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1 Why are DGPs from known distributions problematic?
The simulation in the main text demonstrates that the random spline method is capable of

generating durations for Cox model simulations. However, it does not explicitly demonstrate any

advantage the method holds over the typical approach of using a known distribution to simulate

durations for the Cox model. Accordingly, we next repeat the simulation with a parametric DGP

and again compare the same three estimators as before.

Specifically, we use all of the same parameter values as in the previous simulation, but instead

of the random spline method we draw the durations from a Weibull distribution with shape param-

eter s = 5 and scale parameter λ = Xβ . We again estimate exponential, Weibull, and Cox models

and store the coefficient estimates and RMSE values. Note that the Weibull model is the cor-

rect model given this DGP. The durations come from that distribution, making the Weibull model
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preferable to the Cox model; furthermore, s 6= 1, making it preferable to the exponential model.

Table A1 presents the results with this new simulation. Again the left columns report the

means of the coefficient estimates (in proportional hazards parameterization) across the simulated

datasets for each estimator. The right columns give coefficient RMSE values. Bold entries indicate

the estimator with the lowest RMSE for each coefficient.

[Insert Table A1 here]

The coefficient means again indicate that the exponential model is biased. This is due to the

fact that by incorrectly assuming s = 1, the exponential model is misspecified. As in the previous

simulation the Weibull and Cox models return estimates that are, on average, close to the true

values set in the DGP. However, this time the RMSEs show that the Weibull model performs the

best of the three estimators. This is because only the Weibull correctly parameterizes the true

baseline hazard function. The Cox model is not biased because it makes no attempt to parameterize

the baseline hazard. However, by modeling only the duration ranks, that model discards some

information, and as a result is slightly less efficient than the Weibull.

This result demonstrates a potential problem with exclusively relying on a known distribution

to conduct simulations with the Cox model. Doing so means that there is an estimator that out-

performs the Cox model due to a statistical artifact of the DGP. Some simulation studies compare

the performance of the Cox model and other parametric survival models (e.g., Chastang, Byar,

and Piantadosi 1988; Benaglia, Jackson, and Sharples 2015; Kropko and Harden 2018). Using a

parametric DGP in such cases may bias the simulation in favor of one or more of the parametric

models. The random spline method eliminates this problem. Using the random spline method

should not be seen as biasing the simulation in favor of the Cox model: if the random spline

method generates baseline hazards that are more realistic for the analyst’s particular application,

then a result that favors the Cox model illustrates the Cox model’s inherent flexibility, not a bias

from the simulation.
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2 Mixing random spline with a parametric distribution
To further illustrate the flexibility of the random spline method, we next demonstrate how it can

be combined with a parametric distribution to vary the expected performance of the Cox model and

a parametric estimator. Specifically, we present a set of simulations that compare the performance

of the Cox model and Weibull model when the durations are generated from mixtures of a random

spline hazard and a Weibull hazard.1 Importantly, we increase the proportion of the data generated

by each hazard function in 5% increments. We begin with 0% drawn from the random spline and

100% from the Weibull, which creates a DGP in which the Weibull model should perform the best.

Then we simulate again with 5% of the data drawn from the random spline hazard and 95% from

the Weibull, then again with 10% random spline and 90% Weibull, etc. . . . Our last simulation

draws all of the data from the random spline hazard. We expect the Cox model’s performance to

improve as more data are drawn from the random spline hazard.

Figure A1 reports the results. The x-axis graphs the proportion of the data generated from the

random spline hazard. The y-axis gives the ratio of the Weibull model’s RMSE to the Cox model’s

RMSE. Values lower than 1 on the y-axis reflect better performance by the Weibull model and

values greater than 1 indicate better performance by the Cox model.

[Insert Figure A1 here]

The results show that the Cox model’s performance relative to the Weibull model improves

as the proportion of data drawn from the random spline hazard increases. In fact, the Cox model

yields a lower RMSE with as little as 10% of the data drawn from the random spline hazard. The

Weibull model only produces smaller RMSE values when the durations are all from a Weibull

distribution or from a mixture of 5% random spline/95% Weibull. This finding underscores the

importance of the baseline hazard assumption and the potential benefits of the Cox model. Even

relatively small deviations from the Weibull hazard render the Weibull model an inferior estimator

compared to the Cox model.
1The other parameters and aspects of these simulations are the same as the simulation presented in the main text

(see the replication materials for more details).
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3 Controlling the random baseline hazard’s shape
In some situations the analyst may wish to exert some control over the shape of the baseline

hazard function while still using the random spline method. For example, he or she may want

the hazard to monotonically increase or decrease, but still be drawn from random points rather

than from a Weibull distribution. Such an approach may be more realistic for some contexts. We

illustrate an example with a monotonically increasing function here.

To accomplish this objective we first follow the steps described in the main text to generate the

failure CDF. Then, instead of using the resulting function as the CDF and computing the baseline

functions as described in the main text, we use that function as the hazard function itself. This

approach yields a monotonically increasing function that does not follow a specific distribution.2

Figure A2 illustrates the process. The graph in panel (a) plots the baseline hazard function. Panel

(b) gives a histogram of a sample of durations simulated from that hazard function.

[Insert Figure A2 here]

After generating the baseline hazard with this restriction, the rest of the simulation occurs just

as before. Table A2 presents results from a simulation identical to the one presented in the main

text, but with the monotonically increasing hazard function from Figure A2.

[Insert Table A2 here]

Table A2 show the same relative performance between the three estimators as the simulation

from the main text. In particular, the Cox model yields unbiased estimates with the lowest RMSE.

Additionally, the absolute performance of the exponential model and Cox model remain essentially

unchanged compared to the main text. The major difference is in the performance of the Weibull

model, which is better here than in the simulation from the main text.
2Similarly, if the analyst wanted a monotonically decreasing hazard, he or she could simply insert the survivor

function from the original method directly as the hazard.
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4 Time-varying covariates
The random spline method can easily be adapted to include TVC, as we show in another simu-

lation. Specifically, an option in the R function employs the permutation algorithm (PA) described

by Sylvestre and Abrahamowicz (2008) to link the durations generated via the random spline

method to user-controlled covariates and coefficient values.

The first step in this process is to generate durations using the random spline method. We

then generate three new covariates in a NT × p matrix such that there are T rows for each of

the N observations. The first two covariates are TVC; we generate X1 from a standard normal

distribution and X2 from a Poisson distribution with a mean of 2. X1 is a binary variable that varies

across observations but is static over time within each observation. We also generate censoring

times (on the same scale as the actual durations) for each observation as random draws from a

uniform distribution on the interval [1, T ].

Next, the PA matches each of the N observed durations with the T rows of the covariate matrix

for each observation. This matching is done according to permutation probabilities derived from

the Cox model’s partial likelihood computation (see Sylvestre and Abrahamowicz 2008, 2620–

2621). In brief, this procedure follows the steps listed below.

• First, the algorithm defines a variable t∗ to be the lesser of (1) the time until failure and

(2) the censoring time for each of the generated durations. Then it sorts the values of t∗ in

ascending order.

• Next, the algorithm splits the covariate matrix into N individual matrices, one for each obser-

vation, where each matrix has T rows for each of the T time points. After drawing simulated

coefficients, it uses these coefficients to generate the linear predictors from these covariates,

which are then transformed into the Cox model probabilities that a particular observation

still at risk will be the next to fail.

• Finally, the algorithm connects the covariates to the outcomes. If the observation is not

censored, the probability of assignment for each observation i is defined from the Cox model
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probabilities. If the observation is censored, assignment occurs as a draw with uniform

probability based on the size of the observation’s risk set.

The result is a dataset with TVC that follows the DGP defined via the random spline hazard func-

tion, the analyst’s covariates and the analyst’s true coefficient values. We repeat this process 1,000

times, monitoring the coefficient estimates of the Cox model and their RMSEs.

Table A3 reports the means of the Cox model coefficient estimates and RMSE values for the

simulations with TVC. We complete the simulation with N = 100, 500, and 1,000. The true coef-

ficient values in this simulation are β1 = 0.50, β2 = 0.25, and β3 = 0.75.

[Insert Table A3 here]

The results show that the Cox model recovers the true DGP, with coefficient means close to

the true values. Additionally, the estimates generally improve (coefficient means closer to the

true values and smaller RMSEs) with increased sample sizes. Overall, these results indicate that

researchers conducting simulation studies can use the random spline method for simulations and

include TVC in their designs.

5 Violations to the proportional hazards assumption
The proportional hazards assumption is a critical aspect of the Cox model. Accordingly, re-

searchers may be interested in investigating the consequences of assuming proportional hazards

in model estimation with and without proportional hazards in the true DGP. Here we demonstrate

that violations to the proportional hazards assumption can be included in the DGP with the random

spline method. We start with the original simulation from the main text, then modify it to vary

the effect of one independent variable depending on time. In this simulation we hold constant the

effects of the last two independent variables (X2 and X3), but vary the effect of X1 by multiplying its

coefficient (β1) by the log of the time index. This can be done by setting type = ’’tvbeta’’

in the R function.3

3See Hendry (2014) for more on simulating proportional hazards assumption violations.
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Table A4 demonstrates that this procedure produces violations of the proportional hazards as-

sumption. The first row in the table summarizes a simulation in which the DGP includes propor-

tional hazards and the second row gives results of the DGP without proportional hazards for β1.

Columns report the means of all three coefficient estimates across the simulation as well as the

mean p-values from a Schoenfeld residuals test with a log time transformation (Grambsch and

Therneau 1994). This test computes a chi-squared test statistic for each variable as well as a global

statistic. The null hypothesis is no violation; thus, a statistically significant test statistic indicates

a violation of the proportional hazards assumption. If the DGP summarized in the second row of

the table correctly generates non-proportional hazards in β1, the test should produce statistically

significant test statistics associated with X1 and the global test, but not with X2 and X3.

[Insert Table A4 here]

The first row of results correctly shows no evidence of proportional hazards violations. The

coefficient means fall near the true values and the mean Schoenfeld residuals test p-values are far

from conventional significance thresholds. In contrast, the second row of results correctly shows

evidence of a proportional hazards violation for X1. The average estimate of β1 is far from the true

value set in the DGP. The average estimates for the other coefficients are closer to their true values,

but still display bias.4 Furthermore, the p-values also show evidence of a proportional hazards

violation. The mean p-value does not reach conventional significance levels for X2 and X3, but is

less than 0.01 for X1 and the global test.

Another means of verifying that the second DGP produces data with non-proportional hazards

is a graphical examination of Schoenfeld residuals against time. Figure A3 provides such graphs

for one iteration of each simulation for X1. The time index is presented on the x-axes and the y-axes

plot scaled Schoenfeld residuals for X1. Panel (a) presents results from the DGP with proportional

hazards and panel (b) presents results without proportional hazards for that variable.

[Insert Figure A3 here]
4This bias suggests that failing to correct a proportional hazards violation may have problematic implications for

the entire regression model.
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The graph in panel (a) demonstrates that in the first DGP the Schoenfeld residuals are virtually

uncorrelated with time, correctly indicating no violation to the proportional hazards assumption. In

contrast, panel (b) shows that the Schoenfeld residuals are relatively small initially, then increase

in average magnitude. In other words, not accounting for the non-proportional hazards means the

model overestimates the effect of X1 initially, then underestimates it for later time periods. This is

consistent with the DGP, in which the true effect of X1 increases across time.

In sum, like the TVC example, this simulation demonstrates that researchers can use the ran-

dom spline method and include violations to the proportional hazards assumption in their designs.

Both examples show that the random spline method is flexible enough to allow researchers consid-

erable control over how they use simulations to evaluate the Cox model’s performance.
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Figure A1: Cox model and Weibull model performance in the mixture simulations
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Note: The graph presents results from the mixture simulations. The x-axis graphs the proportion of the data generated
from the random spline hazard. The y-axis gives the ratio of the Weibull model’s RMSE to the Cox model’s RMSE.
Values lower than 1 on the y-axis reflect better performance by the Weibull model and values greater than 1 indicate
better performance by the Cox model.
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Figure A2: Example output from the random spline method with a monotonically increasing base-
line hazard

(a) Simulated hazard function
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Note: The graphs illustrate output from one iteration of the random spline method with the baseline hazard restricted
to increase monotonically. Panel (a) shows the hazard function and panel (b) shows a sample of durations generated
from the hazard function.
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Figure A3: Schoenfeld residuals plots with and without proportional hazards in X1

(a) With proportional hazards
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(b) Without proportional hazards
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Note: The graphs present scaled Schoenfeld residuals for X3 on the y-axes and the time index on the x-axes. The solid
lines and shading indicate LOESS fits and their 95% confidence intervals. Panel (a) presents results from the DGP
in which the proportional hazards assumption holds. Panel (b) presents results from the DGP with a violation to the
proportional hazards assumption in the effect of X3.
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Table A1: Coefficient estimate means and root mean squared error from data simulated via the
Weibull distribution

Coefficient Means RMSE

Estimator β1 β2 β3 β1 β2 β3

Exponential 0.100 −0.099 0.151 0.401 0.402 0.600
Weibull 0.500 −0.501 0.759 0.094 0.096 0.099
Cox 0.500 −0.501 0.759 0.095 0.097 0.100

Note: Cell entries report coefficient estimate means and RMSE for the expo-
nential, Weibull, and Cox model estimates (in proportional hazards parame-
terization). True coefficient values are β1 = 0.50, β2 = −0.50, and β3 = 0.75.
Bold entries indicate the estimator with the lowest RMSE for each coefficient.
N = 500.
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Table A2: Coefficient estimate means and root mean squared error from data simulated via the
random spline method with a monotonically increasing baseline hazard function

Coefficient Means RMSE

Estimator β1 β2 β3 β1 β2 β3
Exponential 0.200 −0.201 0.299 0.301 0.300 0.451
Weibull 0.522 −0.522 0.783 0.058 0.058 0.064
Cox 0.490 −0.492 0.735 0.051 0.050 0.056

Note: Cell entries report coefficient estimate means and RMSE for the expo-
nential, Weibull, and Cox model estimates (in proportional hazards parame-
terization). True coefficient values are β1 = 0.50, β2 = −0.50, and β3 = 0.75.
Bold entries indicate the estimator with the lowest RMSE for each coefficient.
N = 500 in all simulations.
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Table A3: Cox model coefficient estimate means and root mean squared error from data simulated
via the random spline method with time-varying covariates

Coefficient Means RMSE

N β1 β2 β3 β1 β2 β3

100 0.520 0.263 0.786 0.058 0.039 0.200
500 0.513 0.258 0.764 0.026 0.017 0.077
1,000 0.507 0.254 0.758 0.018 0.011 0.053

Note: Cell entries report coefficient estimate means and RMSE for
the Cox model estimates with N = 100, 500, and 1,000. True coeffi-
cient values are β1 = 0.50, β2 = 0.25, and β3 = 0.75.
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Table A4: Cox model coefficient estimate means and mean Schoenfeld residuals test p-values from
data simulated via the random spline method with non-proportional hazards

Coefficient Means Mean p-value

Condition β1 β2 β3 X1 X2 X3 Global

With PH 0.492 −0.494 0.739 0.498 0.496 0.497 0.496
Without PH 1.300 −0.363 0.542 0.011 0.270 0.143 0.001

Note: Cell entries report results with (row 1) and without (row 2) proportional hazards
in the β1 coefficient. The first three columns give coefficient means and the next four
columns give the mean p-values from a Schoenfeld residuals test for non-proportional
hazards (individual variables and global test). True coefficient values for the coefficients
that remain constant across both simulations are β2 = −0.50 and β3 = 0.75. N = 500 in
both simulations.
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