

where the integrals I
(1)
D (θ1, θ2) and I

(2)
D (θ1, θ2) are given by

I
(1)
D (θ1, θ2) = π−d/2

∫
dV ∗

1

∫
dV ∗

2e
−(θ1V ∗2

1
+θ2V ∗2

2
)g∗12(V

∗

1 · g∗

12), ( 8)

I
(2)
D (θ1, θ2) = π−d/2

∫
dV ∗

1

∫
dV ∗

2e
−(θ1V ∗2

1
+θ2V ∗2

2
)g∗12(V

∗

2 · g∗

12), ( 9)

with g∗

12 ≡ g12/v0. Note that in ( 7) we have neglected nonlinear terms in ci, i.e., (1 +
c1

4 ∆1)(1 + c2

4 ∆2) → 1 + c1

4 ∆1 + c2

4 ∆2. As in our previous works on granular mixtures
(Garzó & Dufty 2002; Garzó & Montanero 2007), the integral ID(θ1, θ2) can be performed
by the change of variables {V ∗

1, V
∗

2} → {g∗

12, z}, where z ≡ θ1V
∗

1 + θ2V
∗

2 and the

Jacobian is (θ1 + θ2)
−d. With this change, the integrals I

(1)
D and I

(2)
D can be easily

computed and the result is

I
(1)
D (θ1, θ2) =

Γ
(

d+3
2

)

Γ
(

d
2

) (θ1 + θ2)
1/2(θ1θ2)

−(d+3)/2θ2, I
(2)
D (θ1, θ2) = I

(1)
D (θ2, θ1). ( 10)

Use of this result in ( 7) gives

νD =
2π(d−1)/2

dΓ
(

d
2

) (1 + α12)

(
θ1 + θ2

θ1θ2

)1/2 {
x2µ21

[
1 +

1

16

θ2(3θ2 + 4θ1)c1 − θ2
1c2

(θ1 + θ2)2

]

+ x1µ12

[
1 +

1

16

θ1(3θ1 + 4θ2)c2 − θ2
2c1

(θ1 + θ2)2

]}
. ( 11)

The remaining collision frequencies can be obtained by following similar steps as those
made in the case of νD.
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