Online appendix for the paper AC-KBO revisited

published in Theory and Practice of Logic Programming

AKIHISA YAMADA

Research Institute for Secure Systems, AIST, Japan

SARAH WINKLER

Institute of Computer Science, University of Innsbruck, Austria

NAO HIROKAWA

School of Information Science, JAIST, Japan

AART MIDDELDORP

Institute of Computer Science, University of Innsbruck, Austria

submitted 24 September 2014; revised 9 February 2015; accepted 12 March 2015

Appendix A Omitted Proofs

A.1 Correctness of $>_{\mathsf{ACKBO}}$

First we show that $(=_{AC}, >_{ACKBO})$ is an order pair. To facilitate the proof, we decompose $>_{ACKBO}$ into several orders. We write

- $s >_{01} t$ if $|s|_x \ge |t|_x$ for all $x \in \mathcal{V}$ and either w(s) > w(t) or w(s) = w(t) and case 0 or case 1 of Definition 5.1 applies,
- $s >_{23,k} t$ if $|s|, |t| \leq k$, $|s|_x \ge |t|_x$ for all $x \in \mathcal{V}$, w(s) = w(t), and case 2 or case 3 applies.

The union of $>_{01}$ and $>_{23,k}$ is denoted by $>_k$. The next lemma states straightforward properties.

Lemma A.1

The following statements hold:

- 1. $>_{\mathsf{ACKBO}} = \bigcup \{ >_k \mid k \in \mathbb{N} \},\$
- 2. $(=_{AC}, >_{01})$ is an order pair, and
- 3. $(>_{01} \cdot >_k) \cup (>_k \cdot >_{01}) \subseteq >_{01}$.

Proof

1. The inclusion from right to left is obvious from the definition. For the inclusion from left to right, suppose $s >_{\mathsf{ACKBO}} t$. If either w(s) > w(t), or w(s) = w(t) and case 0 or case 1 of Definition 5.1 applies, then trivially $s >_{01} t$. If case 2 or case 3 applies, then $s >_{23,k} t$ for any k with $k \ge \max(|s|, |t|)$.

Akihisa Yamada et al.

- 2. First we show that $>_{01}$ is transitive. Suppose $s >_{01} t >_{01} u$. If w(s) > w(t) or w(t) > w(u), then w(s) > w(u) and $s >_{01} u$. Hence suppose w(s) = w(t) = w(u). Since $s, t \notin \mathcal{V}$, we may write $s = f(s_1, \ldots, s_n)$ and $t = g(t_1, \ldots, t_m)$ with f > g. Because of admissibility, g is not a unary symbol with w(g) = 0. Thus $u \notin \mathcal{V}$, and we may write $u = h(u_1, \ldots, u_l)$ with g > h. By the transitivity of > we obtain $s >_{01} u$. The irreflexivity of $>_{01}$ is obvious from the definition. It remains to show the compatibility condition $=_{\mathsf{AC}} \cdot >_{01} \cdot =_{\mathsf{AC}} \subseteq >_{01}$. This easily follows from the fact that w(s) = w(t) and $\mathsf{root}(s) = \mathsf{root}(t)$ whenever $s =_{\mathsf{AC}} t$.
- 3. Suppose $s = f(s_1, \ldots, s_n) >_{01} t = g(t_1, \ldots, t_m) >_k u$. If $t >_{01} u$ then $s >_{01} u$ follows from the transitivity of $>_{01}$. Suppose $t >_{23,k} u$. So w(t) = w(u). Thus w(s) > w(u) if w(s) > w(t), and case 1 applies if w(s) = w(t). The inclusion $>_k \cdot >_{01} \subseteq >_k$ is proved in exactly the same way. \Box

Lemma A.2

Let > be a precedence, $f \in \mathcal{F}$, and (\succeq, \succ) an order pair on terms. Then (\succeq^f, \succ^f) is an order pair.

Proof

We first prove compatibility. Suppose $S \succeq^f T \succ^f U$. From $T \succ^f U$ we infer that $T \upharpoonright^{\notf}_{f} \uplus T \upharpoonright_{\mathcal{V}} \succ^{\mathsf{mul}} U \upharpoonright^{\notf}_{f} \uplus U \upharpoonright_{\mathcal{V}}$. Hence $S \upharpoonright^{\notf}_{f} \succ^{\mathsf{mul}} U \upharpoonright^{\notf}_{f} \uplus U \upharpoonright_{\mathcal{V}} - S \upharpoonright_{\mathcal{V}}$ follows from $S \succeq^f T$. Hence also $S (\succeq \cdot \succ)^f U$. We obtain the desired $S \succ^f U$ from the compatibility of \succeq and \succ . Transitivity of \succeq^f and \succ^f is obtained in a very similar way. Reflexivity of \succeq^f and irreflexivity of \succ^f are obvious. \Box

We employ the following simple criterion to construct order pairs, which enables us to prove correctness in a modular way.

Lemma A.3

Let (\succeq, \succ_k) be order pairs for $k \in \mathbb{N}$ with $\succ_k \subseteq \succ_{k+1}$. If \succ is the union of all \succ_k then (\succeq, \succ) is an order pair.

Proof

The relation \succeq is a preorder by assumption. Suppose $s \succ t \succ u$. By assumption there exist k and l such that $s \succ_k t \succ_l u$. Let $m = \max(k, l)$. We obtain $s \succ_m t \succ_m u$ from the assumptions of the lemma and hence $s \succ_m u$ follows from the fact that (\succeq, \succ_m) is an order pair. Compatibility is an immediate consequence of the assumptions and the irreflexivity of \succ is obtained by an easy induction proof. \Box

Proof of Lemma 5.4

According to Lemmata A.3 and A.1(1), it is sufficient to prove that $(=_{AC}, >_k)$ is an order pair for all $k \in \mathbb{N}$. Due to Lemma A.1(2,3) it suffices to prove that $(=_{AC}, >_{23,k})$ is an order pair, which follows by using induction on k in combination with Lemma A.2 and Theorem 2.2. \Box

Online appendix

Proof of Theorem 5.12

Let \mathcal{T}_k denote the set of ground terms of size at most k. We use induction on $k \ge 1$ to show that $>_{\mathsf{ACKBO}}$ is AC-total on \mathcal{T}_k . Let $s, t \in \mathcal{T}_k$. We consider the case where w(s) = w(t) and $\operatorname{root}(s) = \operatorname{root}(t) = f \in \mathcal{F}_{\mathsf{AC}}$. The other cases follow as for standard KBO. Let $S = \nabla_f(s)$ and $T = \nabla_f(t)$. Clearly S and T are multisets over \mathcal{T}_{k-1} . According to the induction hypothesis, $>_{\mathsf{ACKBO}}$ is AC-total on \mathcal{T}_{k-1} and since multiset extension preserves AC totality, $>_{\mathsf{ACKBO}}^{\mathsf{mul}}$ is AC-total on multisets over \mathcal{T}_{k-1} . Hence for any pair of multisets U and V over \mathcal{T}_{k-1} , either

$$U >_{\mathsf{ACKBO}}^{\mathsf{mul}} V$$
 or $V >_{\mathsf{ACKBO}}^{\mathsf{mul}} U$ or $U =_{\mathsf{AC}}^{\mathsf{mul}} V$

Because the precedence > is total and S and T contain neither variables nor terms with f as their root symbol, we have

$$S = S \upharpoonright_f^{\measuredangle} \cup S \upharpoonright_f^{\lt} = S \upharpoonright_f^{\gt} \cup S \upharpoonright_f^{\lt} \qquad T = T \upharpoonright_f^{\measuredangle} \cup T \upharpoonright_f^{\lt} = T \upharpoonright_f^{\gt} \cup T \upharpoonright_f^{\lt}$$

If $S|_{f}^{>} >_{\mathsf{ACKBO}}^{\mathsf{mul}} T|_{f}^{>}$ or $T|_{f}^{>} >_{\mathsf{ACKBO}}^{\mathsf{mul}} S|_{f}^{>}$ then case 3(a) of Definition 5.1 is applicable to derive either $s >_{\mathsf{ACKBO}} t$ or $t >_{\mathsf{ACKBO}} s$. Otherwise we must have $S|_{f}^{>} =_{\mathsf{AC}}^{\mathsf{mul}} T|_{f}^{>}$ by AC-totality. If |S| > |T| then we obtain $s >_{\mathsf{ACKBO}} t$ by case 3(b). Similarly, |S| < |T| gives rise to $t >_{\mathsf{ACKBO}} s$.

In the remaining case we have both $S|_f^> = {}_{AC}^{mul} T|_f^>$ and |S| = |T|. Using case 3(c) of Definition 5.1 we obtain $s >_{ACKBO} t$ when $S|_f^< >_{ACKBO}^{mul} T|_f^<$ and $t >_{ACKBO} s$ when $T|_f^< >_{ACKBO}^{mul} S|_f^<$. By AC totality there is one case remaining: $S|_f^< = {}_{AC}^{mul} T|_f^<$. Combined with $S|_f^> = {}_{AC}^{mul} T|_f^>$ we obtain $S = {}_{AC}^{mul} T$. We may write $S = \{s_1, \ldots, s_n\}$ and $T = \{t_1, \ldots, t_n\}$ such that $s_i = {}_{AC} t_i$ for all $1 \le i \le n$. Since f is an AC symbol, $s = {}_{AC} t(s_1, f(\ldots, s_n) \ldots)$ and $t = {}_{AC} f(t_1, f(\ldots, t_n) \ldots)$, from which we conclude $s = {}_{AC} t$. \Box

A.2 Correctness of $>_{KV'}$

We prove that $>_{KV'}$ is an AC-compatible simplification order. The proof mimics the one given in Sections 5 and A.1 for $>_{ACKBO}$, but there are some subtle differences. The easy proof of the following lemma is omitted.

Lemma A.4 The pairs $(=_{AC}, >_{kv})$ and $(\geq_{kv'}, >_{kv})$ are order pairs. \Box

Lemma A.5

The pair $(=_{AC}, >_{KV'})$ is an order pair.

Proof

Similar to the proof of Lemma 5.4, except for case 3 of Definition 4.10, where we need Lemma A.4 and Theorem 2.2. \Box

The subterm property follows exactly as in the proof of Lemma 5.5; note that the relation $>_{01}$ has the subterm property, and we obviously have $>_{01} \subseteq >_{KV'}$.

Lemma A.6 The order $>_{\mathsf{KV}'}$ has the subterm property. \Box Akihisa Yamada et al.

 $Lemma \ A.7$

The order $>_{\mathsf{KV}'}$ is closed under contexts.

Proof

Suppose $s >_{\mathsf{KV}'} t$. We follow the proof for $>_{\mathsf{ACKBO}}$ in Lemma 5.7 and consider here the case that w(s) = w(t). We will show that one of the cases 3(a,b,c) in Definition 4.10 (4.7) is applicable to $S = \nabla_h(s)$ and $T = \nabla_h(t)$. Let $f = \operatorname{root}(s)$ and $g = \operatorname{root}(t)$. The proof proceeds by case splitting according to the derivation of $s >_{\mathsf{KV}'} t$.

- Suppose $s = f^k(t)$ with k > 0 and $t \in \mathcal{V}$. Admissibility enforces f > h and thus $S \upharpoonright_h^{\neq} = \{s\} \geq_{\mathsf{KV}'}^{\mathsf{mul}} \{t\}$. We have |S| = |T| = 1 and $S >_{\mathsf{KV}'}^{\mathsf{mul}} T$. Hence 3(c) applies. (This case breaks down for $>_{\mathsf{KV}}$.)
- Suppose $f = g \notin \mathcal{F}_{AC}$. We have $S \ge_{kv'}^{mul} T$, |S| = |T| = 1, and $S = \{s\} >_{KV'}^{mul} \{t\} = T$. Hence 3(c) applies.
- The remaining cases are similar to the proof of Lemma 5.7, except that we use Lemma 5.6 with (≥_{kv'}, >_{kv}).

For closure under substitutions we need to extend Lemma 5.8 with the following case:

3. If
$$S \succeq^{f} T$$
 and $S' \neq^{f} T'$ then $S' - T' \supseteq S\sigma - T\sigma$ and $T\sigma - S\sigma \supseteq T' - S'$.

Proof

We continue the proof of Lemma 5.8. From $\nabla_f(U\sigma) = U\sigma$ we infer that $T' = T \upharpoonright_{\mathcal{F}} \sigma \uplus U\sigma \uplus \nabla_f(X\sigma)$. On the other hand, $S' = S \upharpoonright_{\mathcal{F}} \sigma \uplus \nabla_f(Y\sigma) \uplus \nabla_f(X\sigma)$ with $Y = S \upharpoonright_{\mathcal{V}} - X$. Hence

$$T' - S' \subseteq T \upharpoonright_{\mathcal{F}} \sigma \uplus U\sigma - S \upharpoonright_{\mathcal{F}} \sigma$$

= $T \upharpoonright_{\mathcal{F}} \sigma \uplus U\sigma \uplus X\sigma - (S \upharpoonright_{\mathcal{F}} \uplus X\sigma)$
 $\subseteq T\sigma - S\sigma$

and

$$S' - T' \supseteq S \upharpoonright_{\mathcal{F}} \sigma - T \upharpoonright_{\mathcal{F}} \sigma - U\sigma$$

= $S \upharpoonright_{\mathcal{F}} \sigma \uplus X\sigma - (T \upharpoonright_{\mathcal{F}} \uplus U\sigma \uplus X\sigma)$
 $\supseteq S\sigma - T\sigma$

establishing the desired inclusions. \Box

Lemma A.8

The order $>_{\mathsf{KV}'}$ is closed under substitutions.

Proof

By induction on |s| we verify that $s >_{KV'} t$ implies $s\sigma >_{KV'} t\sigma$. If $s >_{KV'} t$ is derived by one of the cases 0, 1, 2, 3(a) or 3(b) in Definition 4.10 (4.7), the proof of Lemma 5.7 goes through. So suppose that $s >_{KV'} t$ is derived by case 3(c) and

4

Online appendix

further suppose that $s\sigma >_{\mathsf{KV}'} t\sigma$ can be derived neither by case 3(a) nor 3(b). By definition we have $\nabla_f(s) >_{\mathsf{KV}'}^{\mathsf{mul}} \nabla_f(t)$. This is equivalent¹ to

$$\nabla_f(s) - \nabla_f(t) >^{\mathsf{mul}}_{\mathsf{KV}'} \nabla_f(t) - \nabla_f(s)$$

We obtain $\nabla_f(s)\sigma - \nabla_f(t)\sigma >_{\mathsf{KV}'}^{\mathsf{mul}} \nabla_f(t)\sigma - \nabla_f(s)\sigma$ from the induction hypothesis and thus $\nabla_f(s\sigma) - \nabla_f(t\sigma) >_{\mathsf{KV}'}^{\mathsf{mul}} \nabla_f(t\sigma) - \nabla_f(s\sigma)$ by Lemma 5.8(1). Using the earlier equivalence, we infer $\nabla_f(s\sigma) >_{\mathsf{KV}'}^{\mathsf{mul}} \nabla_f(t\sigma)$ and hence case 3(c) applies to obtain the desired $s\sigma >_{\mathsf{KV}'} t\sigma$. \Box

The combination of the above results proves Theorem 4.12.

A.3 NP-Hardness of AC-KBO

Next we show NP-hardness of the orientability problem for $>_{ACKBO}$. To this end we introduce the TRS \mathcal{R}'_0 consisting of the rules

$$a(p_1(c)) \rightarrow p_1(a(c)) \qquad \cdots \qquad a(p_m(c)) \rightarrow p_m(a(c))$$

together with a rule $\mathbf{e}_i^0(\mathbf{e}_i^1(\mathbf{c})) \to \mathbf{e}_i^1(\mathbf{e}_i^0(\mathbf{c}))$ for each clause C_i that contains a negative literal. The next property is immediate.

Lemma A.9 If $\mathcal{R}'_0 \subseteq >_{\mathsf{ACKBO}}$ then $\mathbf{e}^0_i > \mathbf{e}^1_i$ for all $1 \leq i \leq n$ and $\mathbf{a} > p_j$ for all $1 \leq j \leq m$. \Box

The TRS $\mathcal{R}_0 \cup \mathcal{R}'_0 \cup \{\ell_i \to r_i \mid 1 \leq i \leq n\}$ is denoted by \mathcal{R}'_{ϕ} .

$Lemma \ A.10$

Suppose $\mathbf{a} > + > \mathbf{b}$ and the consequence of Lemma A.9 holds. Then $\mathcal{R}'_{\phi} \subseteq >_{\mathsf{ACKBO}}$ for some (w, w_0) if and only if for every *i* there is some *p* such that $p \in C_i$ with $p \not< +$ or $\neg p \in C_i$ with + > p.

Proof

The "if" direction is analogous to Lemma 6.7. Let us prove the "only if" direction by contradiction. Suppose $+ > p'_j$ for all $1 \leq j \leq k$, $p''_j \not\leq +$ for all $1 \leq j \leq l$, and $\mathcal{R}'_{\phi} \subseteq >_{\mathsf{ACKBO}}$. As discussed in the proof of Lemma 6.7, for the multisets V and W on page 16 we obtain $V >^{\mathsf{mul}}_{\mathsf{ACKBO}} W$ and all terms in V and W have the same weight. With the help of Lemma A.9 we infer that $\mathsf{a}(\mathsf{e}^0_i(\mathsf{c}^0_i(\mathsf{c}))) \in W$ is greater than every other term in V and W. This contradicts $V >^{\mathsf{mul}}_{\mathsf{ACKBO}} W$. \Box

Using Lemmata A.9 and A.10, Theorem 6.9 can now be proved in the same way as Theorem 6.8.

¹ This property is well-known for standard multiset extensions (involving a single strict order). It is also not difficult to prove for the multiset extension defined in Definition 2.1.

A.4 AC-RPO

Proof of Lemma 7.5

Because of totality of the precedence, $S \upharpoonright_{f}^{\checkmark}$ is identified with $S \upharpoonright_{f}^{\gt}$ in the sequel. First suppose $s >_{\mathsf{ACRPO}} t$ holds by case 4. We may assume that $>_{\mathsf{ACRPO}}$ and $>_{\mathsf{ACRPO}'}$ coincide on smaller terms. The conditions on $\triangleright_{\mathsf{emb}}^{f}$ are obviously the same. We distinguish which case applies.

- 4(a) We have $S|_f^> >_{\mathsf{ACRPO}}^{\mathsf{mul}} T|_f^> \uplus T|_{\mathcal{V}} S|_{\mathcal{V}}$ and thus both $S|_f^> \uplus S|_{\mathcal{V}} \ge_{\mathsf{ACRPO}}^{\mathsf{mul}} T|_f^> \amalg T|_{\mathcal{V}}$ and $S|_f^> >_{\mathsf{ACRPO}}^{\mathsf{mul}} T|_f^>$. So case 4'(a) is applicable.
- 4(b) We have |S| > |T| and $S =_{\mathsf{AC}}^{f} T$, i.e., $S \upharpoonright_{f}^{>} =_{\mathsf{AC}}^{\mathsf{mul}} T \upharpoonright_{\mathcal{V}}^{>} \oplus T \upharpoonright_{\mathcal{V}} S \upharpoonright_{\mathcal{V}}$, and in particular $T \upharpoonright_{\mathcal{V}} \subseteq S \upharpoonright_{\mathcal{V}}$. Thus $S \upharpoonright_{f}^{>} \oplus S \upharpoonright_{\mathcal{V}} \ge_{\mathsf{ACRPO}}^{\mathsf{mul}} T \upharpoonright_{f}^{>} \oplus T \upharpoonright_{\mathcal{V}}$ holds. Since $T \upharpoonright_{\mathcal{V}} \subseteq S \upharpoonright_{\mathcal{V}}$ and |S| > |T| imply #(S) > #(T), case 4'(b) applies.
- 4(c) We obtain $S \upharpoonright_{f}^{>} \uplus S \upharpoonright_{\mathcal{V}} \geq_{\mathsf{ACRPO}}^{\mathsf{mul}} T \upharpoonright_{f}^{>} \uplus T \upharpoonright_{\mathcal{V}}$ as in case 4(b). Together with |S| = |T| this implies $\#(S) \geq \#(T)$. As $S = S \upharpoonright_{f}^{>} \uplus S \upharpoonright_{\mathcal{V}} \uplus S \upharpoonright_{f}^{<}$ and similar for T, we obtain $S >_{\mathsf{ACRPO}}^{\mathsf{mul}} T$ from the assumption $S \upharpoonright_{f}^{<} >_{\mathsf{ACRPO}}^{\mathsf{mul}} T \upharpoonright_{f}^{<}$. Hence case 4'(c) is applicable.

Now let $s >_{\mathsf{ACRPO}'} t$ by case 4'. Again we assume that $>_{\mathsf{ACRPO}}$ and $>_{\mathsf{ACRPO}'}$ coincide on smaller terms. We have $S \upharpoonright_f^> \uplus S \upharpoonright_{\mathcal{V}} \ge_{\mathsf{ACRPO}}^{\mathsf{mul}} T \upharpoonright_f^> \uplus T \upharpoonright_{\mathcal{V}} (*)$.

- 4'(a) We have $S|_{f}^{>} >_{\mathsf{ACRPO}}^{\mathsf{mul}} T|_{f}^{>}$. Suppose $S \not\geq_{\mathsf{ACRPO}}^{f} T$, i.e., $S|_{f}^{>} >_{\mathsf{ACRPO}}^{\mathsf{mul}} T|_{f}^{>} \uplus T|_{\mathcal{V}} S|_{\mathcal{V}}$ does not hold. This is only possible if there is some variable $x \in T|_{\mathcal{V}} S|_{\mathcal{V}}$ for which there is no term $s' \in S|_{f}^{>}$ with $s' >_{\mathsf{ACRPO}} x$. This however contradicts (*), so $S >_{\mathsf{ACRPO}}^{f} T$ holds and case 4(a) applies.
- 4'(b) If $S \upharpoonright_f^> >_{\mathsf{ACRPO}}^{\mathsf{mul}} T \upharpoonright_f^>$ holds then case 4(a) applies by the reasoning in case 4'(a). Otherwise, due to (*) we must have $S =_{\mathsf{AC}}^f T$. Since #(S) > #(T) implies |S| > |T|, case 4(b) applies.
- 4'(c) If #(S) > #(T) is satisfied we argue as in the preceding case. Otherwise $\#(S) \ge \#(T)$ and $\#(S) \ge \#(T)$. This implies both |S| = |T| and $S|_{\mathcal{V}} \supseteq T|_{\mathcal{V}}$. We obtain $S =_{\mathsf{AC}}^{f} T$ as in case 4'(b). From the assumption $S >_{\mathsf{ACRPO}}^{\mathsf{mul}} T$ we infer $S|_{f}^{\leq} >_{\mathsf{ACRPO}}^{\mathsf{mul}} T|_{f}^{\leq}$ and thus case 4(c) applies. \Box