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Appendix A Omitted Proofs

A.1 Correctness of >ACKBO

First we show that (=AC, >ACKBO) is an order pair. To facilitate the proof, we

decompose >ACKBO into several orders. We write

• s >01 t if |s|x > |t|x for all x ∈ V and either w(s) > w(t) or w(s) = w(t) and

case 0 or case 1 of Definition 5.1 applies,

• s >23,k t if |s|, |t| 6 k, |s|x > |t|x for all x ∈ V, w(s) = w(t), and case 2 or

case 3 applies.

The union of >01 and >23,k is denoted by >k. The next lemma states straightfor-

ward properties.

Lemma A.1

The following statements hold:

1. >ACKBO =
⋃
{>k | k ∈ N},

2. (=AC, >01) is an order pair, and

3. (>01 · >k) ∪ (>k · >01) ⊆ >01.

Proof

1. The inclusion from right to left is obvious from the definition. For the

inclusion from left to right, suppose s >ACKBO t. If either w(s) > w(t),

or w(s) = w(t) and case 0 or case 1 of Definition 5.1 applies, then

trivially s >01 t. If case 2 or case 3 applies, then s >23,k t for any k with

k > max(|s|, |t|).
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2. First we show that >01 is transitive. Suppose s >01 t >01 u. If w(s) >

w(t) or w(t) > w(u), then w(s) > w(u) and s >01 u. Hence suppose

w(s) = w(t) = w(u). Since s, t /∈ V, we may write s = f(s1, . . . , sn)

and t = g(t1, . . . , tm) with f > g. Because of admissibility, g is not

a unary symbol with w(g) = 0. Thus u /∈ V, and we may write u =

h(u1, . . . , ul) with g > h. By the transitivity of > we obtain s >01 u.

The irreflexivity of >01 is obvious from the definition. It remains to show

the compatibility condition =AC · >01 · =AC ⊆ >01. This easily follows

from the fact that w(s) = w(t) and root(s) = root(t) whenever s =AC t.

3. Suppose s = f(s1, . . . , sn) >01 t = g(t1, . . . , tm) >k u. If t >01 u then

s >01 u follows from the transitivity of >01. Suppose t >23,k u. So

w(t) = w(u). Thus w(s) > w(u) if w(s) > w(t), and case 1 applies if

w(s) = w(t). The inclusion >k ·>01 ⊆ >k is proved in exactly the same

way.

Lemma A.2

Let > be a precedence, f ∈ F , and (%,�) an order pair on terms. Then (%f ,�f )

is an order pair.

Proof

We first prove compatibility. Suppose S %f T �f U . From T �f U we infer that

T �≮f ]T �V �mul U�≮f ]U�V . Hence S�≮f �mul U�≮f ]U�V−S�V follows from S %f T .

Hence also S (% · �)
f
U . We obtain the desired S �f U from the compatibility of

% and �. Transitivity of %f and �f is obtained in a very similar way. Reflexivity

of %f and irreflexivity of �f are obvious.

We employ the following simple criterion to construct order pairs, which enables

us to prove correctness in a modular way.

Lemma A.3

Let (%,�k) be order pairs for k ∈ N with �k ⊆ �k+1. If � is the union of all �k
then (%,�) is an order pair.

Proof

The relation% is a preorder by assumption. Suppose s � t � u. By assumption there

exist k and l such that s �k t �l u. Let m = max(k, l). We obtain s �m t �m u from

the assumptions of the lemma and hence s �m u follows from the fact that (%,�m)

is an order pair. Compatibility is an immediate consequence of the assumptions and

the irreflexivity of � is obtained by an easy induction proof.

Proof of Lemma 5.4

According to Lemmata A.3 and A.1(1), it is sufficient to prove that (=AC, >k)

is an order pair for all k ∈ N. Due to Lemma A.1(2,3) it suffices to prove that

(=AC, >23,k) is an order pair, which follows by using induction on k in combination

with Lemma A.2 and Theorem 2.2.
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Proof of Theorem 5.12

Let Tk denote the set of ground terms of size at most k. We use induction on

k > 1 to show that >ACKBO is AC-total on Tk. Let s, t ∈ Tk. We consider the case

where w(s) = w(t) and root(s) = root(t) = f ∈ FAC. The other cases follow as

for standard KBO. Let S = Of (s) and T = Of (t). Clearly S and T are multisets

over Tk−1. According to the induction hypothesis, >ACKBO is AC-total on Tk−1 and

since multiset extension preserves AC totality, >mul
ACKBO is AC-total on multisets over

Tk−1. Hence for any pair of multisets U and V over Tk−1, either

U >mul
ACKBO V or V >mul

ACKBO U or U =mul
AC V

Because the precedence > is total and S and T contain neither variables nor terms

with f as their root symbol, we have

S = S�≮f ∪ S�
<
f = S�>f ∪ S�

<
f T = T �≮f ∪ T �

<
f = T �>f ∪ T �

<
f

If S�>f >mul
ACKBO T �

>
f or T �>f >mul

ACKBO S�
>
f then case 3(a) of Definition 5.1 is applicable

to derive either s >ACKBO t or t >ACKBO s. Otherwise we must have S�>f =mul
AC T �>f

by AC-totality. If |S| > |T | then we obtain s >ACKBO t by case 3(b). Similarly,

|S| < |T | gives rise to t >ACKBO s.

In the remaining case we have both S�>f =mul
AC T �>f and |S| = |T |. Using case 3(c)

of Definition 5.1 we obtain s >ACKBO t when S�<f >mul
ACKBO T �<f and t >ACKBO s

when T �<f >mul
ACKBO S�

<
f . By AC totality there is one case remaining: S�<f =mul

AC T �<f .

Combined with S�>f =mul
AC T �>f we obtain S =mul

AC T . We may write S = {s1, . . . , sn}
and T = {t1, . . . , tn} such that si =AC ti for all 1 6 i 6 n. Since f is an AC symbol,

s =AC f(s1, f(. . . , sn) . . . ) and t =AC f(t1, f(. . . , tn) . . . ), from which we conclude

s =AC t.

A.2 Correctness of >KV′

We prove that >KV′ is an AC-compatible simplification order. The proof mimics the

one given in Sections 5 and A.1 for >ACKBO, but there are some subtle differences.

The easy proof of the following lemma is omitted.

Lemma A.4

The pairs (=AC, >kv) and (>kv′ , >kv) are order pairs.

Lemma A.5

The pair (=AC, >KV′) is an order pair.

Proof

Similar to the proof of Lemma 5.4, except for case 3 of Definition 4.10, where we

need Lemma A.4 and Theorem 2.2.

The subterm property follows exactly as in the proof of Lemma 5.5; note that

the relation >01 has the subterm property, and we obviously have >01 ⊆ >KV′ .

Lemma A.6

The order >KV′ has the subterm property.
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Lemma A.7

The order >KV′ is closed under contexts.

Proof

Suppose s >KV′ t. We follow the proof for >ACKBO in Lemma 5.7 and consider

here the case that w(s) = w(t). We will show that one of the cases 3(a,b,c) in

Definition 4.10 (4.7) is applicable to S = Oh(s) and T = Oh(t). Let f = root(s)

and g = root(t). The proof proceeds by case splitting according to the derivation of

s >KV′ t.

• Suppose s = fk(t) with k > 0 and t ∈ V. Admissibility enforces f > h and

thus S�≮h = {s} >mul
kv′ {t}. We have |S| = |T | = 1 and S >mul

KV′ T . Hence 3(c)

applies. (This case breaks down for >KV.)

• Suppose f = g /∈ FAC. We have S >mul
kv′ T , |S| = |T | = 1, and S = {s} >mul

KV′

{t} = T . Hence 3(c) applies.

• The remaining cases are similar to the proof of Lemma 5.7, except that we

use Lemma 5.6 with (>kv′ , >kv).

For closure under substitutions we need to extend Lemma 5.8 with the following

case:

3. If S %f T and S′ �f T ′ then S′ − T ′ ⊇ Sσ − Tσ and Tσ − Sσ ⊇ T ′ − S′.

Proof

We continue the proof of Lemma 5.8. From Of (Uσ) = Uσ we infer that T ′ =

T �Fσ ] Uσ ] Of (Xσ). On the other hand, S′ = S�Fσ ] Of (Y σ) ] Of (Xσ) with

Y = S�V −X. Hence

T ′ − S′ ⊆ T �Fσ ] Uσ − S�Fσ
= T �Fσ ] Uσ ]Xσ − (S�F ]Xσ)

⊆ Tσ − Sσ

and

S′ − T ′ ⊇ S�Fσ − T �Fσ − Uσ
= S�Fσ ]Xσ − (T �F ] Uσ ]Xσ)

⊇ Sσ − Tσ

establishing the desired inclusions.

Lemma A.8

The order >KV′ is closed under substitutions.

Proof

By induction on |s| we verify that s >KV′ t implies sσ >KV′ tσ. If s >KV′ t is

derived by one of the cases 0, 1, 2, 3(a) or 3(b) in Definition 4.10 (4.7), the proof

of Lemma 5.7 goes through. So suppose that s >KV′ t is derived by case 3(c) and
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further suppose that sσ >KV′ tσ can be derived neither by case 3(a) nor 3(b). By

definition we have Of (s) >mul
KV′ Of (t). This is equivalent1 to

Of (s)− Of (t) >mul
KV′ Of (t)− Of (s)

We obtain Of (s)σ − Of (t)σ >mul
KV′ Of (t)σ − Of (s)σ from the induction hypothesis

and thus Of (sσ)−Of (tσ) >mul
KV′ Of (tσ)−Of (sσ) by Lemma 5.8(1). Using the earlier

equivalence, we infer Of (sσ) >mul
KV′ Of (tσ) and hence case 3(c) applies to obtain the

desired sσ >KV′ tσ.

The combination of the above results proves Theorem 4.12.

A.3 NP-Hardness of AC-KBO

Next we show NP-hardness of the orientability problem for >ACKBO. To this end we

introduce the TRS R′0 consisting of the rules

a(p1(c))→ p1(a(c)) · · · a(pm(c))→ pm(a(c))

together with a rule e0i (e
1
i (c))→ e1i (e

0
i (c)) for each clause Ci that contains a negative

literal. The next property is immediate.

Lemma A.9

If R′0 ⊆ >ACKBO then e0i > e1i for all 1 6 i 6 n and a > pj for all 1 6 j 6 m.

The TRS R0 ∪R′0 ∪ {`i → ri | 1 6 i 6 n} is denoted by R′φ.

Lemma A.10

Suppose a > + > b and the consequence of Lemma A.9 holds. Then R′φ ⊆ >ACKBO

for some (w,w0) if and only if for every i there is some p such that p ∈ Ci with

p ≮ + or ¬p ∈ Ci with + > p.

Proof

The “if” direction is analogous to Lemma 6.7. Let us prove the “only if” direction

by contradiction. Suppose + > p′j for all 1 6 j 6 k, p′′j ≮ + for all 1 6 j 6 l, and

R′φ ⊆ >ACKBO. As discussed in the proof of Lemma 6.7, for the multisets V and

W on page 16 we obtain V >mul
ACKBO W and all terms in V and W have the same

weight. With the help of Lemma A.9 we infer that a(e0i (e
0
i (c))) ∈W is greater than

every other term in V and W . This contradicts V >mul
ACKBO W .

Using Lemmata A.9 and A.10, Theorem 6.9 can now be proved in the same way

as Theorem 6.8.

1 This property is well-known for standard multiset extensions (involving a single strict order).
It is also not difficult to prove for the multiset extension defined in Definition 2.1.
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A.4 AC-RPO

Proof of Lemma 7.5

Because of totality of the precedence, S�6<f is identified with S�>f in the sequel. First

suppose s >ACRPO t holds by case 4. We may assume that >ACRPO and >ACRPO′

coincide on smaller terms. The conditions on Bfemb are obviously the same. We

distinguish which case applies.

4(a) We have S�>f >mul
ACRPO T �

>
f ]T �V−S�V and thus both S�>f ]S�V >mul

ACRPO

T �>f ] T �V and S�>f >mul
ACRPO T �

>
f . So case 4′(a) is applicable.

4(b) We have |S| > |T | and S =f
AC T , i.e., S�>f =mul

AC T �>f ]T �V −S�V , and in

particular T �V ⊆ S�V . Thus S�>f ] S�V >mul
ACRPO T �

>
f ] T �V holds. Since

T �V ⊆ S�V and |S| > |T | imply #(S) > #(T ), case 4′(b) applies.

4(c) We obtain S�>f ]S�V >mul
ACRPO T �

>
f ] T �V as in case 4(b). Together with

|S| = |T | this implies #(S) > #(T ). As S = S�>f ]S�V]S�
<
f and similar

for T , we obtain S >mul
ACRPO T from the assumption S�<f >mul

ACRPO T �<f .

Hence case 4′(c) is applicable.

Now let s >ACRPO′ t by case 4′. Again we assume that >ACRPO and >ACRPO′ coincide

on smaller terms. We have S�>f ] S�V >mul
ACRPO T �

>
f ] T �V (∗).

4′(a) We have S�>f >mul
ACRPO T �>f . Suppose S 6>fACRPO T , i.e., S�>f >mul

ACRPO

T �>f ] T �V − S�V does not hold. This is only possible if there is some

variable x ∈ T �V − S�V for which there is no term s′ ∈ S�>f with

s′ >ACRPO x. This however contradicts (∗), so S >fACRPO T holds and

case 4(a) applies.

4′(b) If S�>f >mul
ACRPO T �>f holds then case 4(a) applies by the reasoning in

case 4′(a). Otherwise, due to (∗) we must have S =f
AC T . Since #(S) >

#(T ) implies |S| > |T |, case 4(b) applies.

4′(c) If #(S) > #(T ) is satisfied we argue as in the preceding case. Otherwise

#(S) > #(T ) and #(S) ≯ #(T ). This implies both |S| = |T | and

S�V ⊇ T �V . We obtain S =f
AC T as in case 4′(b). From the assumption

S >mul
ACRPO T we infer S�<f >mul

ACRPO T �
<
f and thus case 4(c) applies.


