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A Derivation of some scalar functions

This Appendix presents the method used in this study for the determination of the scalar
functions ®,, @C; d, and 7. Consider first @1, &)C and (:De, which satisfy egs. (23,30). The
isotropy of the operator L implies that the solutions of these equations assume the forms
given in eq. (23) and the text following eq. (30). The remaining task is to determine the
scalar functions @, ¢\>C and ®.. This is performed by considering the three parts of the

solution (corresponding to the contribution of to the viscosity, heat flow and inelasticity



respectively) separately. The ‘viscous’ contribution satisfies:

L(®, (@) @a;) = ;. (A1)

It is convenient to assume specific directions e.g. i = 1,j = 2. Employing the Fredholm

form of L (cf. Pekeris (1955) and Cercignani ( 1975)), one obtains:
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where R = [y — @p|, w = 8X82 and Q(@1) = e +‘/7E (2?1 - %) erf(%). Since both R and
w depend only on 4, iy and Uy - Qe, it is convenient to perform the integration over iy
in a (rotated) spherical coordinate system where @1; defines the z direction. The vector
components in this coordinate system are denoted below by primed symbols. It follows

that iy, and @y, are given by:
Ugy = s, cOS By COS Gy — T, sin ¢y + Ty, sin by cos ¢y (A.3)

ligy = Ty, cOS 0y Sin ¢y + Ty, cos ¢1 + iy, sin b, sin ¢y . (A.4)

where 6, and ¢, are the spherical angles of G in the original coordinate system. We
perform the integration over ¢, (the azimuthal angle of @iz in the rotated frame) first.
Since both R and w do not depend on ¢}, one needs to integrate only the term Ty Uy
One obtains:
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A iy = 2 (f) i1, Po(cos 85), (A.5)
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where Py(z) = (32 — 1) is the second order Legendre polynomial. Next we integrate

over the angle between i, and the z direction in the rotated frame, 5, i.e. the angle



between 11; and 1. Let A, (7, %z) be defined by:
- T o s s 2 2 "
Al i) = fé dé, sin 0, (R— = )Pn(cosé?g). (A.6)

The following equation follows from eq. (A.2):

= (@(mév(m ta [ dazaéém(agmml,az)e—ﬂ%) 1 @An)

In particular A, is given (for @, < ;) by Pekeris (1955):
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Ay = % (ﬁug = Eugul + 3o — 343 + 18+

+‘/T7_T (—6t3 + 2aius — 3u? + 1542 — 18)eﬁ3erf(?12)) . (A.8)

The value of Ay for 4; < 1y is obtained from eq. (A.8) by exchanging @#; and i,. In the
literature, e.g. Kogan (1969); Chapman & Cowling (1970); Harris (1971) and Cercignani
(1975), the function ®, is usually approximated by a truncated series of Sonine polynomi-
als. We prefer to investigate first the symmetry and asymptotic properties of ®,, and then
expand it in a series of functions that obey these symmetry and asymptotic properties.
This procedure leads to a more accurate determination of @, for all values of @ (since a
truncated series of polynomials diverges for large values of @ whereas @, decays at large
values of @ as shown below). Consider eq. (A.7) and let @; — —@;. Clearly Q is formally
an even function of u, hence the term of the LHS of eq. (A.7), which is proportional to
@, preserves any parity symmetry of ®,. The second term on the LHS of eq. (A.7) is
even as well. This is seen by considering the definition of A, (cf. eq. (A.6)), with n = 2:

changing the integration variable to dz = sin #,d#, one obtains that A, is proportional to



Il de (R — %e_wz) P, (z); recalling that R = \/ﬁ% — 2@ B9z + 43 and w? = -@légz—_mﬂ, it
Is clear that the transformation @, — —; followed by a change of the integration variable
r — —x leaves the integral unchanged. Hence Ag(—1y,U2) = Ag(fy,1s), i.e. the second
term on the LHS of eq. (A.7) is invariant to @ — —a. Now, since the first term on
the LHS preserves the symmetry of &, and the second term is formally even, it follows
that (i)v(ﬁl) is formally even in 4;. Next we investigate the asymptotic properties of @,

as u; > 1. Assume @v(ﬂ) is asymptotically proportional to @ where p is a constant

(this assumption is shown to be justified a-posteriori). Eq. (A.7) can be expressed as

(v) (v)

g1 +9§U)+g3 = 1, where:
(v) T TRT N
91" = —EQ(M)‘PU(%), (A.9)
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VT (6 + 2003 — 302ap + 15 — 183a)eri(fn)| (@ A.10
+T(_ Uy + 2ujuy — 3ujus + 1545 Ug)erf(ip) v(T2), (A.10)

and,
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+g(—6ﬂ3‘ﬂ2 + 26305 — 343 + 15024, — 18ﬁ2)e&?_ﬁ§erf(ﬂg)} d,(aiy). (A.11)

In egs. (A.9-A.11) use has been made of the explicit form of A, (cf. eq. (A.8)). Next
we investigate the asymptotic leading behavior of the g’s for i; > 1. It is clear from the
definition of Q () that its asymptotic leading behavior is proportional to @;, hence the

asymptotic leading behavior of ¢! is proportional to i, *?. Next consider ¢”. In the



first part of the integrand (which is proportional to e=%), it is possible, to leading order
in @, to replace the upper limit of the integral by infinity. It is then clear that, to leading
order in @, the integral of this term is proportional to ui. It is easy to show that the
leading asymptotic behavior of the integral of the term which is proportional to erf(i,)
is proportional to ,&?‘er - Upon dividing this integral by @3, it follows that the asymptotic
leading behavior of g{* is proportional to @ 1**=%  Pinally consider 9% and recall
that the asymptotic leading behavior of integrals of the form J2° dzxte for 7> 1 is
proportional to #*~e~%. It follows that the asymptotic behavior of the first contribution
to the integral (resulting from the term in the integrand which is proportional to e~%)

. : =T
is proportional to @, "

e~®. The asymptotic behavior of the second contribution to the
integral is proportional to @;"”. Hence, the leading behavior of gé”} is proportional to
ﬁf”p. Now, since the sum of the g’s is unity, the only possible value for p is p = —1.

Having determined the symmetry and asymptotic properties of (iiv(ﬂ): we expand it in

a set of functions having the same properties. For this purpose we use the following

# =2

set of functions: ¢{") (@) = e~ I,_;(a?), where I, is a modified Bessel function, i.e. we

consider the expansion: ®,(@) = 2 a3¥). Next, define the kernel K W(4,2) =

“—\/I? (Q(ﬁ»)é(’& —z) + %3142(’113 ﬂf)e_mQ); eq. (A.7) can be rewritten as follows:
Z agf} fm d:rK(v)(ﬂ,iE)éS"J(ﬂS) =1 (A.12)
n=1 0

The solution of eq. (A.12) can be obtained, to any desired degree of accuracy, by trun-
cating the series at a large enough value of n = N and choosing a (large enough)

set of points {tm;1 < m < M} where N < M. Next, define the matrix elements



K = [5°dzK® (@, 2)é,(z) (the integrals over z are carried out numerically). The
values of the coefficients are found by minimizing oDl 1( N GO K — 1)2. The
squared deviation assumes a value less than 1076 for N = 10 and M — 46, when the
points i, are evenly distributed between u; = 0 and @4 = 15. The components a,ﬁf’}
which correspond to the above fit are given in Table 1.

The equation corresponding to the ‘heat-flux’ term is given by:

7 {@ (@) (’u = g) u] e (ﬁ2 - g) i (A.13)

Let ¢ = 3 (the z direction). Using the Fredholm form of I, and following consideration

which are similar to those employed when calculating ®, one obtains:

1 . g N s R
—ﬁ (Q[ U1) P () + % / it (u2 - 5) () A; (g, o) e ’“‘5) =,
(A.14)
where, in particular, A; is given (for @y < ) by Pekeris (1955):
1 2 2 i
Bl B {15@ - St = (1 + (a3 - Ue“%erf(ag)ﬂ @A)

The value of A for i; > @, is obtained from eq. (A.15) by exchanging 7, and .
Consider eq. (A.14) and let % — —&;. The term on the LHS of eq. (A.14), which is
proportional to @, preserves the parity of ®, since Q is even in @;. The second term on
the LHS is also invariant under a parity transformation; note that A; is proportional to
Jl,dz (R ( — Zev ) Py(z). Thus letting @ — —y, followed by the change of the integra-
tion variable x — —z, yields: A4;(—, ) = —A; (U, Us). This change of sign is canceled

by the change of sign of @, in the denominator of the term multiplying the integral in eq.



(A.14). Hence, the second term on the LHS of eq. (A.14) is invariant to @, — —a,. It

follows that ®,(,) is formally even in ;. Assume that the asymptotic leading behavior

-~

of ®.(@) is proportional to # and consider the limit % > 1. Eq. (A.14) can be written

as g\ + g5 + g9 = 1, where:

é 1 L,
i = Q()8.(@), (A.16)
(@ _ Uy (~2_§) KE~6_2~2~4_ ~2) -2 _
- N ) /o diiz \ % 5 3l — i e
~2/miia (@ — 1)erf(iia) | &o(in), (A.17)

and,

2 = By T2 2 i
O =_ f di (~2__) [(—"5" — Zidud —ug ) i3
” Vv (i} - §) Ju 2\eT g/ [\ T gt =t e
—2V/Tls (@ — 1)e~Serf(il;)| B,(an), (A.18)

Proceeding as in the calculation of ®,, one finds that the asymptotic leading behavior

1+p ~max(—3,1+p) +p
1 5 W

of 19, g5 and ¢ is given by @ and @y "*?, respectively. This implies

that p = —1. Hence, the same set of functions ¢{” = ¢(*) can be employed for expanding
@, B(7) = 52, al?¢l9 (). A good approximation (squared deviation less than 1079)
is obtained by taking N = 10, M = 46, with the points i, evenly distributed between
uy = 0 and a4 = 15. The coefficients aﬁf} for the above truncation are given in Table 1.
Eq. (A.14) possesses a homogeneous solution of the form: uz—fg (where b is a constant).
Thus the general solution of this equation is the sum of @, as obtained above, and the

homogeneous solution. The value of the coefficient, b, is determined by requiring P, to be



orthogonal to the invariants. In this case it is sufficient to consider the orthogonality to
the invariants ;: [ da®.(a) (ﬁQ — 5) @2e~% = 0. Denoting by ®( the solution obtained
above (and whose coefficients are tabulated in Table 1), the value of the constant b is

given by:
f5° dxat (:1:2 - %) 3O (z)e—2*

b=—
I dzzte

~ —0.1927, (A.19)

The integral in the numerator of eq. (A.19) has been evaluated numerically. Thus: ®, is
given by &, (@) = ) (q) + L.

845

The equation for the first order correction due to the inelasticity is (cf. eq. (30)):

L(8.) = h(@). (A.20)

where h(t) is defined as the RHS of eq. (30) divided by e. Employing the Fredholm form

of the operator L one obtains:

_%(Q () +2 [ diai3b. () Ao(an, Ta)e ) = hi), (A21)

where Ay is given (for 4y < @;) by:

. 1 2
Ao(ul,UQ) = ’u_]'{; (3’&2 + 2’1.'11?,52 — 2\/_erf(uQ) ) : (A22)

The value of Ag(@,1s) for 4, < 4y is obtained from eq. (A.22) by exchanging the
arguments of Ay. The function Ao(@y,Ts) is even with respect to @;. This fact follows
from the definition of A,, eq. (A.6), with n = 0. The function Ag(ty,us) is proportional
to f_ll dx (R - %e“"z) where R and w are given in the above. Clearly, letting @ — —a,,

followed by a change of the integration variable z —s —z, implies that Ay(—;,4s) =



Ao(t1,U2). Hence, since the RHS of eq. (A.21) is even as well, it is clear that @e(ﬂl) is
an even function of @;. Next, we investigate the asymptotic properties of ®,. Assume
that its asymptotic leading behavior is proportional to @*. Eq. (A.21) can be written as:

6489+ o) = A, where

e Tt I
5’5 )= - (1)@ (@1). (A.23)
e 2 o - 2., st =2 8 % o ~ e
99 = ~ /0 diiy [(gug + 2u?u§) g8 7?‘_T-merf(*u,g)} , D, (1s) (A.24)
and,
(e) _ 2 S 2 5. L9 g2 8 _ -y oareg2| & -
g7 = _\/7?{11 L d’U,Q (gul’u.g + 2’-!1.2'1.!1) £ E — ﬁmerf(ul)e 172 .@e(u2) (A25)

Arguments, similar to those presented above lead to the conclusion that the for iy e,

(B) ()

a1 and g3 are proportional to gite gmas(Li+p)

; and i, "*? respectively. Hence, since
the asymptotic leading behavior of h(i;) is proportional to @} one could have concluded
that p = 2. Note, however, that #? is a summational invariant of L; one can easily
check that in this case the coefficient of @} diverges. The same anomaly occurs in the
two-dimensional case (Sela & Goldhirsch (1996)); a somewhat tedious but straightforward
calculation reveals that the correct asymptotic leading term of @, at large % is proportional
to @’log(). A particular solution of eq. (A.21), which is denoted by ®(© can be obtained
by expanding this function in a set of functions obeying the above determined symmetry
and asymptotic properties of ®,. We choose to expand it in the following set of functions

¢l = (1+log(1+a2))(1+a2) 3 I,y (@2)e 7, i.e. O)(q) = ® 1 al¥E) (). A truncation

e

of the series with a minimization of the error is then performed as in the above. A good



approximation (error less then 107°) is obtained by taking N = 10, M = 46, the points
Uy, being evenly distributed between @; = 0 and @iy = 15. The resulting coefficients, agf),
are presented in Table 1. The general form of ®, is a sum of ®Y and a combination of
the invariants, 1 and @* which we denote by: b + b3a2. The orthogonality conditions (of
®, to the invariants) determine the coefficients b5 and b3 (cf. the text following eq. (30)):

b ~ 0.0698 and b3 ~ 1.4769. All in all, &,(4) = 30 () + b + b3a?

Finally, we consider 77 which satisfies:
L) =¥, (A.26)

where X is given in subsection (3.4). Since Y is symmetric in 7 and its asymptotic
behavior is proportional to 4 we can evaluate 7 in a similar manner to ®,. In particular

the following representation of 7 is employed:
(@) ~ (1 + log(1 +a@?))(1 + @°) Z a1 (#2) + ¢} + @, (A.27)

A calculation similar to those described above yields the values of a\" (tabulated in Table

1) and c¢f =~ 7.9908 and c} ~ 36.729.



B Proof of Solubility

Not included here



C Constitutive relations at O(Ke)

Not included here



D  The integral I;
In this Appendix we calculate the integral Is defined as:

Ig Eﬁ dlz(f{'ulz)é(ll—-lll +q(1:{-'l.112]12),
kuyz>0

where ¢ = 1=

(D.1)

(211'_}3 J dwe™¥* defining

Upon expressing the delta function as 6(x)

$ = u —u; and changing the order of integration, one obtains:

1 : " ; e "
I — / d ’zw-s / k < 1q(k-u12}{k-w}‘ D2
? (27)3 He fc-u12>0( wiz)e B2

Next, one performs the integration over k in a frame whose z axis coincides with uy,.
One obtains:

i U]EI /dweiw-s /5 db SiHQCOSQ/QW déeiqulgcosB(COSsz-%sil]SwJ_ cos(qﬁ—xj)= (DS)
(2)3 0 0

where 6 and ¢ are the coordinates of k in the rotated frame, w, and w are the components

of w parallel and perpendicular to uys respectively, and y is the azimuthal angle of the

projection of w on the plane normal to u;5. The integration over ¢ yields:
U1z iw-s z . iquizw; cos? @ .
Is = on)? dwe df sin 6 cos fe k Jo(qw 1 U1 sin 6 cos 6),
T 0

(D.4)
where Jp is the Bessel function of zeroth order. Next, one performs the integration over

W in a cylindrical coordinate system whose z axis coincides with u;2. By decomposing s

in the above system of coordinates, one obtains:

U2

(2m)?

§:

oC oo 27 . g
f dw, / dw w dpei(vzeatwisy cosp) / df sin # cos 0 x
-0 0 0 0

i 2 g
e'7u12%=cos"0 J (1) | wys sin @ cos 6),



where u is the angle between the projections of w and s on the plane perpendicular to

u;2. The integration over y is straightforward and one obtains:

Is EB/ dwzjo d’wJ_wJ_/DEdQSiHQCOSaX

2 -0
eiwz{sz+qu12 cos® 9)j0(

w51 )Jo(quiugysind cosf). (D.6)

The integration over w, yields a delta function and thus eq. (D.6) is transformed to:

Is = ulgf dw, w, /E df sin 6 cos 06 (s, + quya cos® ) x
0 0

Jo(wisL)Jo(quw,uissin @ cos 8). (D.7)
The delta function in eq. (D.7) imposes the condition cosf = ;"122 , Which implies
that: sinf = q“;if“ (recall that s, is the projection of s on uyp and it must satisfy

the relation: 0 < q_—tiz-) The integration over § amounts to a substitution of the above
conditions for sin# and cos 6 followed by a division by the absolute value of the derivative

of the argument of the delta function with respect to . One obtains:

1 —8, S, e
I(,- = _Q_QH (gum) H (1 —+ qulg) \/O de_w_j_J{}(wJ_SJ_)J{}(wz\/‘_Sz(qulg -+ Sz)), (DS)

where H is the Heaviside function. Next, using the orthogonality property of the Bessel

functions: [§* dzzJy(az)Jo(bx) = 16(a — b), one obtains:

1 —s, —s
Is = H “IH( 1+ 226 i ). D.9
el o) L () L DR en
The delta function in eq. (D.9) implies the following condition: % = 52 + 5% = —gs,u;p =

—@s - wy2 (the latter equality follows from the definition of s:). It thus follows from the



2

above conditions that: == = % hence the condition imposed by the Heaviside functions

L
gquiz k)

is satisfied once the condition imposed by the delta function is. Thus eq. (D.9) reduces

to:

1 |
Ig = -2_.{}56(61 = \/—Sz(qulz + Sz)) = 56(52 + qszulg)

1
= 56(52 +gs- ll]g). (D]-O)

The second equality follows from the relation 6( f T)—f(20)) = =6(z—2¢). Expressing
[£/ (o)

Uiz = u — s — uy it follows from the above condition that:

- (D.11)
Uo q Us

where 0, is the angle between § and {i,. The condition, eq. (D.11), restricts the values of
Uy to uy > |1—;‘ls +§-u.

Consider next the following integral over the angle 65, of the form:

, (D.12)

T 1 rl
/ dé, sin 0, F(cos 0) 15 = Ef d(cos 0,) F (cos 65)6(s* + gs.1uy2)
0 i

where F' is any smooth function. This integral can be performed by substituting the
RHS of eq. (D.11) for cos#} and dividing by the absolute value of the derivative of the
argument of the delta function with respect to cos 6;. Clearly the argument can be written
as s +gs-upp = (1—-g¢)s®*+gs-u—gs-uy. Thus, the absolute value of the derivative of

the argument with respect to cos# is gsu,. Hence, the result of the integration is:

QQSUQ 2 q U

3. == 1—
. F(i“ﬁ gi)ﬂ(uz—J qg3+§-u]). (D.13)
I



E Derivation of I; and I,

In this Appendix the derivation of the integrals I and I, is presented. Recalling eq. (43),

I, is given by:

T / dity (i )L (D), (E.1)

The term L(®xx) can be extracted from eq. (12) by retaining terms of O(K?2). One

obtains:

_ . - 3N
L(®xx) = Drxlogn + 2\/%@13;”(1@ 4 (,&2 . 5) By loubis

(I)K (I_)Klogn-l- 2\! ;e—ﬁif)}{% + (u =% *) Dglov@) + f)K(I)K == ;—ﬁ(@}{; (I’K): (EZ)

The operation of D on the hydrodynamic fields is given in egs. (13-15). At O(K?) it

reads:
Dy xlogn = 0, (E.3)
- 1 {3 0PF \/E dog@dV, 9 IV,
exVi= — ./ I = K% /g ] ;
Dl o 20 07, ( oF; oF; 2 OF; OF; (B:f)
and,
 gm i Vi | 0QF\
Drxlog® = —K O@ ot o, ) T
, (8 \/E 3 a_v;av 82log® \ﬁ dlog® dlog®
gl 8. 8 dh . E.5
K (3 2126 o7, o7, k/z“‘“ o707, o7, OF )

Next, using the result of the operation of Dg on the hydrodynamic fields (cf. egs. (19-

21)), and the explicit form of ®y (cf. eq. (23)) one obtains;

b (f)glogn + 24 %ﬁiﬁ;{% + ('&2 — g) ﬁKlog@) =



3 VoV, 4. o - 3 ViV

2 (48 (i\e .5 5 = 2 = 2 0V
i {4@“(“)”*“3“‘“329 o7, o, 3 W oy a7, O,
s . - . | 3 0V;Ologn o B B 3 0V, aloge
20, ()it Up | | =— 20 o7, o7 +2®,(a) (u — 5) Uty | 5 o, -
5 g 3 Vi Slog(n@) PN 5) = b B G alog@
29, () Us Uyl | | —= 50 8?"'3- o +2®.() (u ~ ) Wil 5 BTJ o

22 »2_§) - | 3 0V;0log® . (,,2 _) _ _ 0Olog® dlogn

3<DC(u) (u U U ) & + @.(1) 5 ) Witls o, #; +

5 (o) (=2 _ﬁé) (~2__ ﬂ) . Mc’ﬂog@ B (Mg _§) _ _ 0OlogB dlog(nO)

() (u w =5 ) Gl o O.(a) (u 5 ) Uit o = :
(E.6)

Next, we consider D ® . Firstly we write ® in dimensional form:

%aV Tl 3 Jdlog®
(2@) B, Tl (“ __) “Woe o (BT

Next, we calculate Dy ® separately for each of the terms on the RHS of eq. (E.7). First:

i (1) = 202, (@) 7w

0Py ~ 58 . dlogn [ 3 9V, _ _ 3 IV, 3V,
—Dgl=-2K"], i — —
ok Bu() (u %55, \ 2607, ~ “Y28 77, o7,
gu 5 dlogn dlogd 3 9V, 0log®
~K?®(a) (@ - 2 ) [ fit e o . E.
B (u 2) (UEUJ or  oF; 20 97; OF; ) (E:8)
The term Dy has been calculated using eq. (19) and the relation ¢ = . Next, using
the relation 2 av = —2u;, one obtains:
0%k = o Y 3 WVidVk o, . / dV; dlog(n®)
) : bt p ot S
oV ——DgV; = —2K EZ@_v(u)ugujukug 20 o7, 07, -, (a)u;i;4 T 7, o +

s .. S TViDV: . . 3 3V, dlog(n®)
o s o BT e ., ek
T2B A 20 F; OF; . (W) V2057, or

s . . | e ;
—K? M(I)c(ﬁ) + @ (a) (ﬂ- = %)) (Q’uzujuk 3 9V; 0 0Olog® u_u'cﬁ?lo © dlo (n@)) i

29 0?‘3 a?"k i C’)ﬂ 8?;:_?



649(2-3) (im0 e - 150200 e
Next, the relation %‘;”9 = —%2 1s employed to obtain:
a?f%ﬁ;(lob@ K2[ (év(a) +§fi>;(ﬁ)ﬂ2) al*j%g—j?ﬁi—
(38,(@) + 28,(2)22) Wity ie = g: a?i@}
2 [(é’c(a) (faﬁ - g) @2 + (@) (guz - 2)) ﬁiﬂj%ﬁg%ﬁg—
; | ;%%%8%5?} _ (E.10)

In addition to the above dependence of ®; on the hydrodynamic fields, it also depends
on the spatial derivatives of V and log®. Thus, one has to consider the following contri-
butions to Dy ®y as well:

8(I)K Lt aV 9 = o
Dy = —2K? | &, (@)t — Y2 0¥k _
o (%) Ko, { ”“@@@fka@-

5 (v 010g00Olog(n©) . _ 9%log(nO)
b, (%), o7 o7, + @, (u)uiuj—m— : (E.11)

is obtained by employing (the definition) D = ¢ E%D and using the fact

3 oV, OV, . p RN
st 2@ oty

where D Kot am

that D and a% commute (cf. Appendix C). Similarly, one obtains:

0Pk =~ Olog® .. /., ) __ 9log®
9 (aloge) D ary Bl (u 2/ | @?"387'3
3?"{

a3 Vi dlog0 2. [3 oV,
2007 or; 3\ 200707,

The sum of all of the above contributions is a cumbersome expression for f( Prk). Notice,

(E.12)

however, that this expression has to be multiplied by 77(@)e~* and integrated over @1 (cf.



eq. (E.1)).

it satisfies

invariants

The isotropy of the latter function and the orthogonality relations which
imply that all terms in L(®xx) which are proportional to the summational

or whose tensorial structure is: w;Ujuy, or Usti;, do not contribute to the above

integral (Wlth 7(@)e~"). After omitting the non contributing terms, the integral in (E.1)

assumes the form:

/ dam(u L(®xx) =

K> / dim(a)e" [4@(&)@5&3&@3 3 VAV " R0) ( Q% — 5) i, RO Alog(nB)

9@ 0?"3 a?"g

iU
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T OF; or;

) 5 dlogd logd 3 9V, oV,
b(a) (*E}:Z—h) (a?—i) ”——gfo B B R

2 o7 20 o7, 077
A imve e 8 OViOVe  fa . . s, (o 5)) _ _ Jlog® dlog(n®)
4 |U( )u*““?%an 7, (@c(u)—i- ! (u) (u = Uil o7 9, -
| ls o (5 5 OlogOdlog(n®) . (NQ B 5) 5. Plogd
| g %®) (” 2) or o, @\ g ) Wl

(é’;(ﬁ)ﬁz (?12 — g) + . (a) (dur) — 4)) (or P12 IR ]—% /dﬁﬁ(ﬁ)e_ﬁgﬁ(fDK; Pk).

The first ir

ory  Or,
(E.13)

itegral in eq. (E.13) is carried out rather simply; first an integration over the

angular values of @ is performed. The following results are used:

. 4
[ dbaia; = =63 (E.14)

s 4
/ iy g = 1—2(5@-5&3 + 6850 + 6ubir). (E.15)

The remaining integration over i is then performed numerically. The second integral in

eq. (E.13)|is carried out using a more complicated procedure. Using the explicit form of
@y it reads:

1 SN =2 K2 Lo a5 o= (@2 +i2) =

5 / dii(i)e % D, Dy ) = dkdiiy diia (k - fiy2)e= B+ B5(4,) x

m 2 kvfuz)ﬂ'



W T 38V8V}C 3 =y (=2 O\ [~ 5\ _, _, 0Olog® dlog®
[4@1)(1*53)@@(“2)“11“13 EWQEQG)@ 8?"3 +@c(“1)@c(ug) (ul _5) (u - ) 1i ;;_E;t_‘g??

2

- f dkdiiy diy (k - igz)e= @7 (iy) x
T2 Jki2>0

RN - . B VO _ e (o O\ (., 5\ _ _ Olog® dlog®
[4(131,(%1)(1’@( )uhulju%u% 20 8?"3 d?": + (I’C(U1)¢'C(u2) ('U:? = —) (U% )uhm} a,., a?"j } .

(E.16)

Notice that mixed terms, i.e. those which involve products of velocity gradients and
temperature gradients are omitted since their contributions vanish by symmetry. Denote
the first integral in eq. (E.16) by J;; this integral can be evaluated by methods similar
to those used in Appendix C. Hence, transforming to the primed integration variables,
using the elastic relations dit}dity = dli,dila, 42 + @2 = @2 + @2 and k- i}, = —k - g5

and exchanging between primed and unprimed quantities, one obtains:

2

K = R L
Jl 5 \/I‘:{ dkdﬁldﬁ2(k . ﬁlz)e—(ﬂ?Tug)ﬁ(ﬂ;)X
d12>0

T2

TRY . 3 9V;9V, “ & =2 O\ (-3 B\ . _ Olog® dlog®
49, (u1)® (uz)ultulj Uk Ug — 9@() 8?”: (I)r(ul)q)c(uz) (Ug 7= 5) (ug == 2) u1;u23—(:)—__— 8T‘j ;
(E.17)
The integral in eq. (E.17) can be written in the following form:
2
Jy = i_ dlidii, ditpe~ @B g(7) 180 x
M2
B cr v . . 3 9V,0V, s o f29 D\ /. 9\ . . JlogO dlog®
{4@3(’&1)@”( )uhulju%u%?@ a a?": + e ul)@c(m) (’U;f = 5) (’LL% = §) 151523;—6%— af}: .
(E.18)

where [ §“) is given in eq. (D.1) with ¢ = 1. Using manipulations similar to those leading

to the evaluation of the integrals in eqs. (C.16) and (C.43) one obtains:

K?647® 3 OV, v, co o0
= T e s Aisn a2 |2
= 2 15 20 0r; (9?*3/ y/ dui’7(a / dssfé Uplla 207y — U5) ¥



(§2 — 20y + %ﬁz(i”yg =4 ) (V2 — 25y + 32)&, (/i + a2y?)e~ @ -28v+) o~ @i

K? 167 0log® 0log® o qo
+7r% 3 0n o ]_ yy/ dui*n (4 )£ dss/o diiatis(tiy — §) %

- _— 5 ) . B)
\/uz — 243y + 32)d \/u2 + 12y?) (uz — 2usy + 3 — E) (uz + 4%y — 5) X

¢~ (@ =25y +352) — (@3 +3Py?) (E.19)

The second integral in eq. (E.16) reads, after integrating over k:

K? 6 0V, 0V, . N T TP
Jo = ?2_655 8?“:/ duy dugtiyge” @+ Dy (1)@, (@ 1)®v(u2)ulz’ulju2ku2f
K?0log®dlog® [ . . _aie . ./ B\ /. 5\ .
+?r% ai Si /duldugulge (a3+ 2}ﬁ(u1)<l>c(u1)¢>c(u2) (Uf s E) (u% s 5) UyiUa;j.

(E.20)
These integrals are carried out by similar methods to those used in Appendix C - The
tensorial structure of the integrands implies that the result of the first integral is propor-
tional to the general isotropic fourth order tensor a0;50re + b( bik0je + 614651 and the second
integral is proportional to the general isotropic second order tensor 6i5. Thus, without
loss of generality, one may choose in the first integral i = k = 1 (x direction), j = £ =2 (y
direction) and multiply the integral by 2. In the second integral we set i = j = 1. Next,

one integrates over all orientations of @1; and fi,. The result is:

P 32 3 Wav i o0 N I » -~ ~ _ﬁZ - 2 o = s
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where

1
Ry (i, @9) = / day/@2 — 2iiyiiy + B3P (z), (E.22)
-1
with P, being the n’th order Legendre polynomial. A numerical evaluation of the integrals

in egs. (E.13,E.19,E.21) yields:

- 3 9VidVi  _ OlogOdlogd _ dlogd dlog(n®) _ 9%logd
= K? —_ =ik A=) o =) 3
K (QIQG o7 07, T o on T on on, tTograr ) (B23)

where, &; ~ 12.6469, a, ~ 73.1575, a3 = —19.0089 and &, ~ 15.7588
Next, we consider the integral I», defined in eq. (40). Substituting the explicit form of
®x and omitting mixed terms, whose contributions vanish by symmetry, one obtains:

3 9V, 3Vk
20 (97'_? a?"f

(i) be(a) (i - 2) (8~ 2y, 2EO o] (B.:24)

11462 = =
= 2 i 6?‘;— 8?”3-

fg K /duldu2u126 (a} +43) 1:4@ ( )(i) (uz)ﬂliuljugkﬂg

This integral has been evaluated in a similar way to that used for the calculation of .J;.

The result is:

, [647% 3 OV 0V, B
ek [1—;56863_@/0 ul/ diiptyt5Ss iy, Tip)e~ B+, () b, (11,)
872 dlog® Olog® 4oy 3 s S\/., 5
YT, b 0 S ) D ) (1 - ) #-3)
(E.25)
where
1
S, ip) = / da(@2 — 28y liy + @) 3 Py (2). (E.26)
-1
A numerical evaluation of the integrals in eq. (E.26) yields:
- 3 AV, 0V, Olog®© dlog®
Sl Tand E.27
(ﬁlzoa . OF; 4, or; o ) (B.27)



where, 8 ~ 15.3412 and 3, ~ —3.4190.



Please Notice: the table below is referred to in Appendix A

Table 1

nl a | @ | & | o

1 || -1.1000 | -1.6166 -0.4199 | -13.5770
2 || -1.8487 | -2.7330 -0.5091 | -13.4559
3 [ -1.2733 | -2.6952 -0.2378 | -1.5773
4 |1 -0.2646 | 1.6729 0.0044 | 0.1282

5 || -1.7862 | -4.5166 -0.0441 | 2.5801

6 | 3.6306 |-13.8131 | 0.0042 | -0.6866
7 [ -7.3334 | 60.8587 | 0.0400 | -2.2654
8 | 9.2746 | -107.7763 | -0.0419 | 6.5680

9 |[-7.1014 | 91.9285 0.0311 | -5.9880
10 || 2.3928 | -32.8111 | -0.0043 | 2.4564




