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Appendix A: Mathematical Preliminaries and Proofs of Section 4

A partially ordered set (or poset) (L,≤) is called a lattice if for all x, y ∈ L there exists

a least upper bound and a greatest lower bound. A lattice (L,≤) is called complete if for

all S ⊆ L, there exists a least upper bound and a greatest lower bound, denoted by
∨
S

and
∧
S respectively. Every complete lattice has a least element and a greatest element,

denoted by ⊥ and > respectively. We will use the following two convenient equivalent

definitions of complete lattices (Davey and Priestley 2002, Theorem 2.31, page 47):

Theorem 4

A partially ordered set (L,≤) is a complete lattice if L has a least element and every

non-empty subset S ⊆ L has a least upper bound in L. Alternatively, (L,≤) is a complete

lattice if L has a greatest element and every non-empty subset S ⊆ L has a greatest lower

bound in L.

Given a partially ordered set (L,≤), every linearly ordered subset S of L will be called

a chain. A partially ordered set is chain-complete if it has a least element ⊥ and every

chain S ⊆ L has a least upper bound.

Proposition 1

Let D be a nonempty set. For every predicate type π, ([[π]]D,≤π) is a complete lattice

and ([[π]]D,�π) is a chain complete poset.

Proof

Consider the first statement and let π be an arbitrary predicate type. Recall that ⊥≤π
exists; it suffices to show that for every non-empty subset S of [[π]]D, the least upper

bound of S exists and belongs to [[π]]D.

The least upper bound can be defined inductively on the structure of predicate types.

If π = o, then
∨
≤o S is defined in the obvious way. For π = ι → π1, we define for all

d ∈ D, (
∨
≤ι→π1

S)(d) =
∨
≤π1
{f(d) | f ∈ S}. Finally, if π = π1 → π2, we define for

all d ∈ [[π1]]D, (
∨
≤π1→π2

S)(d) =
∨
≤π2
{f(d) | f ∈ S}. We need to verify that for type

π1 → π2 the least upper bound is a Fitting-monotonic function. This is a consequence of

the following auxiliary statement, which we need to establish for every predicate type π:

Auxiliary statement: Let I be a non-empty index-set and let di, d
′
i ∈ [[π]]D, i ∈ I. If for

all i ∈ I, di �π d′i, then
∨
≤π{di | i ∈ I} �π

∨
≤π{d

′
i | i ∈ I}.
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The proof of the auxiliary statement is by a simple induction on the structure of π.

For type π = o the statement follows by a case analysis on the value of
∨
≤π{di | i ∈

I}. For types ι → π1 and π1 → π2, the statement follows directly by the induction

hypothesis. The auxiliary statement implies that (
∨
≤π1→π2

S) is a Fitting-monotonic

function. More specifically, for all d, d′ ∈ [[π1]]D with d �π1
d′, it holds f(d) �π2

f(d′)

for every f ∈ S (because the members of S are Fitting-monotonic functions). Then, the

auxiliary statement implies that
∨
≤π2
{f(d) | f ∈ S} �π2

∨
≤π2
{f(d) | f ∈ S} which

is equivalent to (
∨
≤π1→π2

S)(d) �π2 (
∨
≤π1→π2

S)(d′), which means that (
∨
≤π1→π2

S) is

Fitting-monotonic.

Consider now the second statement. Notice that ([[π]]D,�π) is not a complete lattice

(for example, the set {false, true} does not have a least upper bound with respect to

�o). However, it is a chain complete poset. For every type π, ⊥�π exists. Moreover,

given a chain S of elements of [[π]]D, it suffices to verify that
∨
�π S exists and belongs

to [[π]]D. The proof is by induction on the structure of π. For type π = o it is obvious.

For π = ι → π1, define (
∨
�ι→π1

S)(d) =
∨
�π1
{f(d) | f ∈ S}. For π = π1 → π2

define (
∨
�π1→π2

S)(d) =
∨
�π2
{f(d) | f ∈ S}. We need to verify that (

∨
�π1→π2

S) is

a Fitting-monotonic function, i.e., that for all d, d′ ∈ [[π1]]D with d �π1
d′, it holds

(
∨
�π1→π2

S)(d) �π2 (
∨
�π1→π2

S)(d′), or equivalently that
∨
�π2
{f(d) | f ∈ S} �π2∨

�π2
{f(d′) | f ∈ S}, which holds because for every f ∈ S, f(d) �π2

f(d′).

The proof of the above lemma has as a direct consequence the following corollary:

Corollary 1

Let D be a nonempty set and π a predicate type. Let I be a non-empty index-set and let

di, d
′
i ∈ [[π]]D, i ∈ I. If for all i ∈ I, di �π d′i, then

∨
≤π{di | i ∈ I} �π

∨
≤π{d

′
i | i ∈ I}.

Appendix B: Proofs of Section 5

Proposition 2

Let D be a nonempty set. For every predicate type π, ([[π]]
ma
D ,≤π) and ([[π]]

am
D ,≤π) are

complete lattices.

Proof

We give the proof for the case ([[π]]
ma
D ,≤π); the case ([[π]]

am
D ,≤π) is symmetrical and

omitted. The proof is by induction on the structure of π. For π = o the result is immediate.

We show the result for types ι→ π and π1 → π2, assuming it holds for π, π1 and π2.

Consider first the set [[ι→ π]]
ma
D = D → [[π]]

ma
. This set has a least element, namely the

function that assigns to each d ∈ D the bottom element of type π. Let S ⊆ D → [[π]]
ma

be a nonempty set. For every d ∈ D we define (
∨
≤ι→π

S)(d) =
∨
≤π{f(d) | f ∈ S}, which

by the induction hypothesis exists and belongs to [[π]]
ma
D .

Consider now the set [[π1 → π2]]
ma
D = [([[π1]]

ma
D ⊗ [[π1]]

am
D )

ma→ [[π2]]
ma
D ]. This set has a least

element, namely the function that assigns to each pair (x, y) ∈ ([[π1]]
ma
D ⊗ [[π1]]

am
D ) the

bottom element of type ⊥π2 ; this function is constant and therefore obviously monotone-

antimonotone. Let S ⊆ [([[π1]]
ma
D ⊗ [[π1]]

am
D )

ma→ [[π2]]
ma
D ] be a nonempty set. For every

(x, y) ∈ ([[π1]]
ma
D ⊗ [[π1]]

am
D ) we define (

∨
≤π1→π2

S)(x, y) =
∨
≤π2
{f(x, y) | f ∈ S}, which

by the induction hypothesis exists and belongs to [[π2]]
ma
D . It remains to show that

∨
S
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is monotone-antimonotone. Consider (x, y), (x′, y′) ∈ ([[π1]]
ma
D ⊗ [[π1]]

am
D ) and assume that

x ≤ x′ and y ≥ y′. It suffices to show that (
∨
≤π1→π2

S)(x, y) ≤π2 (
∨
≤π1→π2

S)(x′, y′).

Since every element of S is monotone-antimonotone, for every f ∈ S it holds f(x, y) ≤π2

f(x′, y′). Therefore,
∨
≤π2
{f(x, y) | f ∈ S} ≤π2

∨
≤π2
{f(x′, y′) | f ∈ S}, and thus

(
∨
S≤π1→π2

)(x, y) ≤π2 (
∨
S≤π1→π2

)(x′, y′).

The proof of Proposition 3 requires the following lemma which can be established by

induction on the structure of π:

Lemma 6

Let D be a nonempty set and let π be a predicate type. Let S ⊆ [[π]]
ma
D and g ∈ [[π]]

am
D .

• If for all f ∈ S, f ≤ g, then
∨
S ≤ g.

• If for all f ∈ S, f ≥ g, then
∧
S ≥ g.

Proposition 3

Let D be a nonempty set. For each predicate type π, [[π]]
ma
D ⊗ [[π]]

am
D is a complete lattice

with respect to ≤π and a chain-complete poset with respect to �π.

Proof

For every π it is straightforward to define the bottom elements of the partially ordered

sets ([[π]]
ma
D ⊗ [[π]]

am
D ,≤π) and ([[π]]

ma
D ⊗ [[π]]

am
D ,�π).

Given S ⊆ [[π]]
ma
D ⊗ [[π]]

am
D , we define

∨
≤π S = (

∨
≤π{f | (f, g) ∈ S},

∨
≤π{g | (f, g) ∈

S}). It can be easily seen that
∨
≤π S ∈ [[π]]

ma
D ⊗ [[π]]

am
D due to Proposition 2, Lemma 6

and the fact that for every pair (f, g) ∈ S, f ≤π g.

On the other hand, let S ⊆ [[π]]
ma
D ⊗ [[π]]

am
D be a chain. We define

∨
�π S = (

∨
≤π{f |

(f, g) ∈ S},
∧
≤π{g | (f, g) ∈ S}). It is straightforward to show that

∨
�π S is the �π-least

upper bound of the chain. Moreover, (
∨
�π S) ∈ [[π]]

ma
D ⊗ [[π]]

am
D because

∨
≤π{f | (f, g) ∈

S} ≤π
∧
≤π{g | (f, g) ∈ S} (this can easily be shown using basic properties of lubs and

glbs, Lemma 6, and the fact that S is a chain; see also Proposition 2.3 in (Denecker et al.

2004)).

Proposition 4

Let D be a nonempty set and let π be a predicate type. Then, for every f, g ∈ [[π]]D and

for every (f1, f2), (g1, g2) ∈ [[π]]
ma
D ⊗ [[π]]

am
D , the following statements hold:

1. τπ(f) ∈ ([[π]]
ma
D ⊗ [[π]]

am
D ) and τ−1π (f1, f2) ∈ [[π]]D.

2. If f �π g then τπ(f) �π τπ(g).

3. If f ≤π g then τπ(f) ≤π τπ(g).

4. If (f1, f2) �π (g1, g2) then τ−1π (f1, f2) �π τ−1π (g1, g2).

5. If (f1, f2) ≤π (g1, g2) then τ−1π (f1, f2) ≤π τ−1π (g1, g2).

Proof

The five statements are shown by a simultaneous induction on the structure of π. We

give the proofs for Statement 1, Statement 2 (the proof of Statement 3 is analogous and

omitted) and Statement 4 (the proof of Statement 5 is similar and omitted).

The basis case is for π = o and is straightforward for all statements. We assume the
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statements hold for π, π1 and π2. We demonstrate that they hold for ι → π and for

π1 → π2.

Statement 1: Consider first the case of ι → π. It suffices to show that τι→π(f) ∈ ([[ι →
π]]

ma
D ⊗ [[ι → π]]

am
D ). By the induction hypothesis, τπ(f(d)) ∈ ([[π]]

ma
D ⊗ [[π]]

am
D ). There-

fore, [τπ(f(d))]1 ≤ [τπ(f(d))]2, and consequently (λd.[τπ(f(d))]1, λd.[τπ(f(d))]2) ∈ ([[ι→
π]]

ma
D ⊗ [[ι → π]]

am
D ). We next show that τ−1π (f1, f2) ∈ [[ι → π]]D. Since (f1, f2) ∈ ([[ι →

π]]
ma
D ⊗ [[ι → π]]

am
D ), f1 ≤ f2 and (f1(d), f2(d)) ∈ ([[π]]

ma
D ⊗ [[π]]

am
D ). By the induction

hypothesis, τ−1π (f1(d), f2(d)) ∈ [[π]]D and λd.τ−1π (f1(d), f2(d)) ∈ [[ι→ π]]D.

Consider the case π1 → π2. We show that τπ1→π2
(f) ∈ ([[π1 → π2]]

ma
D ⊗ [[π1 →

π2]]
am
D ). Let (d1, d2) ∈ ([[π1]]

ma
D ⊗ [[π1]]

am
D ). By the induction hypothesis τ−1π1

(d1, d2) ∈
[[π1]]D, f(τ−1π1

(d1, d2)) ∈ [[π2]]D, and τπ2(f(τ−1π1
(d1, d2))) ∈ ([[π1]]

ma
D ⊗ [[π1]]

am
D ), which has

as a direct consequence that [τπ2
(f(τ−1π1

(d1, d2)))]1 ≤ [τπ2
(f(τ−1π1

(d1, d2)))]2. Therefore,

λ(d1, d2).[τπ2(f(τ−1π1
(d1, d2)))]1 ≤ λ(d1, d2).[τπ2(f(τ−1π1

(d1, d2)))]2. It remains to show that

the function λ(d1, d2).[τπ2
(f(τ−1π1

(d1, d2)))]1 is monotone-antimonotone and the function

λ(d1, d2).[τπ2(f(τ−1π1
(d1, d2)))]2 is antimonotone-monotone. This follows by using the in-

duction hypothesis for Statement 4, the Fitting-monotonicity of f , and the induction

hypothesis of Statement 2. The fact that τ−1π1→π2
(f1, f2) ∈ [[π1 → π2]]D follows using

similar arguments as above.

Statement 2: Consider first the case of ι→ π. It suffices to show that:

(λd.[τπ(f(d))]1, λd.[τπ(f(d))]2) � (λd.[τπ(g(d))]1, λd.[τπ(g(d))]2)

or equivalently that λd.[τπ(f(d))]1 ≤ λd.[τπ(g(d))]1 and λd.[τπ(f(d))]2 ≥ λd.[τπ(g(d))]2,

or equivalently that for every d, [τπ(f(d))]1 ≤ [τπ(g(d))]1 and [τπ(f(d))]2 ≥ [τπ(g(d))]2.

This holds because, since f � g, it holds f(d) � g(d) and by the induction hypothesis,

τπ(f(d)) � τπ(g(d)). Consider now the case of π1 → π2. It suffices to show that:

(λ(d1, d2).[τπ2
(f(τ−1π1

(d1, d2)))]1, λ(d1, d2).[τπ2
(f(τ−1π1

(d1, d2)))]2) �
(λ(d1, d2).[τπ2(g(τ−1π1

(d1, d2)))]1, λ(d1, d2).[τπ2(g(τ−1π1
(d1, d2)))]2)

or equivalently that λ(d1, d2).[τπ2(f(τ−1π1
(d1, d2)))]1 ≤ λ(d1, d2).[τπ2(g(τ−1π1

(d1, d2)))]1 and

λ(d1, d2).[τπ2
(f(τ−1π1

(d1, d2)))]2 ≥ λ(d1, d2).[τπ2
(g(τ−1π1

(d1, d2)))]2, or equivalently that for

all d1, d2, [τπ2
(f(τ−1π1

(d1, d2)))]1 ≤ [τπ2
(g(τ−1π1

(d1, d2)))]1 and [τπ2
(f(τ−1π1

(d1, d2)))]2 ≥
[τπ2(g(τ−1π1

(d1, d2)))]2. Since f � g, it holds that f(τ−1π1
(d1, d2))) � g(τ−1π1

(d1, d2))), and

by the induction hypothesis τπ2
(f(τ−1π1

(d1, d2))) � τπ2
(g(τ−1π1

(d1, d2))), which is the de-

sired result.

Statement 4: Consider first the case of ι→ π. It suffices to show that:

λd.τ−1π (f1(d), f2(d)) � λd.τ−1π (g1(d), g2(d))

or equivalently that for every d, τ−1π (f1(d), f2(d)) � τ−1π (g1(d), g2(d)). Since (f1, f2) �
(g1, g2), it holds (f1(d), f2(d)) � (g1(d), g2(d)), and the result follows from the induction

hypothesis. Consider now the case of π1 → π2. It suffices to show that:

λd.τ−1π2
(f1(τπ1

(d)), f2(τπ1
(d))) � λd.τ−1π2

(g1(τπ1
(d)), g2(τπ1

(d)))

or equivalently that for every d, τ−1π2
(f1(τπ1

(d)), f2(τπ1
(d))) � τ−1π2

(g1(τπ1
(d)), g2(τπ1

(d))).

Since (f1, f2) � (g1, g2), it holds (f1(τπ1
(d)), f2(τπ1

(d))) � (g1(τπ1
(d)), g2(τπ1

(d))), and

the result follows from the induction hypothesis.
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Proposition 5

Let D be a nonempty set and let π be a predicate type. Then, for every f ∈ [[π]]D,

τ−1π (τπ(f)) = f , and for every (f1, f2) ∈ [[π]]
ma
D ⊗ [[π]]

am
D , τπ(τ−1π (f1, f2)) = (f1, f2).

Proof

The proof of the two statements is by a simultaneous induction on the structure of π.

The case π = o is immediate. Assume the two statements hold for π, π1 and π2. We

demonstrate that they hold for ι→ π and for π1 → π2.

We have:

τ−1ι→π(τι→π(f)) =

= τ−1ι→π(λd.[τπ(f(d))]1, λd.[τπ(f(d))]2)

(Definition of τι→π)

= λd.τ−1π ([τπ(f(d))]1, [τπ(f(d))]2)

(Definition of τ−1ι→π)

= λd.τ−1π (τπ(f(d)))

(Definition of [·]1 and [·]2)

= λd.f(d)

(Induction Hypothesis)

= f

Also:

τι→π(τ−1ι→π(f1, f2)) =

= τι→π(λd.τ−1π (f1(d), f2(d)))

(Definition of τ−1ι→π)

= (λd.[τπ(τ−1π (f1(d), f2(d)))]1, λd.[τπ(τ−1π (f1(d), f2(d)))]2)

(Definition of τι→π)

= (λd.[(f1(d), f2(d))]1, λd.[(f1(d), f2(d))]2)

(Induction Hypothesis)

= (λd.f1(d), λd.f2(d))

(Definition of [·]1 and [·]2)

= (f1, f2)

Consider now the case of π1 → π2. We have:

τ−1π1→π2
(τπ1→π2(f)) =

= τ−1π1→π2
(λ(d1, d2).[τπ2

(f(τ−1π1
(d1, d2)))]1, λ(d1, d2).[τπ2

(f(τ−1π1
(d1, d2)))]2)

(Definition of τπ1→π2
)

= λd.τ−1π2
([τπ2

(f(τ−1π1
(τπ1

(d))))]1, [τπ2
(f(τ−1π1

(τπ1
(d))))]2)

(Definition of τ−1π1→π2
)

= λd.τ−1π2
([τπ2(f(d))]1, [τπ2(f(d))]2)

(Induction Hypothesis)

= λd.τ−1π2
(τπ2(f(d)))

(Definition of [·]1 and [·]2)

= λd.f(d)

(Induction Hypothesis)

= f
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Also:

τπ1→π2
(τ−1π1→π2

(f1, f2)) =

= τπ1→π2(λd.τ−1π2
(f1(τπ1(d)), f2(τπ1(d)))

(Definition of τ−1π1→π2
)

= (λ(d1, d2).[τπ2
(τ−1π2

(f1(τπ1
(τ−1π1

(d1, d2))), f2(τπ1
(τ−1π1

(d1, d2)))))]1,

λ(d1, d2).[τπ2
(τ−1π2

(f1(τπ1
(τ−1π1

(d1, d2))), f2(τπ1
(τ−1π1

(d1, d2)))))]2)

(Definition of τπ1→π2
)

= (λ(d1, d2).[f1(d1, d2), f2(d1, d2)]1, λ(d1, d2).[f1(d1, d2), f2(d1, d2)]2)

(Induction Hypothesis)

= (λ(d1, d2).f1(d1, d2), λ(d1, d2).f2(d1, d2))

(Definition of [·]1 and [·]2)

= (f1, f2)

The above completes the proof of the proposition.

Appendix C: An Extension of Consistent Approximation Fixpoint Theory

In this appendix we propose a mild extension of the theory of consistent approximating

operators developed in (Denecker et al. 2004). We briefly highlight the main idea behind

the work in (Denecker et al. 2004) and then justify the necessity for our extension.

Let (L,≤) be a complete lattice. The authors in (Denecker et al. 2004) consider the

set Lc = {(x, y) ∈ L × L | x ≤ y}. Intuitively speaking, a pair (x, y) ∈ Lc can be

viewed as an approximation to all elements z ∈ L such that x ≤ z ≤ y. An operator

A : Lc → Lc is called in (Denecker et al. 2004) a consistent approximating operator if it is

�-monotone (see below) and for every x ∈ L, A(x, x)1 = A(x, x)2 (the subscripts 1 and

2 denote projection to the first and second elements respectively of the pair returned by

A). In Section 3 of (Denecker et al. 2004), an elegant theory is developed whose purpose

is to demonstrate how, under specific conditions, one can characterize the well-founded

fixpoint of a given consistent approximating operator A. Since approximating operators

emerge in many non-monotonic formalisms, the theory developed in (Denecker et al.

2004) provides a useful tool for the study of the semantics of such formalisms.

In our work, the immediate consequence operator TP is not an approximating operator

in the sense of (Denecker et al. 2004). More specifically, TP is a function in (Hma
P ⊗Ham

P )→
(Hma

P ⊗Ham
P ). In other words, there is not just a single lattice L involved in the definition

of TP, but instead two lattices, namely Hma
P and Ham

P . Moreover, the condition “for every

x ∈ L, A(x, x)1 = A(x, x)2” required in (Denecker et al. 2004), does not hold in our case,

because the two arguments of TP range over two different sets (namely Hma
P and Ham

P ).

We therefore need to define an extension of the material in Section 3 of (Denecker et al.

2004), that suits our purposes.

In the following, we develop the above mentioned extension following closely the state-

ments and proofs of (Denecker et al. 2004). The material is presented in an abstract form

(as in (Denecker et al. 2004)), with the purpose of having a wider applicability than the

present paper. In order to retrieve the connections with the present paper, one can take

A = TP, L1 = Hma
P and L2 = Ham

P .

Let (L,≤) be a partially ordered set and assume that L contains a least element ⊥
and a greatest element > with respect to ≤. Let L1, L2 ⊆ L be non-empty sets such
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that L1 ∪ L2 = L and (L1,≤) and (L2,≤) are complete lattices that both contain the

elements ⊥ and >. We will denote the least upper bound operations in the two lattices

by lubL1
and lubL2

respectively (we will also use
∨
L1

and
∨
L2

). We denote the greatest

lower bound operations by glbL1
and glbL2

(also denoted by
∧
L1

and
∧
L2

). We assume

that our lattices satisfy the following two properties:

1. Interlattice Lub Property: Let b ∈ L2 and S ⊆ L1 such that for every x ∈ S,

x ≤ b. Then,
∨
L1
S ≤ b.

2. Interlattice Glb Property: Let a ∈ L1 and S ⊆ L2 such that for every x ∈ S,

x ≥ a. Then,
∧
L2
S ≥ a.

Remark: It can be easily verified (see Lemma 6 in Appendix B) that both the Interlattice

Lub Property and the Interlattice Glb Property hold when we take L1 = Hma
P and

L2 = Ham
P .

Given (x, y), (x′, y′) ∈ L1 × L2, we will write (x, y) � (x′, y′) if x ≤ x′ and y′ ≤ y. We

will write:

L1 ⊗ L2 = {(x, y) | x ∈ L1, y ∈ L2, x ≤ y}
The above set is non-empty since (⊥,>) ∈ L1 ⊗ L2.

Definition 22

A function A : L1 ⊗ L2 → L1 ⊗ L2 is called a consistent approximating operator if it is

�-monotonic.

We will write Appx(L1⊗L2) for the set of all consistent approximating operators over

L1⊗L2. In the following results we assume we work with a given consistent approximating

operator A (and therefore the symbol A will appear free in most definitions and results).

Definition 23

The pair (a, b) ∈ L1 ⊗ L2 will be called A-reliable if (a, b) � A(a, b).

Given a ∈ L1 and b ∈ L2, we write [a, b]L1
= {x ∈ L1 | a ≤ x ≤ b}. Symmetrically,

[a, b]L2 = {x ∈ L2 | a ≤ x ≤ b}.

Proposition 8

For all a ∈ L1 and b ∈ L2, the sets [⊥, b]L1 and [a,>]L2 are complete lattices.

Proof

We use Theorem 4 of Appendix A. Consider first the set [⊥, b]L1
which obviously has a

least element (since ⊥ is the least element of both L1 and L2 and therefore ⊥∈ [⊥, b]L1
).

Let S be a non-empty subset of [⊥, b]L1 . Since L1 is a complete lattice,
∨
L1
S ∈ L1. It

suffices to show that
∨
L1
S ∈ [⊥, b]L1

. Since S ⊆ [⊥, b]L1
, for every x ∈ S it holds x ≤ b.

By the Interlattice Lub Property,
∨
L1
S ≤ b, and therefore

∨
L1
S ∈ [⊥, b]L1 .

The proof for the case of [a,>]L2
is symmetrical and uses the Interlattice Glb Property

instead.

The following proposition corresponds to Proposition 3.3 in (Denecker et al. 2004):

Proposition 9

Let (a, b) ∈ L1 ⊗ L2 and assume that (a, b) is A-reliable. Then, for every x ∈ [⊥, b]L1 , it

holds ⊥≤ A(x, b)1 ≤ b. Moreover, for every x ∈ [a,>]L2
, it holds a ≤ A(a, x)2 ≤ >.
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Proof

Define a∗ = lubL1
{y ∈ L1 | y ≤ b}. By the fact that a ≤ b and the definition of a∗,

we get that a ≤ a∗. By the Interlattice Lub Property we get that a∗ ≤ b and therefore

(a∗, b) ∈ L1 ⊗ L2. Moreover, (x, b) � (a∗, b). Due to the �-monotonicity of A we have

A(x, b) � A(a∗, b), and therefore A(x, b)1 ≤ A(a∗, b)1. Then:

A(a∗, b)1 ≤ A(a∗, b)2 (Consistency of A)

≤ A(a, b)2 (a ≤ a∗ and A is �-monotone)

≤ b (A-reliability)

For the second part of the proof, define b∗ = glbL2
{y ∈ L2 | y ≥ a}. By the fact that

b ≥ a and the definition of b∗, we get that b∗ ≤ b. By the Interlattice Glb Property

we get that b∗ ≥ a and therefore (a, b∗) ∈ L1 ⊗ L2. Moreover, (a, x) � (a, b∗). Due to

the �-monotonicity of A we have A(a, x) � A(a, b∗), and therefore A(a, x)2 ≥ A(a, b∗)2.

Then:

A(a, b∗)2 ≥ A(a, b∗)1 (Consistency of A)

≥ A(a, b)1 (b∗ ≤ b and A is �-monotone)

≥ a (A-reliability)

This completes the proof of the proposition.

The above proposition implies that for every A-reliable pair (a, b), the restriction of

A(., b)1 to [⊥, b]L1
and the restriction of A(a, .)2 to [a,>]L2

are in fact operators (namely

functions [⊥, b]L1 → [⊥, b]L1 and [a,>]L2 → [a,>]L2) on these intervals. Since by Propo-

sition 8 we know that ([⊥, b]L1
,≤) and ([a,>]L2

,≤) are complete lattices, the operators

A(·, b)1 and A(a, ·)2 have least fixpoints in the corresponding lattices. We define:

b↓ = lfp(A(·, b)1)

and

a↑ = lfp(A(a, ·)2)

In the following, we will call the function mapping the A-reliable pair (a, b) to (b↓, a↑), the

stable revision operator for the approximating operator A. We will denote this mapping

by CA, namely:

CA(x, y) = (y↓, x↑) = (lfp(A(·, y)1), lfp(A(x, ·)2))

We have the following proposition, which corresponds to Proposition 3.6 of (Denecker

et al. 2004):

Proposition 10

Let A ∈ Appx(L1 ⊗ L2). For every A-reliable pair (a, b), b↓ ≤ b, a ≤ a↑ ≤ b, and

(b↓, a↑) ∈ L1 ⊗ L2.

Proof

The inequalities b↓ ≤ b and a ≤ a↑ follow from the definition of the stable revision

operator. By the A-reliability of (a, b) we have A(a, b)2 ≤ b and therefore b is a pre-

fixpoint of A(a, ·)2. Since a↑ is the least pre-fixpoint of A(a, ·)2, we conclude that a↑ ≤ b.
Let a∗ = lubL1

{x ∈ L1 | x ≤ a↑}. Since a ∈ {x ∈ L1 | x ≤ a↑} and since a∗ is the lub

of this set, it holds a ≤ a∗. Moreover, notice that a∗ is in the domain of A(·, b)1 because
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(by the Interlattice Lub Property) a∗ ≤ a↑, and since a↑ ≤ b we get a∗ ≤ b. We have:

A(a∗, b)1 ≤ A(a∗, a↑)1 (A is �-monotonic)

≤ A(a∗, a↑)2 (A is consistent)

≤ A(a, a↑)2 (A is �-monotonic)

= a↑ (a↑ fixpoint of A(a, ·)2)

Consequently, A(a∗, b)1 ≤ a↑ and therefore A(a∗, b)1 ∈ {x ∈ L1 | x ≤ a↑}. But a∗ =

lubL1{x ∈ L1 | x ≤ a↑} and therefore A(a∗, b)1 ≤ a∗. It follows that a∗ is a pre-fixpoint

of the operator A(·, b)1. Thus, b↓ = lfp(A(·, b)1) ≤ a∗ ≤ a↑.

Definition 24
An A-reliable approximation (a, b) is A-prudent if a ≤ b↓.

Proposition 11
Let A ∈ Appx(L1⊗L2) and let (a, b) ∈ L1⊗L2 be A-prudent. Then, (a, b) � (b↓, a↑) and

(b↓, a↑) is A-prudent.

Proof
By Proposition 10, it holds b↓ ≤ b, a ≤ a↑ and a↑ ≤ b. Since (a, b) is A-prudent, we get

(a, b) � (b↓, a↑).

Notice now that by the � monotonicity of A we get that b↓ = A(b↓, b)1 ≤ A(b↓, a↑)1
and a↑ = A(a, a↑)2 ≥ A(b↓, a↑)2. This implies that (b↓, a↑) is A-reliable.

Observe now that since a↑ ≤ b and A is �-monotonic, it holds that for every x ∈ [⊥
, a↑]L1

, A(x, b)1 ≤ A(x, a↑)1. Therefore, each pre-fixpoint of A(·, a↑)1 is a pre-fixpoint of

A(·, b)1. By the proof of Proposition 10 we have thatA(a∗, a↑)1 ≤ a↑, and by the definition

of a∗ in that same proof, it follows that A(a∗, a↑)1 ≤ a∗. Therefore the set of pre-fixpoints

of A(·, a↑)1 is non-empty. Consequently, b↓ = lfp(A(·, b)1) ≤ lfp(A(·, a↑)1) = (a↑)↓, and

therefore (b↓, a↑) is A-prudent.

The following proposition (corresponding to Proposition 2.3 in (Denecker et al. 2004))

now requires in its proof the Interlattice Lub Property.

Proposition 12
Let {(aκ, bκ)}κ<λ, where λ is an ordinal, be a chain in L1 ⊗ L2 ordered by the relation

�. Then:

1.
∨
L1
{aκ | κ < λ} ≤

∧
L2
{bκ | κ < λ}.

2. The least upper bound of the chain with respect to � exists, and is equal to

(
∨
L1
{aκ | κ < λ},

∧
L2
{bκ | κ < λ}).

Proof
We demonstrate the first statement; the proof of the second part is easy and omitted.

For the proof of the first part, notice that since the chain is ordered by �,
∧
L2
{bκ |

κ < λ} = b0. Moreover, for every κ < λ it holds aκ ≤ bκ because (aκ, bκ) ∈ L1 ⊗ L2;

since bκ ≤ b0, it is aκ ≤ b0 for all κ < λ. By the Interlattice Lub Property, we get∨
L1
{aκ | κ < λ} ≤ b0 =

∧
L2
{bκ | κ < λ}.

The following proposition (corresponding to Proposition 3.10 in (Denecker et al. 2004))

and the subsequent theorem (corresponding to Theorem 3.11 in (Denecker et al. 2004))

have identical proofs to the ones given in (Denecker et al. 2004) (the only difference being

that our underlying domain is L1 ⊗ L2):
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Proposition 13

Let A ∈ Appx(L1 ⊗ L2) and let {(aκ, bκ)}κ<λ, where λ is an ordinal, be a chain of

A-prudent pairs from L1 ⊗ L2. Then,
∨
�{(aκ, bκ)}κ<λ, is A-prudent.

Theorem 5

Let A ∈ Appx(L1 ⊗ L2). The set of A-prudent elements of L1 ⊗ L2 is a chain-complete

poset under � with least element (⊥,>). The stable revision operator is a well-defined,

increasing and monotone operator in this poset, and therefore it has a least fixpoint

which is A-prudent and can be obtained as the limit of the following sequence:

(a0, b0) = (⊥,>)

(aλ+1, bλ+1) = CA(aλ, bλ)

(aλ, bλ) =
∨
�{(aκ, bκ) : κ < λ} for limit ordinals λ

The proof of the following theorem is also a straightforward generalization of the proof

of Theorem 19 in (Denecker et al. 2000):

Theorem 6

Every fixpoint of the stable revision operator CA is a ≤-minimal pre-fixpoint of A.

Appendix D: Proofs of Section 6

Before providing the proofs of the results of Section 6, we notice that Proposition 4

extends to the case of Herbrand interpretations as follows:

Proposition 14

Let P be a program. Then, for every I,J ∈ HP and for every (I1, J1), (I2, J2) ∈ (Hma
P ⊗

Ham
P ), the following statements hold:

1. τ(I) ∈ (Hma
P ⊗Ham

P ) and τ−1(I1, J1) ∈ HP.

2. If I � J then τ(I) � τ(J ).

3. If I ≤ J then τ(I) ≤ τ(J ).

4. If (I1, J1) � (I2, J2) then τ−1(I1, J1) � τ−1(I2, J2).

5. If (I1, J1) ≤ (I2, J2) then τ−1(I1, J1) ≤ τ−1(I2, J2).

Lemma 3

Let P be a program and let (I1, J1), (I2, J2) ∈ Hma
P ⊗ Ham

P . If (I1, J1) � (I2, J2) then

TP(I1, J1) � TP(I2, J2).

Proof

It follows directly from the definition of ΨP together with Lemma 2 and Corollary 1

in Appendix A that ΨP is �-monotonic. It follows from Proposition 14 that τ−1(I1, J1) �
τ−1(I2, J2). Since ΨP is �-monotonic we get ΨP(τ−1(I1, J1)) � ΨP(τ−1(I2, J2)). By

applying again Proposition 4 we have that TP(I1, J1) � TP(I2, J2) that concludes the

proof.

Lemma 4

Let P be a program. If (I, J) ∈ Hma
P ⊗ Ham

P is a pre-fixpoint of TP then τ−1(I, J) is a

model of P.
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Proof

From the definition of TP and using the fact that (I, J) is a pre-fixpoint of TP, it follows

that τ(ΨP(τ−1(I, J))) = TP(I, J) ≤ (I, J). By applying τ−1 to both sides of the state-

ment and using Proposition 14 we get that τ−1(τ(ΨP(τ−1(I, J)))) ≤ τ−1(I, J) which

gives ΨP(τ−1(I, J)) ≤ τ−1(I, J). From the definition of ΨP and the definition of model,

it follows that τ−1(I, J) is model of P.

Lemma 5

Let M∈ HP be a model of P. Then, τ(M) is a pre-fixpoint of TP.

Proof

By the definition of ΨP we have that for every predicate constant p in P, ΨP(M)(p) =∨
≤{[[E]](M) | (p← E) ∈ P}. SinceM is a model of P it follows that [[E]](M) ≤M(p) for

every clause p← E in P, i.e.,M(p) is an upper bound of the set {[[E]](M) | (p← E) ∈ P}.
Therefore,

∨
≤{[[E]](M) | (p ← E) ∈ P} ≤ M(p), which implies that ΨP(M) ≤ M. By

Proposition 14 it follows that τ(ΨP(M)) ≤ τ(M). Moreover, by the definition of TP and

Proposition 14 we have that TP(τ(M)) = τ(ΨP(τ−1(τ(M)))) = τ(ΨP(M)) ≤ τ(M), and

therefore τ(M) is a pre-fixpoint of TP.

In order to establish Theorem 2 that follows, we need the following lemma:

Lemma 7

Let P be a program. If (I, J) ∈ Hma
P ⊗Ham

P is a minimal pre-fixpoint of TP then τ−1(I, J)

is a minimal model of P.

Proof

Let M = τ−1(I, J). By Lemma 4, M is a model of P. Assume there exists a model

N ∈ HP of P such thatN ≤M. Applying τ to both sides and using Proposition 14 we get

that τ(N ) ≤ τ(M). By Lemma 5, τ(N ) is a pre-fixpoint of TP and since τ(M) = (I, J)

is a minimal pre-fixpoint of TP, we get that τ(N ) = τ(M). Applying τ−1 to both sides,

we get N =M.

Theorem 2

Let P be a program. Then, MP is a ≤-minimal model of P.

Proof

By Theorem 6 (see Appendix C) every fixpoint of CTP
is a minimal pre-fixpoint of TP.

Since by Theorem 1 (Iδ, Jδ) = τ(MP) is a fixpoint of CTP
, τ(MP) is a minimal pre-fixpoint

of TP. By Lemma 7, τ−1(τ(MP)) =MP is a minimal model of P.

Theorem 3

For every propositional program P, MP coincides with the well-founded model of P.

Proof

In (Denecker et al. 2004)[Section 6, pages 107-108], the well-founded semantics of proposi-

tional logic programs (allowing arbitrary nesting of conjunction, disjunction and negation

in clause bodies) is derived. By a careful inspection of the steps used in the above refer-

ence, it can be seen that the construction given therein is a special case of the technique

used in the present paper.
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Appendix E: The Model MP for an Example Program

Consider the following program P which is a simplified non-recursive version of a program

taken from (Rondogiannis and Symeonidou 2017). Initially we use a Prolog-like syntax:

s(Q,V) ← Q(V)

p(R) ← R

q(R) ← ∼ w(R)

w(R) ← ∼ R

In the above example, the type of p, q and w is o → o, and the type of s is (o → o) →
o→ o. In HOL notation the program can be written as follows:

s ← λQ.λV.(Q V)

p ← λR.R

q ← λR.∼ (w R)

w ← λR.(∼ R)

Notice now that the bodies of the clauses of s, q and w do not involve other predicate

constants, and therefore the calculation of their meaning can be performed in a more

direct way. On the other hand, the body of the clause concerning q involves the predicate

constant w, and therefore the calculation of the meaning of q is more involved.

The first approximation to the well-founded model of P is the pair (I0, J0) = (⊥,>)

(see Theorem 1). Consider now (I1, J1). We have:

I1 = lfp([TP(·,>)]1) = lfp([τ(ΨP(τ−1(·,>)))]1)

and

J1 = lfp([TP(⊥, ·)]2) = lfp([τ(ΨP(τ−1(⊥, ·)))]2)

where, as discussed in Appendix C, the lfp in the case of I1 is the least upper bound of

the sequence I01 , I
1
1 , . . ., defined as follows:

I01 = [τ(ΨP(τ−1(⊥,>)))]1
I11 = [τ(ΨP(τ−1(I01 ,>)))]1

· · ·
Iα+1
1 = [τ(ΨP(τ−1(Iα1 ,>)))]1

· · ·

and the lfp in the case of J1 is the least upper bound of the sequence J0
1 , J

1
1 , . . ., defined

as follows:

J0
1 = [τ(ΨP(τ−1(⊥,⊥)))]2
J1
1 = [τ(ΨP(τ−1(⊥, J0

1 )))]2
· · ·

Jα+1
1 = [τ(ΨP(τ−1(⊥, Jα1 )))]2

· · ·
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For the predicate constant w we have:

I01 (w) = [τ(ΨP(τ−1(⊥,>)))]1(w) = [τ([[λR.∼ R]](τ−1(⊥,>)))]1 = [τ(λv.v−1)]1
I11 (w) = [τ(ΨP(τ−1(I01 ,>)))]1(w) = [τ([[λR.∼ R]](τ−1(I01 ,>)))]1 = [τ(λv.v−1)]1

· · ·
Iα+1
1 (w) = [τ(ΨP(τ−1(Iα1 ,>)))]1(w) = [τ([[λR.∼ R]](τ−1(Iα1 ,>)))]1 = [τ(λv.v−1)]1

· · ·

Similarly, we can show that for every ordinal α, Jα1 (w) = [τ(λv.v−1)]2. The above imply

that MP(w) = λv.v−1. In other words, the denotation of w is the not function over our

3-valued truth domain. In a similar way, it follows that MP(p) = λv.v. In other words,

the denotation of p is the identity function over our 3-valued domain.

Consider now the predicate constant q. We have:

I01 (q) = [τ(ΨP(τ−1(⊥,>)))]1(q) = [τ([[λR.∼(w R)]](τ−1(⊥,>)))]1 = [τ(λv.undef)]1
I11 (q) = [τ(ΨP(τ−1(I01 ,>)))]1(q) = [τ([[λR.∼(w R)]](τ−1(I01 ,>)))]1 = [τ(f)]1

· · ·
Iα+1
1 (q) = [τ(ΨP(τ−1(Iα1 ,>)))]1(q) = [τ([[λR.∼(w R)]](τ−1(Iα1 ,>)))]1 = [τ(f)]1

· · ·

where f is the function such that f(true) = f(undef) = undef and f(false) = false.

Similarly, we have:

J0
1 (q) = [τ(ΨP(τ−1(⊥,⊥)))]2(q) = [τ([[λR.∼(w R)]](τ−1(⊥,⊥)))]2 = [τ(λv.true)]2
J1
1 (q) = [τ(ΨP(τ−1(⊥, J0

1 )))]2(q) = [τ([[λR.∼(w R)]](τ−1(⊥, J0
1 )))]2 = [τ(g)]2

· · ·
Jα+1
1 (q) = [τ(ΨP(τ−1(⊥, Jα1 )))]2(q) = [τ([[λR.∼(w R)]](τ−1(⊥, Jα1 )))]2 = [τ(g)]2

· · ·

where g is the function such that g(false) = g(undef) = undef and g(true) = true.

Consider now (I2, J2). We have:

I2 = lfp([TP(·, J1)]1) = lfp([τ(ΨP(τ−1(·, J1)))]1)

and

J2 = lfp([TP(I1, ·)]2) = lfp([τ(ΨP(τ−1(I1, ·)))]2)

where the lfp in the case of I2 is the least upper bound of the sequence I02 , I
1
2 , . . . defined

as follows:

I02 = [τ(ΨP(τ−1(⊥, J1)))]1
I12 = [τ(ΨP(τ−1(I02 , J1)))]1

· · ·
Iα+1
2 = [τ(ΨP(τ−1(Iα2 , J1)))]1

· · ·
and the lfp in the case of J2 is the least upper bound of the sequence J0

2 , J
1
2 , . . . defined

as follows:

J0
2 = [τ(ΨP(τ−1(I1, I

∗
1 )))]2

J1
2 = [τ(ΨP(τ−1(I1, J

0
2 )))]2

· · ·
Jα+1
2 = [τ(ΨP(τ−1(I1, J

α
2 )))]2

· · ·
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where I∗1 is the least interpretation in Ham
P such that I1 ≤ I∗1 (namely, the bottom

antimonotone-monotone element of the interval [I1,⊥], see the construction in Appendix C).

Consider again the predicate constant q. We have:

I02 (q) = [τ(ΨP(τ−1(⊥, J1)))]1(q) = [τ([[λR.∼(w R)]](τ−1(⊥, J1)))]1
I12 (q) = [τ(ΨP(τ−1(I02 , J1)))]1(q) = [τ([[λR.∼(w R)]](τ−1(I02 , J1)))]1 = [τ(λv.v)]1

· · ·
Iα+1
2 (q) = [τ(ΨP(τ−1(Iα2 , J1)))]1(q) = [τ([[λR.∼(w R)]](τ−1(Iα2 , J1)))]1 = [τ(λv.v)]1

· · ·

because for all ordinals α, Iα2 (w) = [τ(λv.v−1)]1 and J1(w) = [τ(λv.v−1)]2. Similarly, we

have:

J0
2 (q) = [τ(ΨP(τ−1(I1, I

∗
1 )))]2(q) = [τ([[λR.∼(w R)]](τ−1(I1, I

∗
1 )))]2

J1
2 (q) = [τ(ΨP(τ−1(I1, J

0
2 )))]2(q) = [τ([[λR.∼(w R)]](τ−1(I1, J

0
2 )))]2 = [τ(λv.v)]2

· · ·
Jα+1
2 (q) = [τ(ΨP(τ−1(I1, J

α
2 )))]2(q) = [τ([[λR.∼(w R)]](τ−1(I1, J

α
2 )))]2 = [τ(λv.v)]2

· · ·

because I1(w) = [τ(λv.v−1)]1 and for all ordinals α, Jα2 (w) = [τ(λv.v−1)]2. The above

imply that MP(q) = λv.v. In other words, the denotation of q is the identity function

over our 3-valued truth domain. Notice that despite their different definitions, p and q

denote the same 3-valued relation (in some sense, the two negations in the definition of

q cancel each other).

Finally, consider the predicate constant s. We have:

I01 (s) = [τ([[λQ.λV.(Q V)]](τ−1(⊥, J1)))]1 = [τ(λq.λv.(q v))]1
I11 (s) = [τ([[λQ.λV.(Q V)]](τ−1(I01 ,>)))]1 = [τ(λq.λv.(q v))]1

· · ·
Iα+1
1 (s) = [τ([[λQ.λV.(Q V)]](τ−1(Iα1 ,>)))]1 = [τ(λq.λv.(q v))]1

· · ·

and also:

J0
1 (s) = [τ([[λQ.λV.(Q V)]](τ−1(I1,⊥)))]2 = [τ(λq.λv.(q v))]2
J1
1 (s) = [τ([[λQ.λV.(Q V)]](τ−1(⊥, J0

1 )))]2 = [τ(λq.λv.(q v))]2
· · ·

Jα+1
1 (s) = [τ([[λQ.λV.(Q V)]](τ−1(⊥, Jα1 )))]2 = [τ(λq.λv.(q v))]2

· · ·

The above imply that MP(s) = λq.λv.(q v).


