ORACLE

«

= JavaOne

ORACLE

Thinking in Parallel

P Java
e M ~ Your

Java Platform Group, Oracle N X
Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Thinking in Parallel

!;) JavaOne

<<= el Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

!;) JavaOne

<<= el Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Trivial Example

* Convert an array of strings to upper case
— Conventional (iterative) approach
— Streams (aggregate) approach

{;) JavaOner

ORACLE" Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Convert Array of Strings to Upper Case

String[] upcase(String[] input) {
String[] result = new String[input.length];

for (int i = @; i < input.length; i++) {

result[i] = input[i].toUpperCase();
}

return result;

{;) JavaOner

ORACLE" Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Convert Array of Strings to Upper Case

a b C d

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Convert Array of Strings to Upper Case

a b C d

\4
A

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Convert Array of Strings to Upper Case

a b C d

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Convert Array of Strings to Upper Case

a b C d

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Convert Array of Strings to Upper Case

a b C

d

O <

Convert Array of Strings to Upper Case

a b C d

What Parts Are Essential?

String[] upcase(String[] input) {
String[] result = new String[input.length];

for (int i = @; i < input.length; i++) {
result[i] = input[i].toUpperCase();
}

return result;

notion: same computation applied
to every element, partially
obscured by indexing and bounds

{;) JavaOner

ORACLE’

the actual computation

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

14

Observations

* For-loop processing
— Sequential
— Left-to-right ordering

* Most of this is accidental, not essential
— Key: each upper-case computation is independent of all others
* (this is important, stay tuned)
— But why are they done sequentially, in order?
— With a for loop, that’s all we’ve got!

* you have to do extra work to do anything else
* enhanced-for (“for-each”) loop helps, but only a little

!;) JavaOne

= SoRelS Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

15

Convert Array of Strings to Upper Case — Streams

String[] upcase(String[] input) {
return Arrays.stream(input)
.map(String: :toUpperCase)
.toArray(String[]::new);

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

16

Can be done in any order, or all at once!

a b C d

> <
o <
O <
O <

Consider as aggregate operation, not individual operations

a b C d e

Which is Better?

* Streams version is better
— maore compact
— new and cool
— more functional

* For-loop is better
— more efficient
— more familiar
— more straightforward

!;) JavaOne

p=— [N

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

19

Which is Better?

» Streams version is better
— more compact
—new and cool
— more functional

* For-loop is better
— more efficient
— more familiar
— more straightforward

!;) JavaOne

p=— [N

WRONG!

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

20

Verdict: Streams Version is Better

* Why? Higher level of abstraction
— Expresses independence of each computation
— Less accidental complexity, e.g., index computations
— Implicitly operates on all elements, not individual elements
— Focus on desired results than mechanics of computing it

* Why hasn’t he said anything about parallelism yet?

— Making it parallelizable isn’t what makes it better
* you might never want to run this code in parallel (see Brian’s part)
* but this code is still better

— Making the code better makes it parallelizable, as a bonus

{;) JavaOner

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

21

A Less Trivial Example

* Splitting a list
— Split at elements selected by a predicate
— Result list should be sublists of original list (using List.subList method)

* Example
— Split the list: [a, b, #, c, #, d, e]
— At elements that equal "#"
— Expected result: [[a, b], [c], [d, e]]

* Based on Stack Overflow question:
— http://stackoverflow.com/a/29111023/1441122

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

22

Thinking Through the Problem

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Thinking Through the Problem

0

List.subList() wants indexes,
so conceptually, number all
the elements

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 24

Thinking Through the Problem

0 1 2 3 2 5 6

split points are the
edges of the sublists

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

25

Thinking Through the Problem

-1

we also need to “synthesize” split
points at each end to create
bounds for exterior sublists

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 26

Thinking Through the Problem

-1

\

a b

subList (@, 2)

3 4 5 6 7/
C d e
L l l
subList(3, 4) subList(5, 7)

each sublist starts at this split point +1
and runs until the next split point

(since sublist is half-open on the right)
implicitly handles corner cases correctly

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 27

Start with this method signature

<T> List<List<T>»> split(List<T> input, Predicate<T> pred) {

}

{;) JavaOner

ORACLE" Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

28

Conventional Approach

<T> List<List<T>»> split(List<T> input, Predicate<T> pred) {
List<List<T>> result = new ArraylList<>();
int start = 0;

for (int cur = @; cur < input.size(); cur++) {
if (pred.test(input.get(cur))) {
result.add(input.sublList(start, cur));
start = cur + 1;

}
result.add(input.sublList(start, input.size()));

return result;

!;) JavaOne

= SoRelS Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Conventional Approach

<T> List<List<T>»> split(List<T> input, Predicate<T> pred) {
List<List<T>> result = new ArraylList<>();
int start = 0;

for (int cur = 0; cur < input.size(); cur++) { Aapp/ypredicate to
if (pred.test(input.get(cur))) { <€ each element
result.add(input.sublList(start, cur));

start = cur + 1; ‘5-._----~
) } sublist creation

result.add(input.sublList(start, input.size()));

return result;

{;) JavaOner

ORACLE" Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Conventional Approach

<T> List<List<T>> split(List<T> input, Predicate<T> pred) {

List<List<T>> result = new ArraylList<>(); < initialization of
int start = 0; result and state

for (int cur = 0; cur < input.size(); cur++) {<\ exposed loop

if (pred.test(input.get(cur))) { mechanics
result.add(input.sublList(start, cur));

start = cur + 1; <« why do we have

to add one here?

}

}
result.add(input.sublList(start, input.size()));

return result;
} extra addition to
result list??

g) JavaOner

ORACLE Copyright © 2016, Oracle and/or its affiliates. Al rights reserved. 31

Conventional Approach — Observations

* How do we know this is correct?
— Does this handle all the corner cases?
— Handling of trailing sublist is treated non-uniformly
— Reasoning about loop invariants is subtle

* Hard to see relationship between this code and the model we developed
— Can you reverse-engineer the diagram from the code?

* Accidental data dependency
— Each loop iteration depends on state from the previous iteration
— Even though computations of split points are all independent!

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

32

Streams Approach

* Rethink the problem, avoiding iteration

* We are interested in indexes (because of List.subList)
— Stream over indexes instead, e.g., IntStream.range(0, last)
— Instead of typical stream over values, e.g., input.stream()

* Computation of an edge is independent of all other computations
— Apply the predicate to each element
— No dependencies on result of predicate on any other result
— Contrast with the preceding looping approach

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

33

Streams Approach

-1 0 1 2 3 4 5 6 7

a b C d e
| | L] | |

subList (@, 2) subList (3, 4) subList (5, 7)

each sublist starts at this split point +1
and runs until the next split point

(since sublist is half-open on the right)
implicitly handles corner cases correctly

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Streams Approach — Outline

1. Filter indexes to find interior sublist edges
2. Synthesize exterior edges at each end

3. Compute sublist from this edge and the next one

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

S5

Streams Approach

<T> List<List<T>»> split(List<T> input, Predicate<T> pred) {
int[] temp = IntStream.range(®, input.size())
.filter(i -> pred.test(input.get(i)))
-toArray(); compute interior edges
by applying the predicate
to every element

{;) JavaOner

ORACLE" Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 36

Streams Approach

<T> List<List<T>»> split(List<T> input, Predicate<T> pred) {

int[] temp = IntStream.range(®, input.size())
.filter(i -> pred.test(input.get(i)))
.toArray();
int[] edges = new int[temp.length+2]; Synthesize exterior edges.

System.arraycopy(temp, 0, edges, 1, temp.length);
edges[@] = -1;
edges[edges.length-1] = input.size();

OK, we admit it, these array
operations are ugly.

{;) JavaOner

ORACLE" Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 37

Streams Approach

<T> List<List<T>> split(List<T> input, Predicate<T> pred) {
int[] temp = IntStream.range(®, input.size())
.filter(i -> pred.test(input.get(i)))
.toArray();

int[] edges = new int[temp.length+2];
System.arraycopy(temp, 0, edges, 1, temp.length);
edges[@] = -1;

edges[edges.length-1] = input.size();

return IntStream.range(@, edges.length-1)
.mapToObj(k -> input.sublList(edges[k]+1, edges[k+1]))
.collect(toList());
} compute sublists from each
edge and the one to its right

';‘:)] el Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Quick Aside: Adjust Bounds to Synthesize Exterior Edges

<T> List<List<T>»> split(List<T> input, Predicate<T> pred) {
int[] edges = IntStream.range(-1, input.size()+1)

filter(i -> i == -1 || i == input.size() ||
pred.test(input.get(i)))
.toArray();

return IntStream.range(@, edges.length-1)
.mapToObj(k -> input.sublList(edges[k]+1, edges[k+1]))
.collect(toList());

{;) JavaOner

ORACLE" Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Streams Approach — Observations
* Which is better?

* Streams code is better
— Not because it’s new, cool, shorter, more functional
— But because it’s at a higher level of abstraction

* Characteristics

— Independent computations are independent
* No accidental dependencies are introduced

— Problem setup treats all cases uniformly
— Operations on aggregates, not element-at-a-time
— No loop mechanics to worry about

{;) JavaOner

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

40

Streams Approach — Observations

* Useful technique: stream over indexes, not over elements
— Many, but not all, problems can be solved by streaming over elements
— If you're fighting the Streams API, try this, it might work
— Broadly, but not universally applicable

* By the way, you can also run this in parallel!

* But, should you run it in parallel?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

41

Now, over to Brian...

!;) JavaOne

p=— [N

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

42

Parallelism

* Parallelism is about using more resources to get the answer faster
— Strictly an optimization!
— If additional resources are not available, can still compute sequentially

* Corollary: Only useful if it really does get the answer faster!

* Just because we use more resources ...
— Doesn’t mean the computation is always faster than a sequential one
— Or even as fast...

* Analyze - implement - measure - repeat...
— Prefer sequential implementation until parallel is proven effective

* Measure of parallel effectiveness is speedup
— How much faster (or slower) compared to sequential?

{;) JavaOner

ORACLE" Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Parallelism

* A parallel computation always involves more work than the best sequential
alternative
— How could it not? It still has to solve the problem!
— And also:
* Decompose the problem

* Launch tasks, manage tasks, wait for tasks to complete
* Combine results

Parallel version always starts out “behind”

— We hope to make up for this initial deficit by burning more resources
— To succeed, we need

* A parallelizable problem

* A good implementation

* Good runtime support for execution
* Enough data

{;) JavaOner

ORACLE" Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Towards Parallel Computation

* Simple problem: add numbers from 1..n

sum = sum + ij;
return sum;

}

* What kind of dataflow graph do we get?

.F
. /" \
* What kind of dataflow graph do we want? 4

PN X(1000000)
* Problem #1 — Accumulator pattern g
— Need to unlearn this! L X(999999)

— Impediment to parallelism +
N
2

/+\ X(Z) 00000)
0 X(1)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Divide And Conquer

* Standard tool for parallel execution is divide-and-conquer
— Partition the input into chunks that can be independently operated on
— Recursively decompose problem until it is small enough for sequential

R solve(Problem<R> problem) {
if (problem.isSmall())
return problem.solveSequentially();
R leftResult, rightResult;
CONCURRENT {
leftResult = solve(problem.left());
rightResult = solve(problem.right());

}
return problem.combine(leftResult, rightResult);

3;) JavaOne

< ORACLE Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Divide And Conquer

* Recursive decomposition is simple
— Especially with recursively-defined data structures, like trees
— No shared mutable state — just partitioned reading
— Intermediate results live on the stack

* Starts forking work early!
— Beware Amdahl’s Law

* Decomposition is dynamic
— Can incorporate runtime knowledge of core count and load
— Portable expression of parallel computation

{;) JavaOner

ORACLE" Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Summing an array in parallel

(((

) + |

J

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Summing an array in parallel

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Performance Considerations
* Splitting / decomposition costs
— Sometimes splitting is more expensive than just doing the work!

* Task dispatch / management costs
— Can do a lot of work in the time it takes to hand work to another thread

* Result combination costs
— Sometimes combination involves copying lots of data

* Locality
—The elephant in the room

* Each can steal away potential speedup!
—In general, need a lot of data to make up for decomposition startup

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Parallel Stream Performance

* Streams is about possibly-parallel, aggregate operations on datasets
— Streams are efficient, and (usually) merge computation into a single pass
— But they are NOT magic parallelism dust!

* Still have to ensure that our problem is amenable to parallel solution
— How easily splittable is the source?

— How expensive is result combination?
* Adding numbers is cheap; merging sets is expensive

— What kind of locality does our computation get?
* Array-based sources are best

{;) JavaOner

ORACLE" Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

The NQ Model

* Simple model for parallel performance
— N = number of data items
— Q = amount of work per item

* Rule of thumb
— Need NQ > 10,000 to have a chance for parallel speedup

* Most simple stream examples have very low Q
— Meaning everything else has to go well to get a speedup

!;) JavaOne

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

p=— [N

Source Splitting

* Some sources split better than others
— Cost of computing split
— Evenness of split
— Predictability of split
* Arrays split cheaply, evenly, and with perfect knowledge of split sizes
— Linked lists have none of these properties
— Iterative generators behave like linked lists, stateless generators behave like arrays

* Compare
—IntStream.iterate (0, i -> i+l) .limit(n) .sum()
—vs IntStream.range (0, n) .sum()

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

{;) JavaOner

ORACLE’

Locality

* Locality is the elephant in the room
* Parallelism wins when we can keep the CPUs busy doing useful work

— Waiting for cache misses is not useful work
* Memory bandwidth often the limiting factor on many systems
* Array-based, numeric problems parallelize best

* Benchmark: Stream.of(int[]).sum() vs Stream.of(Integer[]).sum()

— 8-core i/, Java SE 8, Linux

Speedup over N=10k
Sequenhal

6.2X 7.9x
Integer (4.9x) 1.5x 3.5x

Locality

Integer[] ints —> EENEY

—
-~

.~

T -
int[] ints > 31

27
81

!;) JavaOne

< ORACLE Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Encounter Order

* Some operations have semantics tied to encounter order
— Encounter order is the order implied by the source
— Some sources have no defined encounter order (e.g., HashSet)
— Operations like limit(), skip(), and findFirst() are tied to encounter order
— Less exploitable parallelism

* Sometimes the encounter order is meaningful, sometimes not
— Call .unordered() to indicate encounter order is not meaningful to you

— Ops like limit(), skip(), and findFirst() will optimize in the presence of unordered
sources

{;) JavaOner

ORACLE" Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Merging
* For some operations (sum, max) the merge operation is really cheap

* For others (groupingBy to a HashMap) it is insanely expensive!

— Involves a lot of copying
— And repeatedly, up the tree
— Cost of merging overwhelms the parallelism advantage

* Measuring IntStream.range(0, n).collect(toSet())...
— For n=10K, approximately 4x slowdown going parallel

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Merging a set in parallel

{1,2,3,4,56,7,8}

T

{1,2,3,4}

{1,2}

{5,6,7,8}

{3,4}

1 {5,6}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

l

| 17,8}

Parallel Streams

* Any of the following factors can conspire to undermine speedup
— NQ is insufficiently high
— Cache-miss ratio is too high (too many indirections)
— Source is expensive to split
— Result combination cost is too high
— Pipeline uses encounter-order-sensitive operations

{;) JavaOner

ORACLE" Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Summary

* Streams are cool!
* Parallelism is cool!

* But... parallelism is an optimization
— And parallel streams are not magic performance dust

* Before optimizing, always ...
— Have actual performance requirements
— Have reliable performance measurements (not easy!)
— Ensure that your performance doesn’t meet requirements

!;) JavaOne

= SoRelS Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

{;) JavaOner

ORACLE" Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 61

«

= JavaOne

ORACLE

ORACLE

