
Talking to Go gRPC Services via HTTP/1
gRPC Conf 2020 - July 27, 2020

Malte Isberner
Managing Director, StackRox GmbH, Bochum, Germany
Principal Engineer, StackRox Inc., Mountain View, USA

2©2019 StackRox. All rights reserved.

Overview

1. Introduction & Problem Statement

2. Why gRPC Requires HTTP/2

3. gRPC-Web and Downgrading

4. Go Library: Implementation & Usage Example

5. Conclusion

3©2019 StackRox. All rights reserved.

Problem Statement

• Fleet of microservices
deployed in a K8s
cluster

• gRPC for (intra-cluster)
service-to-service

communication 😀

roxctl

LB/Ingress

• gRPC for CLI-to-service
communication

through LB 😱

4©2019 StackRox. All rights reserved.

The Problem with Load Balancers

• gRPC is based on HTTP/2

roxctl

LB/Ingress

• Many LBs don’t like (or support) HTTP/2
• More precisely: L7 LBs
• Most prominent example: AWS ALB

• Viable* options:
• Use TCP LB only (e.g., TLS-passthrough)
• Use an LB that supports end-to-end HTTP/2

• A.o. GCP HTTP2 LB, nginx 1.13.10+, HAproxy 1.9.2+
• (Use Envoy with gRPC HTTP/1.1 bridge)

• * technical viability ≠ practical viability:
• Can’t tell customers not to use ALB but TLS passthrough

w/o managed certs

5©2019 StackRox. All rights reserved.

Functional Requirements

• Replace gRPC in roxctl CLI with something that works via HTTP/1.1
• Bonus points for finding a something that is equally awesome

• Compatibility requirements:
• New versions of both CLI and server should work through

gRPC-incompatible LBs
• New/old and old/new combinations should work through (at least)

gRPC-compatible LBs
• Can’t use different RPC protocol altogether!

6©2019 StackRox. All rights reserved.

First Idea: Use REST APIs

• Most gRPC APIs have REST equivalents thanks to grpc-gateway

roxctl
POST /v1.MetadataService/GetMetadata HTTP/2.0
content-type: application/grpc+protobuf

GET /v1/metadata HTTP/1.1
Accept: application/json

• Idea: use protoc-gen-swagger + swagger-codegen-generated
bindings
• Meh: lots of code changes, different data structures everywhere (no

protobufs), buggy generated code

7©2019 StackRox. All rights reserved.

Some Background: Why gRPC Uses HTTP/2

• Some differences between HTTP/2 and HTTP/1.1:
• Binary format (performance)
• Multiplexing various streams onto one TCP connection

(performance)
• Full-duplex client streaming (functionality)
• Guaranteed support for trailers (functionality, somewhat)

• … plus other stuff, such as server push (not relevant here)

8©2019 StackRox. All rights reserved.

HTTP/2 In-Depth: Client Streaming

• HTTP/1:
• Client sends request (headers + body, possibly empty)
• Then, server sends response (headers + body, possibly empty)

• HTTP/2:
• Client sends request headers
• All of the following may take place simultaneously:

• Client sends request body (if any) in chunks/streaming
• Server sends response headers, followed by response body

(if any) in chunks/streaming
• Then, server sends trailers (if any) and closes stream.

9©2019 StackRox. All rights reserved.

HTTP/2 In-Depth: Client Streaming

• Interleaved request flow between server and client
• HTTP/1: Client talks (and finishes), then server responds
• HTTP/2: Client starts talking, server may start responding any

time (before client finishes)
• Required for client-streaming and bidi-streaming RPC calls
• Client streaming cannot be emulated in HTTP/1

• Good news: roxctl CLI only uses unary RPC calls 😅

10©2019 StackRox. All rights reserved.

HTTP/2 In-Depth: Trailers

• Trailers: metadata sent by server after response body
• Think deferred headers
• Typical use case: checksum of response body
• gRPC use case: status/error information (Grpc-Status,

Grpc-Message)

• Good news: trailers can be emulated in HTTP/1.1 😅
• Just include trailer data as part of response body

11©2019 StackRox. All rights reserved.

gRPC-Web

• Alternative (non-HTTP2) transport spec for gRPC geared towards
web clients (browsers)

• Supports unary and server-streaming RPCs (no client or
bidi-streaming)

• Encodes trailers as part of the response body (specially encoded
message)

12©2019 StackRox. All rights reserved.

So gRPC-Web Solves All Our Problems, Right?

• Unfortunately, not quite:
• No Golang-based client library
• Can’t rely on Envoy proxy to be present in customer setup
• Use of other proxies breaks compatibility requirements

13©2019 StackRox. All rights reserved.

Solution: Automatic gRPC-Web Downgrading

• Client indicates ability to receive gRPC-Web response via Accept
header

• Server infers need to send gRPC-Web response by HTTP protocol
major version and TE (transfer encoding) header

roxctl

POST /v1.MetadataService/GetMetadata HTTP/2.0
TE: trailers POST /v1.MetadataService/GetMetadata HTTP/2.0

TE: trailers

��

HTTP/2.0 200 OK
Content-Type: application/grpcHTTP/2.0 200 OK

Content-Type: application/grpc

14©2019 StackRox. All rights reserved.

Solution: Automatic gRPC-Web Downgrading

• Client indicates ability to receive gRPC-Web response via Accept
header

• Server infers need to send gRPC-Web response by HTTP protocol
major version and TE (transfer encoding) header

roxctl

POST /v1.MetadataService/GetMetadata HTTP/2.0
TE: trailers

��
POST /v1.MetadataService/GetMetadata HTTP/1.1

��

15©2019 StackRox. All rights reserved.

Solution: Automatic gRPC-Web Downgrading

• Client indicates ability to receive gRPC-Web response via Accept
header

• Server infers need to send gRPC-Web response by HTTP protocol
major version and TE (transfer encoding) header

roxctl

��

POST /v1.MetadataService/GetMetadata HTTP/2.0
Accept: application/grpc, application/grpc-web
TE: trailers

POST /v1.MetadataService/GetMetadata HTTP/1.1
Accept: application/grpc, application/grpc-web

HTTP/1.1 200 OK
Content-Type: application/grpc-webHTTP/2.0 200 OK

Content-Type: application/grpc-web��

16©2019 StackRox. All rights reserved.

Architecture / Implementation - Client

• Client-side: connections go to local reverse proxy
• Outgoing requests: inject Accept header
• Incoming responses: transcode gRPC-Web to gRPC-over-HTTP/2 for

application/grpc-web content types
• Effectively: trailer message → HTTP/2 trailers

• TLS only between reverse proxy and remote peer

Application

grpc.Dial(...)

Reverse Proxy
Inject headers +
transcode response

Remote Peernet.Pipe, no TLS TCP conn, TLS

17©2019 StackRox. All rights reserved.

Architecture / Implementation - Server

• Server-side: wrap (*grpc.Server).ServeHTTP
• Standardized Go HTTP(2) server handler
• If Accept: application/grpc-web header is present and TE:

trailers header is absent:
• Modify request to spoof HTTP/2 and TE: trailers property
• Intercept response writer to transcode HTTP/2 trailers into trailers

message (part of response body)
• Delegate to (*grpc.Server).ServeHTTP

18©2019 StackRox. All rights reserved.

Architecture / Implementation - Comprehensive View

19©2019 StackRox. All rights reserved.

Open-Source Library

• I want to use this in my application - can I?
• Yes, if you use Go!
• go get golang.stackrox.io/grpc-http1
• Source code at https://github.com/stackrox/go-grpc-http1

(Apache 2 license)

https://github.com/stackrox/go-grpc-http1

20©2019 StackRox. All rights reserved.

Library Usage - Client Side
var tlsConf *tls.Config = ...
connectOpts := []grpc.DialOption{...}

conn, err := grpc.DialContext(
 context.Background(),
 "example.com:8443",
 grpc.WithTransportCredentials(credentials.NewTLS(tlsConf)),
 connectOpts...)

echoSvcClient := echo.NewEchoClient(conn)
echoSvcClient.UnaryEcho(context.Background(), &echo.EchoRequest{...})

...

defer conn.Close()

21©2019 StackRox. All rights reserved.

Library Usage - Client Side
var tlsConf *tls.Config = ...
connectOpts := []grpc.DialOption{...}

conn, err := grpc.DialContext(
 context.Background(),
 "example.com:8443",
 grpc.WithTransportCredentials(credentials.NewTLS(tlsConf)),
 connectOpts...)

echoSvcClient := echo.NewEchoClient(conn)
echoSvcClient.UnaryEcho(context.Background(), &echo.EchoRequest{...})

...

defer conn.Close()

import "golang.stackrox.io/grpc-http1/client"

var tlsConf *tls.Config = ...
connectOpts := []grpc.DialOption{...}

conn, err := client.ConnectViaProxy(
 context.Background(),
 "example.com:8443",
 tlsConf, // or nil + grpc.WithInsecure() for plaintext,
 connectOpts...)

echoSvcClient := echo.NewEchoClient(conn)
echoSvcClient.UnaryEcho(context.Background(), &echo.EchoRequest{...})

defer conn.Close() // closes connection and shuts down proxy

22©2019 StackRox. All rights reserved.

Library Usage - Server Side

var tlsConf *tls.Config = ...

grpcSrv := grpc.NewServer()
echo.RegisterEchoServer(grpcSrv, myEchoSrv)

grpcSrv.Serve(tls.Listen("tcp", ":8443", tlsConf))

… and that’s it!

23©2019 StackRox. All rights reserved.

Library Usage - Server Side

var tlsConf *tls.Config = ...

grpcSrv := grpc.NewServer(grpc.With)
echo.RegisterEchoServer(grpcSrv, myEchoSrv)

grpcSrv.Serve(tls.Listen("tcp", ":8443", tlsConf))

import "golang.stackrox.io/grpc-http1/server"

var tlsConf *tls.Config = ...

grpcSrv := grpc.NewServer()
echo.RegisterEchoServer(grpcSrv, myEchoSrv)

httpSrv := &http.Server{
 Handler: server.CreateDowngradingHandler(grpcSrv, nil),
 // Instead of nil, can also use another http.Handler
 // for multiplexed gRPC(-Web)/HTTP usage.
}
httpSrv.Serve(tls.Listen("tcp", ":8443", tlsConf))

… and that’s it!

24©2019 StackRox. All rights reserved.

Outlook & Future Work

• roxctl is not performance-sensitive (at a per-RPC level), so
performance optimizations are TBD
• Idea: auto-sense connection capabilities to adaptively bypass proxy

• Client-streaming and bidi-streaming RPCs unsupported
• Idea: use WebSockets for these
• Coming soon!

Thanks for attending!

mi@stackrox.com - https://github.com/stackrox/go-grpc-http1

mailto:mi@stackrox.com

