
Srini Polavarapu
Engineering Manager at Google

A Simplified Service
Mesh with gRPC

gRPC Is Awesome!
➢ High performance, open source and standards-based.
➢ Feature rich:

○ Connection mgmt, request multiplexing, bi-di streaming and flow control.

○ Deadlines, cancellation and metadata.

○ Pluggable, interceptors and more.

➢ Multi-language, multi-platform.
➢ High industry adoption.
➢ Works great with Protocol Buffers.

Awesome framework for microservices based applications.

Service Meshes Are Cool!

➢ Service discovery - Service lookup by name.
➢ Traffic Management - Request routing and load balancing.
➢ Security - Authentication and authorization between services.
➢ Observability - Metrics, monitoring, logging and debugging.

Solves complexities of microservices based architecture.

Istio - A popular service mesh solution

https://istio.io/

gRPC + Service Mesh
➢ No native service mesh integration in gRPC.
➢ Comes with only a DNS name resolver.
➢ Only pick-first and round-robin built-in load balancing.
➢ Anything more requires implementing your own:

○ Resolver and balancer plugins.
○ gRPC-LB server.

gRPC
Client

gRPC
Server

Look Aside
Load

Balancer

gRPC
Server

gRPC
Server

gRPC-LB
protocol

Next gRPC evolution - service mesh integration!

https://github.com/grpc/grpc/blob/master/doc/load-balancing.md

Without Service Mesh Integration

➢ Sidecar proxies get service mesh policies from the control plane.

➢ gRPC applications use DNS lookup and send requests to the virtual IP of the service.

➢ Requests are intercepted by sidecar proxies which apply service mesh policies and
route accordingly.

Service Mesh
Control Plane

Kubernetes PodKubernetes Pod
Proxy

gRPC Service
B

Proxy

gRPC Service
A

Data Plane APIs

Service Instance

Pod or VM

Localhost/UDS Connection
RPCs

Proxyless gRPC Service Mesh!

➢ gRPC applications get service mesh policies directly from the control plane.

➢ No sidecar proxies. Services talk to each other directly.

Service Mesh
Control Plane

Kubernetes PodKubernetes Pod

gRPC Service
B

gRPC Service
A

Data Plane APIs

Service Instance

Pod or VM

RPCs

Which Service Mesh?
➢ Choose the right data plane APIs - APIs between mesh control plane and

the proxies.
➢ Attributes: Open, extensible, fits gRPC architecture, strong community

support and widely used.
○ Works with any control plane that supports such data plane APIs.

○ Helps prevent vendor lock-in.

Winner - xDS APIs - the wildly popular Envoy proxy’s data plane APIs.

➢ Istio and several other open source and proprietary service meshes use xDS APIs and
Envoy proxy.

➢ Evolving into Universal Data Plane APIs.

https://github.com/envoyproxy/data-plane-api

Locality2 Locality3Locality1 (e.g. Zone)

What is xDS?
➢ It’s all about discovering!

➢ (x)Discovery Service - Listener, Route, Cluster, Endpoint, Health, Secret etc.

VIP1

Route
Rules1

Cluster1

Endpoint1 Endpoint2 Endpoint3 Endpoint4 Endpoint5

Cluster2

Route
Rules2

VIP2 VIP3Listener Discovery Service
Service VIP(IP:Port) configuration

Route Discovery Service
Route matching rules and actions

configuration

Cluster Discovery Service
Cluster (Backend Service) configuration

Endpoint Discovery Service
Prioritized and weighted list of localities

and endpoints

xDS in gRPC
Client Channel

xDS Resolver

Weighted Target LB Policy
(picks from Weighted

Cluster list)

CDS LB policy
(creates one EDS policy)

xDS Client
(reads bootstrap file,
speaks LDS, RDS,

CDS, EDS and LRS)

EDS LB policy
(creates locality-picking

policy)

Locality WRR LB Policy
(picks locality from EDS

locality list)

Routing LB Policy
(picks based on RPC

path/header)

ADS and LRS streams
with xDS server

Child LB
policy
(picks

endpoint
within

locality)

Child LB
policy
(picks

endpoint
within

locality)

Child LB
policy
(picks

endpoint
within

locality)

CDS LB policy
(creates one EDS policy)

EDS LB policy
(creates locality-picking

policy)

Locality WRR LB Policy
(picks locality from EDS

locality list)

Child LB
policy
(picks

endpoint
within

locality)

Child LB
policy
(picks

endpoint
within

locality)

Child LB
policy
(picks

endpoint
within

locality)

CDS LB policy
(creates one EDS policy)

EDS LB policy
(creates locality-picking

policy)

Locality WRR LB Policy
(picks locality from EDS

locality list)

Child LB
policy
(picks

endpoint
within

locality)

Child LB
policy
(picks

endpoint
within

locality)

Child LB
policy
(picks

endpoint
within

locality)

Application creates
channel with xds
scheme

To xDS Server

LDS and RDS
 Data CDS Data

EDS Data

Enabling xDS In gRPC

➢ Build a gRPC channel with ‘xds’ resolver scheme.
○ Example: ManagedChannelBuilder.forTarget("xds:///foo.myservice")

➢ Provide a bootstrap file with xDS server address, credentials and node
info.

➢ Set GRPC_XDS_BOOTSTRAP env variable to the bootstrap file.

That’s it!

➢ The scheme is per channel - Easy to migrate and mix’n’match proxied and
proxyless deployment.

Why Go Proxyless?
➢ Higher performance, efficiency and scalability.
➢ Eases migration of gRPC applications to a service mesh.
➢ Simplified network without traffic interception.
➢ Avoid potential bottlenecks.
➢ No lifecycle management of proxies.
➢ Works with containers as well as VMs.
➢ End-to-end security (when available) and observability.

Get the most out of your investment in gRPC.

Many cloud scale companies use this model.

On The Flip Side

➢ Feature gap.
○ But, active development going on.

➢ Ecosystem around Envoy.
○ But, gRPC has interceptors and OpenCensus integration.

➢ Must recompile applications.
○ Easy to mix proxy and proxyless deployments.

➢ Limited languages.
○ C++, Java, Go, Python, PHP, Ruby and C#.
○ Languages wrapping C-Core get it for free.

Current Status
Released in v1.30.0
➢ xDS client with LDS, RDS, CDS and EDS.

➢ Load reporting via LRS.

➢ Weighted locality picking and round robin endpoint LB within the locality.

What’s next?
➢ Route matching with path and headers field.

➢ Traffic splitting between weighted clusters.

➢ More features like timeout, circuit breaking, fault injection and retries.

➢ gRPC server side xDS integration.

➢ Security features like service-to-service mTLS.

➢ Migrate to v3 APIs.

Demo

Now a demo using Traffic Director, Google Cloud's managed
control plane for service mesh. Traffic Director uses xDS to
communicate with gRPC clients.

https://cloud.google.com/traffic-director

Resources
➢ gRFC on xDS load balancing design
➢ gRFC on xDS traffic splitting and routing design
➢ xDS features in gRPC by release
➢ Envoy xDS APIs
➢ Universal Data Plane APIs
➢ Data plane vs. control plane
➢ Concepts and terminology
➢ Traffic Director

Questions or feedback?

https://github.com/grpc/proposal/blob/master/A27-xds-global-load-balancing.md
https://github.com/grpc/proposal/blob/master/A28-xds-traffic-splitting-and-routing.md
https://github.com/grpc/grpc/blob/master/doc/grpc_xds_features.md
https://www.envoyproxy.io/docs/envoy/latest/api-docs/xds_protocol
https://github.com/cncf/udpa
https://medium.com/@aburnos/data-plane-control-plane-and-their-apis-explained-d0a3fa7291f3
https://jimmysong.io/en/blog/service-mesh-the-microservices-in-post-kubernetes-era/
https://cloud.google.com/traffic-director
https://forms.gle/WbN7phAeJo7gCRxQ8

