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KWOK: Simulate Node Utilization
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KWOK: Create Large Scale Clusters

1K Nodes 10K Pods



KWOK: Use Low Resource 





KWOK Summary 

kwok controller: core component
○ Simulate lifecycle of nodes, pods, and other Kubernetes objects
○ Simulate nodes and Kubelet APIs 
○ Simulate node utilization via Kubelet metrics

Kwokctl: a series of command line tools
o Create and manage kwok clusters
o Dump/restore cluster snapshot

KWOK is a toolkit for creating and managing large scale 
Kubernetes clusters with fake nodes using minimum resources



Failure Injection and Reliability Testing 



Large Scale Kubernetes GPU Clusters

NVLINK + GPUDirect RDMA
NUMA binding 
Multi-level EW switching fabric
Rack + spine
Switch hierarchy
Network topology

Hardware Architecture and Topology

Source: Accelerating AI Workloads with GPUs in Kubernetes - Kevin Klues, Distinguished 
Engineer & Sanjay Chatterjee, Engineering Manager, NVIDIA, Keynote at KubeCon 2024 EU.

Software Stacks &Components
Host-level Components
nvidia-container-toolkit
nvidia-gpu-driver

Kubernetes Components
k8s-device-plugin
gpu-feature-discovery
nvidia-mig-manager
dcgm-exporter



Failures in GPU Clusters

Errors/failures are the New “Normal”

● Hardware faults:  GPU, network 
interface, interconnect

● Software errors: 
driver/firmware/controllers

Failures are costly

● Re-run a training job from scratch

Fault-tolerance is critical 
https://docs.nvidia.com/deploy/pdf/XID_Errors.pdf

How to test?

https://docs.nvidia.com/deploy/pdf/XID_Errors.pdf


KWOK: Fault and Error Injection

Simulate failures

● Inject conditions/errors to fake nodes
○ Taints
○ Labels and annotations
○ Status/conditions

● Inject faults to pods 
○ Initial and app. containers
○ Custom faults : exitCode,               

failureReason, FailureMessage



Node Fault Injection 

Simulate node issues by injecting node conditions
● Node Problem Detector (NPD):  hardware (GPU, mem, disk), kernel, container runtime issues
● DCGM Health Check: GPU health on the node reported by NVIDIA DCGM tool APIs

Type: GpuHWSlowDown, Status: False, Reason: GpuHWSlowDownNotActive,  
Message: GPU has HW Slowdown in Active State

https://developer.nvidia.com/dcgm


Pod Fault Injection

Inject errors to initContainer to simulate preflight check failures: e.g., NCCL check, 
prolog-check, etc. Custom fault: container, exitCode, message, reason, delay





Use Case: Testing and Evaluating 
Fault-tolerant Job Scheduling 

Proactive Fault-tolerant Scheduling
Preflight check to avoid scheduling jobs on 

problematic nodes

Reactive Fault-tolerant Scheduling
Detect fault and take corrective actions

KWOK
Errors to node conditions

KWOK
Errors to Prolog and NCCL-
check initContainers

initContainers

Source: Fault-tolerance Scheduling. Sanjay Chatterjee, Arpit Singh, Abhijit Paithankar, NVIDIA.



Summary



KWOK Use Cases and Adoption

Multi-cluster Testing

● ClusterPedia: search 
Kubernetes resources 
across multi-clusters

● DCE 5: private cloud 
management platform

● Large-scale cluster stress 
testing

● …

Testing in GPU Clusters

● Knavigator: NVIDIA Kubernetes
testing framework

● Testing of fault-tolerant job 
scheduling

● Comparison and evaluation of 
scheduling systems for AI/ML
○ K8s
○ Slurm
○ Volcano
○ Kueue
○ …

Related Open Source Projects

…

https://github.com/clusterpedia-io/clusterpedia
https://www.daocloud.io/en/
https://github.com/NVIDIA/knavigator


Summary 

KWOW is a power tool for large scale Kubernetes testing at a low cost. 

KWOK provides support of failure injection and simulation for testing. 

What’s next?

● GPU nodes and clusters for AI/ML workloads

○ Simulate node operators: e.g., fake GPU operator

● Failure and reliability testing 
○ Simulate and integrate different GPU faults and errors
○ Integrate data from failure monitoring, such as DCGM, Node Problem Detector

● Advanced kwok-operator
○ Manage multiple kwoks to simulate larger clusters
○ Manage creation and deletion of any resources
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