
1Online appendix for the paper

A General Framework for Static Profiling of
Parametric Resource Usage ∗

published in Theory and Practice of Logic Programming

P. LOPEZ-GARCIA1,2 M. KLEMEN1 U. LIQAT1 M.V. HERMENEGILDO1,3

1IMDEA Software Institute
(e-mail: {pedro.lopez,maximiliano.klemen,umer.liqat,manuel.hermenegildo}@imdea.org)

2Spanish Council for Scientific Research (CSIC)
3Technical University of Madrid (UPM)

submitted April 30, 2016; revised July 10, 2016; accepted July 22, 2016

Appendix A

Additional Examples

Example 1

Consider the following program to determine whether a list is a sublist of another. A

sublist can be specified in terms of prefixes and suffixes: a suffix of a prefix, or a prefix

of a suffix. The following program uses the latter to implement the sublist predicate.� �
1 sublist(L, L).
2 sublist(Sub , List) :- suffix(List , Suf), prefix(Suf , Sub).
3

4 suffix(List , Suffix):- append(_, Suffix , List).
5

6 prefix(List , Prefix):- append(Prefix , _, List).
7

8 append ([], L, L).
9 append ([X|Xs], L, [X|Zs]):- append(Xs, L, Zs).� �

Assume we are going to perform the analysis, to infer upper bounds on both the

standard and accumulated costs, in terms of resolution steps, for the calling pattern

sublist(list, list), i.e., for the case where sublist is called with both of its ar-

guments bound to lists. Given such calling pattern, CiaoPP infers the unique call-

ing patterns suffix(list, var) and prefix(var, list), for suffix and prefix,

where var represents an unbound variable. However, two different calling patterns

are inferred for append: append(var,var,list), when it is called from suffix, and

append(list,var,list), when it is called from prefix.

Assume that size relations have been inferred for the different arguments in a clause,

and that the size metric used is the list length of an argument, since all arguments are

lists. The size of the output (second) argument of suffix is inferred as a function on

∗ This research has received funding from the EU FP7 agreement no 318337, ENTRA, Spanish
MINECO TIN2012-39391 StrongSoft and TIN2015-67522-C3-1-R TRACES projects, and the Madrid
M141047003 N-GREENS program. Special thanks are due to John Gallagher for many fruitful and
inspiring discussions and to the anonymous reviewers for their careful and useful comments.

2

its input (first) argument, and is represented by Sz2suffix(n). Such inference sets up the

following size relations:

Sz2suffix(n) = Sz2append(n)

Sz2append(n) = 1 if n = 1

Sz2append(n) = n if n > 1

Sz2append(n) = Sz2append(n− 1) if n > 1

and finds the closed form Sz2suffix(n) = n.

In order to infer the standard cost of this program, the analysis sets up the following

cost relations for sublist, suffix, prefix and append:

Csublist(n,m) = Csuffix(n) + Solsuffix(n) ∗ Cprefix(Sz2suffix(n),m) + 2

Csuffix(n) = Cappend(n) + 1

Cprefix(n,m) = Cappend(n,m) + 1

Note that the size of the input to the call to prefix is given by the size of the output of

suffix, represented by Sz2suffix(n).

The cost relations for the two variants of append are:

Cappend(n) = 1 if n = 1

Cappend(n) = Cappend(n− 1) + 2 if n > 1

Cappend(n,m) = 1 if m = 1, n = 1

Cappend(n,m) = 1 if m = 1

Cappend(n,m) = Cappend(n− 1,m− 1) + 1 if m > 1

and the their closed forms are Cappend(n) = 2 n− 1 and Cappend(n,m) = m respectively.

Note that in this program suffix produces multiple solutions. For each solution of

suffix the prefix predicate is executed on backtracking.

The cost relations for the inference of the number of solutions are:

Solsuffix(n) = Solappend(n)

Solappend(n) = 1 if n = 1

Solappend(n) = Solappend(n− 1) + 1 if n > 1

and the closed form is Solsuffix(n) = n.

After composing all the closed forms, the analysis obtains the following function rep-

resenting an upper bound on the resource usage of all the predicates:

Csuffix(n) = 2 n

Cprefix(n) = m + 1

Cappend(n) = 2 n− 1

Cappend(n,m) = m

Csublist(n) = n m + 3 n + 2

Assume now that we declare sublist and append as cost centers to infer the accumu-

lated costs in them. The cost relations set up for sublist are:

Csublistsublist(n,m) = Csublistsuffix,1(n) + Solsuffix(n) ∗ Csublistprefix,1(Sz2suffix(n),m) + 2

C
append
sublist(n,m) = C

append
suffix,0(n) + Solsuffix(n) ∗ Cappendprefix,0(Sz2suffix(n),m)

3

Replacing the functions for sizes (Sz) and solutions (Sol) from the previous step we get:

Csublistsublist(n,m) = Csublistsuffix,1(n) + n ∗ Csublistprefix,1(n,m) + 2

C
append
sublist(n,m) = C

append
suffix,0(n) + n ∗ Cappendprefix,0(n,m)

Furthermore, the intermediate cost relations are set up as follows:

Csublistsuffix,1(n) = Csublistappend (n) + 1

= 1 (Lemma 3)

Csublistprefix,1(n,m) = Csublistappend (n,m) + 1

= 1 (Lemma 3)

C
append
suffix,0(n) = C

append
append(n)

C
append
prefix,0(n,m) = C

append
append(n,m)

C
append
append(n) = C

append
append(n− 1) + 2 if n > 1

C
append
append(n) = 1 if n = 1

C
append
append(n,m) = 1 if m = 1, n = 1

C
append
append(n,m) = 1 if m = 1

C
append
append(n,m) = C

append
append(n− 1) + 1 if m > 1

After composing all the intermediate cost relations, the analysis obtains the following

functions representing upper bounds on the accumulated resource usage of sublist and

append:

Csublistsublist(n) = n + 3

C
append
sublist(n) = nm + 2n− 1

Example 2

Consider the following program P:� �
1 p(X, Y) :- i1 , i2, q(X, Z), s(Z, Y).
2

3 q(0, 0).
4 q(X, Y) :- X1 is X - 1, q(X1 , Z), i1, i3, s(Z, W), Y is W + 1.
5

6 s(0, 0):- i1.
7 s(X, Y) :- i2 , i4, X1 is X - 1, s(X1, Z), Y is Z + 1.� �

Assume that im, for m ∈ {1, 2, 3, 4}, are builtin/library predicates and that their

standard costs are given by means of trust assertions: for simplicity we assume that

Ψ(im) = Cim = 1, for m ∈ {1, 2, 3, 4}, and that the (standard) cost of the is/2 arithmetic

predicate is given as zero. Assume also that ϕ(p) = 0 for all predicates p ∈ P.

Assume that for all the predicates, the first argument is an input argument and the

second one is output, and that the type of all arguments is the set of natural numbers.

Assume that the following size relationships, expressing the size of the output argument

as a function of the size of the input argument, have already been inferred for all of them:

• Sz2p (n) = n, which means that the size (under the natural value metric) of the

second argument of predicate p is n, the size of the input argument.

• Similarly, Sz2q (n) = n, and Sz2s (n) = n.

4

Assume that the set of cost centers is ♦ = {p, q, s}, and that we want to estimate

(upper bounds on) the cost accumulated in all the cost centers for the predicates p,

q, and s. Let C
q
p(x̄) denote an upper bound on the accumulated cost in cost center q

corresponding to a call p(x̄).

Assume we process each strongly-connected component of the call graph of the program

in reverse topological order. We start by inferring the costs accumulated in cost center

s. The accumulated cost in s corresponding to a call to s is expressed by the following

cost relation:

Css(0) = Csi1,1 = Ci1 = 1

Css(n) = Csi2,1 + Csi4,1 + Css(n− 1)

which can be written as:

Css(0) = 1

Css(n) = 2 + Css(n− 1)

and whose closed-form solution is:

Css(n) = 2 n + 1.

Now, we analyze predicate q. To this end, the accumulated cost in s for a call to q is

expressed by:

Csq(0) = 0

Csq(n) = Csq(n− 1) + Csi1,0 + Csi3,0 + Css(n− 1)

Since there is a trust assertion providing the cost of i1, Ψ(i1) = 1 (as already said),

according to Expression 5, we have that Csi1,0 = Bϕ(i1, s, 0)×Ψ(i1) = 0× 1 = 0. Note

that Bϕ(i1, s, 0) = 0 because i1 6= s and the environment (third argument of Bϕ) is 0

(since i1 is called in the scope of cost center q, not in the scope of the cost center where

the analysis is accumulating costs in this equation, i.e., s). Thus, the cost of i1 is not

taken into account in this equation. The same consideration applies to i3.

Since the cost function for Css(n) has already been computed, replacing values we have

Csq(0) = 0

Csq(n) = Csq(n− 1) + 2 (n− 1) + 1

and

Csq(0) = 0

Csq(n) = Csq(n− 1) + 2 n− 1

The solution to the cost relation above is:

Csq(n) = n2.

We now analyze predicate p, so that the accumulated cost in s for a call to p is expressed

by:

Csp(n) = Csi1,0 + Csi2,0 + Csq(n) + Css(n)

For the same considerations as before, the costs of i1 and i2 in the body of the clause

defining p are not taken into account (i.e., Csi1,0 = Csi2,0 = 0). Replacing values we have

that:

Csp(n) = n2 + 2n + 1.

5

The inference of the accumulated cost in s for predicates p, q, and s has finished, and

we start now the inference of the accumulated costs in q. By Lemma 3, C
q
s(n) = 0, i.e.,

we do not need to analyze predicate s, since it does not call q. However, now the costs

of i1 and i3 in the body of the second clause of q do have to be taken into account. To

this end, the recurrence equations expressing the accumulated cost in q for a call to q

are:

C
q
q(0) = 0

C
q
q(n) = C

q
q(n− 1) + Ci1q,1 + Ci3q,1.

C
q
q(0) = 0

C
q
q(n) = C

q
q(n− 1) + 2.

The solution to the recurrence above is:

C
q
q(n) = 2 n.

Now, the accumulated cost in q for a call to p is expressed as:

C
q
p(n) = C

q
q(n) + C

q
s(n)

Replacing values we have that:

C
q
p(n) = 2 n

Let us compute now the accumulated cost in p. Since it is not called from q nor s, we

have that Cpq(n) = C
p
s(n) = 0. The accumulated cost in p for a call to p is just the cost of

i1 and i2:

C
p
p(n) = C

p
i1,1 + C

p
i2,1 = Ci1 + Ci2.

Thus:

C
p
p(n) = 2.

Note that the standard cost of p (Cp(n)) can be expressed in terms of the accumulated

costs in each of the cost centers:

Cp(n) = C
p
p(n) + C

q
p(n) + Csp(n).

Example 3
Consider the following program where the predicates p and q are mutually recursive.� �

1 coupled(X, Y):- f(X, Y).
2

3 p(0 ,[]).
4 p(N,[a|R]) :- N1 is N-1, q(N1,R).
5

6 q(0 ,[]).
7 q(N,[a|R]) :-N1 is N-1, p(N1,R).� �

Assuming that we want to infer the standard cost of this program in terms of resolution

steps, the analysis sets up the following cost relations for coupled, p and q, we have the

following cost relations:

Cp(n) = 1 if n = 0

Cp(n) = 1 + Cq(n− 1) if n > 0

Cq(n) = 1 if n = 0

Cq(n) = 1 + Cp(n− 1) if n > 1

6

Ccoupled(n) = 1 + Cp(n)

After composing the closed forms, the analysis obtains the following function representing

an upper bound on the resource usage of coupled, p and q:

Ccoupled(n) = n + 2

Cp(n) = n + 1

Cq(n) = n + 1

Notice that in this program the cost relations for p and q are mutually recursive (i.e.,

they are defined in terms of each other), and for this reason the cost functions representing

the upper bound on the resolution steps in the two are same (n + 1). Hence, the cost of

each mutually-recursive predicate subsumes the cost of the other. However, this cost is

in fact distributed between the p and q predicates. In order to identify the cost that each

of these predicates contributes to this n+ 1 expression and to the overall cost of coupled

(n + 2), we perform the accumulated cost analysis, declaring all the predicates as cost

centers. The instantiation of the equational framework described in Sect. 4 obtains the

following accumulated costs for coupled, p, and q:

C
coupled
coupled(n) = 1

C
p
coupled(n) = n

2 + (−1)n

4 + 3
4

C
q
coupled(n) = n

2 −
(−1)n

4 + 1
4

It is now clear how much cost each of coupled, p, and q contributes to the standard cost

of the whole program (n + 2). Note that the standard cost of the mutually recursive

predicates p and q, which is n+ 1, is now halved among the two as accumulated costs of

p and q.

In this example we have shown a hypothetical scenario highlighting that the accumu-

lated cost information is more useful for mutually recursive parts of a program in order

to identify how much each of the mutually recursive predicates contributes to the overall

cost. This was not possible using only the standard cost information.

Example 4

Consider the following program to determine the parity of a number where predicates

even and odd are mutually recursive.� �
1 even (0).
2 even(N):- N > 0, N1 is N - 1, odd(N1).
3

4 odd (1).
5 odd(N):- N > 1, N1 is N - 1, even(N1).� �

Similar to the Example 3, this program contains mutually recursive predicates even and

odd. Since both are defined in terms of each other, the standard analysis obtains a same

cost function for them representing an upper bound on the resource usage.

Ceven(n) = n + 1

Codd(n) = n + 1

7

In order to identify the cost that each of these predicates contributes to the overall

cost of the program n+1, we perform the accumulated cost analysis, declaring both even

and odd as as cost centers. The instantiation of the equational framework described in

Sect. 4 obtains the following accumulated costs for even and odd:

Ceveneven(n) = n
2 + (−1)n

4 + 3
4

Coddeven(n) = n
2 −

(−1)n

4 + 1
4

Appendix B

Additional Comments on the Relation of the Standard and Accumulated

Cost

Assume that predicate p is a cost center. As already said, in this case the standard

cost of a single call p(x̄) is the sum of its accumulated costs in all the cost centers in

the program. This is formalized by Theorem 1 in (Haemmerlé et al. 2016), which holds

under the assumption that p is a cost center. Intuitively, predicate c is “reachable” from

predicate p if c = p or c can be invoked (either directly or indirectly) by p. If p is a cost

center, Theorem 1 also holds if we restrict to the set of cost centers that are reachable

from p, or to the set of cost centers that are descendants (in the call stack) of p. The

reason is that if p is a cost center, and another cost center c (different from p) is not

reachable from p, then no part of the cost of a call to p is attributed to c. This is stated

in Lemma 3.

Assume that p is the main (entry) predicate in a program, and that we are interested in

knowing how its total (standard) cost is distributed over the (user-defined) cost centers.

In this case, p should be declared as a cost center. This is because if p is a cost center, the

residual cost (as defined in Section 4) of the call to the main predicate will be assigned

to p. Otherwise the residual cost will be left unassigned to any cost center.

If p is not a cost center, the standard cost of a single call p(x̄) is the sum of its

accumulated costs in all the cost centers that are descendants (in the call stack) of p,

plus the residual cost of that call.

References

Haemmerlé, R., Lopez-Garcia, P., Liqat, U., Klemen, M., Gallagher, J. P., and
Hermenegildo, M. V. 2016. A Transformational Approach to Parametric Accumulated-
cost Static Profiling. In FLOPS’16. LNCS, vol. 9613. Springer, 163–180.

