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gRPC Is Awesome!
➢ High performance, open source and standards-based.
➢ Feature rich:

○ Connection mgmt, request multiplexing, bi-di streaming and flow control.

○ Deadlines, cancellation and metadata.

○ Pluggable, interceptors and more.

➢ Multi-language, multi-platform.
➢ High industry adoption.
➢ Works great with Protocol Buffers.

Awesome framework for microservices based applications.



Service Meshes Are Cool!

➢ Service discovery - Service lookup by name.
➢ Traffic Management - Request routing and load balancing.
➢ Security - Authentication and authorization between services.
➢ Observability - Metrics, monitoring, logging and debugging.

Solves complexities of microservices based architecture.

Istio - A popular service mesh solution

https://istio.io/


gRPC + Service Mesh
➢ No native service mesh integration in gRPC.
➢ Comes with only a DNS name resolver.
➢ Only pick-first and round-robin built-in load balancing.
➢ Anything more requires implementing your own:

○ Resolver and balancer plugins.
○ gRPC-LB server.
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Next gRPC evolution - service mesh integration!

https://github.com/grpc/grpc/blob/master/doc/load-balancing.md


Without Service Mesh Integration

➢ Sidecar proxies get service mesh policies from the control plane.

➢ gRPC applications use DNS lookup and send requests to the virtual IP of the service.

➢ Requests are intercepted by sidecar proxies which apply service mesh policies and 
route accordingly.
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Proxyless gRPC Service Mesh!

➢ gRPC applications get service mesh policies directly from the control plane.

➢ No sidecar proxies. Services talk to each other directly.
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Which Service Mesh?
➢ Choose the right data plane APIs - APIs between mesh control plane and 

the proxies.
➢ Attributes: Open, extensible, fits gRPC architecture, strong community 

support and widely used.
○ Works with any control plane that supports such data plane APIs.

○ Helps prevent vendor lock-in.

Winner - xDS APIs - the wildly popular Envoy proxy’s data plane APIs.

➢ Istio and several other open source and proprietary service meshes use xDS APIs and 
Envoy proxy.  

➢ Evolving into Universal Data Plane APIs.

https://github.com/envoyproxy/data-plane-api
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What is xDS?
➢ It’s all about discovering!

➢ (x)Discovery Service - Listener, Route, Cluster, Endpoint, Health, Secret etc.
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xDS in gRPC
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Enabling xDS In gRPC

➢ Build a gRPC channel with ‘xds’ resolver scheme.
○ Example: ManagedChannelBuilder.forTarget("xds:///foo.myservice")

➢ Provide a bootstrap file with xDS server address, credentials and node 
info.

➢ Set GRPC_XDS_BOOTSTRAP env variable to the bootstrap file.

That’s it!

➢ The scheme is per channel - Easy to migrate and mix’n’match proxied and 
proxyless deployment.



Why Go Proxyless?
➢ Higher performance, efficiency and scalability.
➢ Eases migration of gRPC applications to a service mesh.
➢ Simplified network without traffic interception.
➢ Avoid potential bottlenecks.
➢ No lifecycle management of proxies.
➢ Works with containers as well as VMs.
➢ End-to-end security (when available) and observability.

Get the most out of your investment in gRPC.

Many cloud scale companies use this model.



On The Flip Side

➢ Feature gap.
○ But, active development going on.

➢ Ecosystem around Envoy.
○ But, gRPC has interceptors and OpenCensus integration.

➢ Must recompile applications.
○ Easy to mix proxy and proxyless deployments.

➢ Limited languages.
○ C++, Java, Go, Python, PHP, Ruby and C#.
○ Languages wrapping C-Core get it for free.



Current Status
Released in v1.30.0
➢ xDS client with LDS, RDS, CDS and EDS.

➢ Load reporting via LRS.

➢ Weighted locality picking and round robin endpoint LB within the locality.

What’s next?
➢ Route matching with path and headers field.

➢ Traffic splitting between weighted clusters.

➢ More features like timeout, circuit breaking, fault injection and retries.

➢ gRPC server side xDS integration.

➢ Security features like service-to-service mTLS.

➢ Migrate to v3 APIs.



Demo

Now a demo using Traffic Director, Google Cloud's managed 
control plane for service mesh. Traffic Director uses xDS to 
communicate with gRPC clients.

https://cloud.google.com/traffic-director


Resources
➢ gRFC on xDS load balancing design
➢ gRFC on xDS traffic splitting and routing design
➢ xDS features in gRPC by release
➢ Envoy xDS APIs
➢ Universal Data Plane APIs
➢ Data plane vs. control plane
➢ Concepts and terminology
➢ Traffic Director

Questions or feedback?

https://github.com/grpc/proposal/blob/master/A27-xds-global-load-balancing.md
https://github.com/grpc/proposal/blob/master/A28-xds-traffic-splitting-and-routing.md
https://github.com/grpc/grpc/blob/master/doc/grpc_xds_features.md
https://www.envoyproxy.io/docs/envoy/latest/api-docs/xds_protocol
https://github.com/cncf/udpa
https://medium.com/@aburnos/data-plane-control-plane-and-their-apis-explained-d0a3fa7291f3
https://jimmysong.io/en/blog/service-mesh-the-microservices-in-post-kubernetes-era/
https://cloud.google.com/traffic-director
https://forms.gle/WbN7phAeJo7gCRxQ8



