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Appendix A. Flood and drought modelling 

A.1. Hydrological modelling 

The basis of both the flood and drought indicators is the simulation of daily river discharge 

and runoff using a global hydrological model. For this project, we used simulations carried 

out using the global hydrological model PCR-GLOBWB (Van Beek and Bierkens, 2009; Van 

Beek et al., 2011). This model simulates daily discharge and runoff at a horizontal resolution 

of 0.5° x 0.5°. 

The model was forced using daily meteorological fields of precipitation, temperature, 

and radiation for four different time-periods, namely: (a) 1960-1999, which represents the 

baseline climate; (b) 2010-2049 (representing 2030); (c) 2030-2069 (representing 2050); and 

(d) 2060-2099 (representing 2080). The meteorological data for the baseline climate are taken 

from the WATCH Forcing data (Weedon et al., 2011). The future meteorological data are 

provided by the ISI-MIP project, and consist of bias-corrected data (Hempel et al., 2013) for 

an ensemble of five Global Climate Models (GCMs) from the CMIP5 project (Taylor et al., 

2012). The GCMs used are GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-

ESM-CHEM, and NorESM1-M. For this study, we used climate projections based on two 

representative concentration pathways (RCPs), namely RCP 2.6 and RCP 8.5. The resolution 

of the input meteorological data sets for the current and future climate conditions is 0.5° x 

0.5°.  

For the simulations of floods and droughts, naturalized flow regimes were used, 

because the operation of reservoirs during flood and drought conditions is highly variable 

across the globe and requires detailed in-situ information about the flood and drought 

operation rules of each reservoir. The operations during floods and droughts may vary 

depending on many factors, for example: the (multi-purpose) use of the reservoir; the history 

of storage (e.g. after consecutive dry years, reservoir operators often maintain higher storage 
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levels); and the (non-)availability of forecast information or information on release strategies 

of upstream reservoirs. Therefore, reservoirs were included as if they were natural lakes.  

 

A.2. Simulation of flood indicator 

In this study, the indicator used to represent flooding is inundation depth greater than a given 

threshold (for example, inundation depths >0 m, >0.1 m, etc.). Here we selected a 0.1 m 

threshold, therefore including any flooded area of 0.1 meter and above. We used flood 

inundation maps at a horizontal resolution of 30” x 30” (ca. 1km x 1km at the equator). The 

maps are derived by downscaling of the results at lower resolution, applied on outputs of the 

hydrological model over current and future time-periods, using elevation data at much higher 

resolution (ca. 1km x 1 km) than the model resolution (ca. 50km x 50 km). These data are  

described in more detail in Winsemius et al. (2015). The method uses the GLOFRIS model 

cascade inundation downscaling technique, which is described in detail in Ward et al. (2013). 

Here, we provide a brief summary of this downscaling procedure. 

Daily gridded flood volumes are simulated at a horizontal resolution of 0.5° x 0.5°, 

using the routing module of the PCR-GLOBWB model. From these daily flood volumes, 

annual time-series of gridded maximum flood volumes are extracted for the hydrological 

years 1960-1999. A Gumbel distribution is then fit through this time-series (excluding years 

with zero flood volume), and the resulting parameters of the Gumbel distribution are used to 

estimate flood volumes for different return periods, (where needed, conditional on the 

probability of exceedance of zero flood volume). This results in a set of maps showing the 

flood volume in m
3
 of each 0.5° x 0.5° grid-cell for all return periods. These are then used as 

input in the GLOFRIS downscaling module, described in Winsemius et al. (2013) to derive 

maps showing inundation extent and depth at the high resolution of 30" x 30" (see for an 

example, figure 1 in the main text, top-left graph). Within the simulations, the assumption is 
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made that flood protection is absent. The granularity of the maps (horizontal resolution of 30” 

x 30”) is good for representing wide floodplain areas (>1km in width), but may be too low to 

accurately represent all flood processes in riverine regions with steep topography. Here flood 

plains are usually quite narrow (i.e. < 1 km). 

It should be noted that the inundation maps represent only riverine flooding, assuming 

the absence of flood protection measures. Moreover, they do not include coastal flooding, 

flooding from smaller streams, or flash floods.  

 

A.3. Simulation of drought indicator 

Hydrological drought conditions, or below-normal water availability, were identified using 

the widely-applied variable threshold level method (Hisdal and Tallaksen, 2003; Fleig et al., 

2006). In this study we defined the monthly Q80, the mean monthly streamflow that is 

exceeded 80 per cent of the time, as a measure for hydrological drought (Hisdal et al., 2001; 

Andreadis et al., 2005; Sheffield and Wood, 2007; Tallaksen et al., 2009; Corzo Perez et al., 

2011; Van Loon and Van Lanen, 2012; Wada et al., 2013). Using monthly mean discharge 

values for the baseline scenario (EU-WATCH 1960-1999), simulated with PCR-GLOBWB 

(Van Beek et al., 2011), we calculated for each cell its monthly Q80. Following earlier studies 

(Lehner and Döll, 2001; Wada et al., 2013; Wanders and Wada, 2015), we determined the 

drought intensity for all combinations of GCM, RCP and time-period as the deficit volume 

below the Q80 threshold level as specified under the baseline scenarios (figure A1). 

Subsequently, monthly drought intensities per grid-cell were accumulated using the method 

developed by Lehner and Döll (2001) and Wanders and Wada (2015) whereby the 

accumulated volumes are set to zero each time the discharge is higher than the Q80 threshold 

level. 
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(a) Morocco       (b) Malawi 

 

Figure A1. Overlay of poverty headcount maps at subnational level with a map showing 1 in 

10 year flooding. Morocco is shown in left panel A. Source: Morocco High Commission for 

Planning (2013). Malawi is shown in right panel B. The 10 year flood refers to a 10-year 

return period flood. Sources: World Bank and Malawi Statistics Office (2013), UNOSAT 

(2015), German Space Agency (2015).  

 

Using these values, we selected the maximum accumulated deficit volume for each 

hydrological year and a Gumbel distribution was fit through these time-series of maximum 

yearly standardized values (excluding the years with no deficits) (Engeland et al., 2005; 

WMO, 2008). The parameters of the Gumbel distribution were used to estimate maximum 

yearly accumulated deficit volumes of each 0.5° x 0.5° grid-cell for different return periods, 

conditional on the probability of exceedance of zero discharge deficits. To enable comparison 

between rivers of different size, we standardized the maximum accumulated deficit volumes 

found per return period by dividing them by their long-term mean monthly discharge values.  

𝑉𝑀𝐴𝐷𝑖,𝑦 
=  max[∑(0, 𝜏𝑖,𝑚 − 𝑄𝑖,𝑚)]𝑦   (A.1) 

𝑆𝑀𝐴𝐷𝑖,𝑅𝑃
=  

𝑉𝑀𝐴𝐷𝑖,𝑅𝑃 

𝑄𝐿𝑇𝑀,𝑖 
    (A.2) 

where VMAD is the maximum accumulated deficit volume [m
3
], i is the grid-cell considered, y 

and RP are the year or return period considered respectively, 𝜏 is the Q80 threshold [m
3
 s

-1
], Q 

is the simulated monthly discharge [m
3
 s

-1
] in month m, QLTM is the long-term mean 
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simulated monthly discharge, and SMAD is the standardized maximum accumulated deficit 

volume (s).  

The resulting maps express the relative intensity of drought conditions to long-term 

mean stream flow conditions and can be interpreted as the amount of time a long-term mean 

discharge would be needed to overcome the maximum accumulated deficit volume under a 

certain return period. In this study, we used the value of three months (of long-term mean 

discharge) as the indicator to represent droughts (for an example, see figure 1 of main text, 

bottom-left panel). The resolution of the maps represents drought conditions well for areas 

where droughts generally may be assumed to occur at a large scale (>50 km
2
). In regions 

where drought conditions could be very localized, for example due to highly variable 

topography and high variability in water availability within a grid-cell, the results may be less 

representative. 

 

A.4. Geographical uncertainty and sample size robustness 

To guarantee anonymity of the interviewed households, the geographical locations of the 

clusters have been randomly allocated by DHS within a radius of maximum 2 km from the 

real location for urban areas, and 5 km for rural areas. We performed a sensitivity assessment 

by simulating 100 random replacements of all geographical locations with a radius of 2 km 

for urban and 5 km for rural areas, and computed the exposure for each of the 100 

replacements. From the 100 results with random replacements, we assessed the uncertainty of 

the results due to uncertainty in geographical locations. We found no significant differences 

in results using the random location replacements and therefore we have not reported about 

this analysis in our results.  

In addition, we assessed the uncertainty due to sample size by bootstrapping with 5,000 

samples with replacement. In detail, per country, a sample was generated by drawing with 
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replacement, a set of households of equal size of the total amount of households in that 

country. We performed this for nationwide, urban and rural results respectively. If the 

expected value was positive (Ip > 0), we tested for a 95 per cent confidence for H(Ip > 0).  

When the expected value was negative, we tested for a 95 per cent confidence for H(Ip < 0).  

 

A.5. Changes in risk under climate change 

We assessed how climate change affects the poverty exposure bias, as well as the number of 

exposed people, by computing the poverty exposure bias as well as the annual average 

number of exposed people in 2030, 2050 and 2080, using the hazard maps representative for 

these periods and for 5 different GCMs.  

We also computed the poverty exposure bias and annual exposed people using the 

hazard maps for the reference period (1960-1999) but established based upon the GCMs 

rather than the EU-WATCH reanalysis data set. Since the GCMs used contain bias due to 

unrepresented intra-annual and interannual variability (Johnson et al., 2011), we used the 

model-model difference in annual exposed people to establish changes in the exposure rather 

than the absolute outcomes. 

 

Appendix B: Local scale poverty exposure analysis for floods 

The national-scale analysis shows that some countries exhibit an over-exposure of poor 

people to floods and droughts, some show no difference, and others exhibit an over-exposure 

of non-poor people. This gives rise to the question of whether there is a similar variability in 

the exposure bias within regions of the countries. While the DHS data do not allow for 

analyses of the patterns within countries (as they are not representative at small scales), in 

this section we examine the exposure to floods using detailed poverty maps in two countries: 
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Malawi (Traditional Authority or TA-level, from World Bank and Malawi Statistics Office, 

2013) and Morocco (commune-level, from Planning, 2013). 

These poverty maps provide spatially explicit estimates of poverty, using income as a 

metric. In both Malawi and Morocco, poverty is defined as the percentage of people within a 

commune/district who earn less than US$1.25 per day in 2005 purchasing power parity (PPP) 

terms. This measure of poverty is distinctly different from the DHS wealth index. While the 

wealth index is a measure of assets and structural poverty (and is typically more long-

lasting), the measure of poverty we use here is one of income or consumption (which is 

typically more variable). On the hazard side, we use the same data source for floods, selecting 

the 10-year return period flood.  

We compare exposure to floods and poverty levels across 1689 communes (for 

Morocco) and across 370 TAs (for Malawi) for the whole country. This analysis yields 

similar results to the DHS analysis: for Morocco, we find a negative bias of -0.10 (-0.29 

using DHS) and for Malawi a positive bias of 0.08 (0.18 using DHS).  

However, there is clear evidence of overexposure of the poor in specific areas of the 

country, even though there is no bias at the national scale. Figure A1 shows an overlay of 

commune and district level poverty maps with modelled flood extents in parts of Morocco 

and Malawi. Specifically, North West Morocco, north of Kenitra, exhibits a high correlation 

of poverty and exposure; in Malawi, this is the case in the South, at the Shire Basin, close to 

the confluence with the Zambezi. As an example, in January 2015 the same area experienced 

a flood event which hit the poorest areas the hardest.  

However, as described above, these national-level trends may hide significant 

heterogeneity within regions. Considering only the northwest of Morocco (left panel of figure 

A1), we now find a slightly PEB of 0.07 as opposed to the -0.24 that we found at the national 

level). For the south of Malawi (right panel of figure A1), we find a significantly large 
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exposure bias of 0.52 as opposed to 0.10 (not significant) at the national level. These findings 

support the hypothesis that we can find different biases occurring at different scales. Further, 

the identification of sub-national areas with a PEB may provide a rationale for targeting 

investments in these areas, concerning both protection ex-ante and disaster support ex-post.   

These results suggest high variability of the PEB within countries. Differences exist 

between rural and urban areas, and across lower administrative units such as provinces and 

cities. While national level studies, such as our analysis with DHS surveys, are useful for 

starting the discussion on poverty impacts of natural hazards, local decision-makers may 

require the local level PEB to design their own poverty and risk management strategies. 

Ideally, such local analyses could make use of higher-resolution flood or drought maps and 

local household surveys designed to be representative at the local scale. For example, in 

Mumbai, local-scale flood data and household surveys revealed that an over-exposure of poor 

people to floods can be observed (Hallegatte et al., 2016), but varies at a very small scale, 

from one street to the next (Patankar, 2016). 

One issue with DHS surveys – and almost all other household surveys – is that they 

have not been designed to be representative at small spatial scales. At best, they are 

representative at the spatial scale of a large province or area. Furthermore, the process used to 

select the surveyed households is not always reported explicitly, and often has to account for 

cost considerations that can bias the sample. We are well aware of this limit, and it implies 

that results should be interpreted with caution. The fact that we are working on a large sample 

of 52 countries compensates for the limit of the analysis at the country level.  
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Supplementary Figures  

 

Figure A2. When a disaster hits, poor people are more likely to be affected.  

Sources: Based on Akter and Mallick (2013) for Bangladesh (1) and del Ninno et al. (2001) 

for Bangladesh (2); Tesliuc and Lindert (2002) for Guatemala; Pelling (1997) for Guyana; 

Fuchs (2014) for Haiti; Carter et al. (2007) for Honduras; Opondo (2013) for Kenya; Wodon 

et al. (2014) for MENA; Baker et al. (2005) and Hallegatte et al. (2010) for Mumbai; Gentle 

et al. (2014) for Nepal; Fay (2005) for San Salvador and Tegucigalpa, and Nguyen (2011) for 

Vietnam. 

Note: Based on thirteen case studies of past disasters, examining the exposure of poor and 

non-poor people through household surveys. Each study has a different definition of “poor” 

and “nonpoor” people. Exposure differs based on the type of hazard and context in which it 

occurs. 
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Figure A3. Definition of drought events and accumulated deficit volumes using a variable 

Q80 threshold level, i.e. varying heights of the threshold level throughout the year based on 

monthly Q80 values (after: Lehner and Döll, 2001).  

 

 

 
 

Figure A4. Same as figure 4 in the main text, but for urban households only. Note that the 

quintile subdivision used is based on urban households only. 
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Figure A5. Same as figure 4 in the main text, but for rural households only. Note that the 

quintile subdivision used is based on rural households only. 
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