

Large Scale and Reliability Testing
in Kubernetes using KWOK

Shiming Zhang, DaoCloud Yuan Chen, NVIDIA

Outline

• KWOK overview and demo

• Fault injection for reliability testing and demo

• Summary

KWOK Overview

Control Plane

Kubernetes Cluster

Node 1kubelet

Cloud
Provider
API

Node 2kubelet

c-m

etcd api

c-c-m

sched metrics-
server

Environment

Control Plane

KWOK: Kubernetes WithOut Kubelet

c-m

sched

Fake Node Fake Node

KWOK Controller
simulate node/kubelet and other k8s resources

etcd

api

>_

binary minikube

kwokctl
command line tool

OS

metrics-
server

Control Plane

KWOK Controller

c-m

sched

Fake Node Fake Node

KWOK Controller
• Simulate and manage lifecycle of nodes, pods, and other objects• Simulate Kubelet and Node APIs

etcd api

metrics-
server

kwokctl

Control Plane

Runtime
>_

binary
kwokctl

etcdctl

A command line tool for cluster creation and management

OS

etcd

api c-m sched

kubectl

Host (Workstation)

metrics-
server

KWOK: Simulate Node Utilization

Fake Node

hpa

Fake Node

vpa

Cluster
Autoscaler

Simulates metrics and node load

metrics-
serverapi

kubectl top

KWOK: Create Large Scale Clusters

1K Nodes 10K Pods

KWOK: Use Low Resource

KWOK Summary

kwok controller: core component
○ Simulate lifecycle of nodes, pods, and other Kubernetes objects
○ Simulate nodes and Kubelet APIs
○ Simulate node utilization via Kubelet metrics

Kwokctl: a series of command line tools
o Create and manage kwok clusters
o Dump/restore cluster snapshot

KWOK is a toolkit for creating and managing large scale
Kubernetes clusters with fake nodes using minimum resources

Failure Injection and Reliability Testing

Large Scale Kubernetes GPU Clusters

NVLINK + GPUDirect RDMA
NUMA binding
Multi-level EW switching fabric
Rack + spine
Switch hierarchy
Network topology

Hardware Architecture and Topology

Source: Accelerating AI Workloads with GPUs in Kubernetes - Kevin Klues, Distinguished
Engineer & Sanjay Chatterjee, Engineering Manager, NVIDIA, Keynote at KubeCon 2024 EU.

Software Stacks &Components
Host-level Components
nvidia-container-toolkit
nvidia-gpu-driver

Kubernetes Components
k8s-device-plugin
gpu-feature-discovery
nvidia-mig-manager
dcgm-exporter

Failures in GPU Clusters

Errors/failures are the New “Normal”

● Hardware faults: GPU, network
interface, interconnect

● Software errors:
driver/firmware/controllers

Failures are costly

● Re-run a training job from scratch

Fault-tolerance is critical
https://docs.nvidia.com/deploy/pdf/XID_Errors.pdf

How to test?

https://docs.nvidia.com/deploy/pdf/XID_Errors.pdf

KWOK: Fault and Error Injection

Simulate failures

● Inject conditions/errors to fake nodes
○ Taints
○ Labels and annotations
○ Status/conditions

● Inject faults to pods
○ Initial and app. containers
○ Custom faults : exitCode,

failureReason, FailureMessage

Node Fault Injection

Simulate node issues by injecting node conditions
● Node Problem Detector (NPD): hardware (GPU, mem, disk), kernel, container runtime issues
● DCGM Health Check: GPU health on the node reported by NVIDIA DCGM tool APIs

Type: GpuHWSlowDown, Status: False, Reason: GpuHWSlowDownNotActive,
Message: GPU has HW Slowdown in Active State

https://developer.nvidia.com/dcgm

Pod Fault Injection

Inject errors to initContainer to simulate preflight check failures: e.g., NCCL check,
prolog-check, etc. Custom fault: container, exitCode, message, reason, delay

Use Case: Testing and Evaluating
Fault-tolerant Job Scheduling

Proactive Fault-tolerant Scheduling
Preflight check to avoid scheduling jobs on

problematic nodes

Reactive Fault-tolerant Scheduling
Detect fault and take corrective actions

KWOK
Errors to node conditions

KWOK
Errors to Prolog and NCCL-
check initContainers

initContainers

Source: Fault-tolerance Scheduling. Sanjay Chatterjee, Arpit Singh, Abhijit Paithankar, NVIDIA.

Summary

KWOK Use Cases and Adoption

Multi-cluster Testing

● ClusterPedia: search
Kubernetes resources
across multi-clusters

● DCE 5: private cloud
management platform

● Large-scale cluster stress
testing

● …

Testing in GPU Clusters

● Knavigator: NVIDIA Kubernetes
testing framework

● Testing of fault-tolerant job
scheduling

● Comparison and evaluation of
scheduling systems for AI/ML
○ K8s
○ Slurm
○ Volcano
○ Kueue
○ …

Related Open Source Projects

…

https://github.com/clusterpedia-io/clusterpedia
https://www.daocloud.io/en/
https://github.com/NVIDIA/knavigator

Summary

KWOW is a power tool for large scale Kubernetes testing at a low cost.

KWOK provides support of failure injection and simulation for testing.

What’s next?

● GPU nodes and clusters for AI/ML workloads

○ Simulate node operators: e.g., fake GPU operator

● Failure and reliability testing
○ Simulate and integrate different GPU faults and errors
○ Integrate data from failure monitoring, such as DCGM, Node Problem Detector

● Advanced kwok-operator
○ Manage multiple kwoks to simulate larger clusters
○ Manage creation and deletion of any resources

References

KWOK
● Project:: https://kwok.sigs.k8s.io/
● GitHub:: https://kwok.sigs.k8s.io/docs/adopters/
● Demos: https://github.com/kubernetes-

sigs/kwok/tree/main/demo
● Related talks:

○ Shiming Zhang & Hao Liang, 深入研究：KWOK | Deep
Dive: KWOK

○ Sara Kokkila-Schumacher & Vishakha Ramani Best
Practices: Improving Batch Scheduling Performance
at Scale Using MCAD and KWOK

○ Wei Huang & Weiwei Yang, Revolutionizing Kube
Scalability Testing with KWOK

○ Dejan Zele Pejchev, Scaling the Heights: Simulating
Very Large Kubernetes Clusters with KWOK

Knavigator
● GitHub: https://github.com/NVIDIA/knavigator

Projects that use KWOK (Adopters)
● https://github.com/kubernetes-sigs/kube-scheduler-simulator
● https://github.com/kubernetes-sigs/e2e-framework

● https://github.com/kubernetes-sigs/karpenter
● https://github.com/kubernetes/autoscaler
● https://github.com/capi-samples/cluster-api-provider-kwok
● https://github.com/kyverno/kyverno

● https://github.com/kubevirt/kubevirt
● https://github.com/NVIDIA/knavigator
● https://github.com/apache/yunikorn-k8shim
● https://github.com/Azure/azure-container-networking

● https://github.com/project-codeflare/multi-cluster-app-dispatcher
● https://github.com/openshift-psap/topsail
● https://github.com/kubescape/kwok-bench
● https://github.com/acrlabs/simkube

● https://github.com/run-ai/fake-gpu-operator
● https://github.com/kubeovn/kube-ovn
● https://github.com/nuodb/terraform-provider-nuodbaas
● https://github.com/vladimirvivien/ktop

● https://github.com/headlamp-k8s/headlamp
● https://github.com/turbonomic/kubeturbo
● https://github.com/kubewharf/kubeadmira
● https://github.com/clusterpedia-io/clusterpedia

● …

https://kwok.sigs.k8s.io/
https://kwok.sigs.k8s.io/docs/adopters/
https://github.com/kubernetes-sigs/kwok/tree/main/demo
https://kccncosschn2023.sched.com/
https://kccncna2023.sched.com/
https://kccncna2023.sched.com/
https://kcseu2024.sched.com/
https://github.com/NVIDIA/knavigator
https://kwok.sigs.k8s.io/docs/adopters/
https://github.com/kubernetes-sigs/kube-scheduler-simulator
https://github.com/kubernetes-sigs/e2e-framework
https://github.com/kubernetes-sigs/karpenter
https://github.com/kubernetes/autoscaler
https://github.com/capi-samples/cluster-api-provider-kwok
https://github.com/kyverno/kyverno
https://github.com/kubevirt/kubevirt
https://github.com/NVIDIA/knavigator
https://github.com/apache/yunikorn-k8shim
https://github.com/Azure/azure-container-networking
https://github.com/project-codeflare/multi-cluster-app-dispatcher
https://github.com/openshift-psap/topsail
https://github.com/kubescape/kwok-bench
https://github.com/acrlabs/simkube
https://github.com/run-ai/fake-gpu-operator
https://github.com/kubeovn/kube-ovn
https://github.com/nuodb/terraform-provider-nuodbaas
https://github.com/vladimirvivien/ktop
https://github.com/headlamp-k8s/headlamp
https://github.com/turbonomic/kubeturbo
https://github.com/kubewharf/kubeadmira
https://github.com/clusterpedia-io/clusterpedia

Kay Yan

Iceber Gu

Carlory Fan

Chauncey Jiang

York Chen

Wenjie Song

Minjie Huang

Acknowledgements

Paco Xu

Peter Pan

Kante Yin

Max Zhu

Mengjiao Liu

Michael Yao

Yang Xiao

Dmitry Shmulevich

Kevin Klues

Sanjay Chatterjee

Brian Blitzer

Adam Tetelman

Rob Esker

Arpit Singh

Abhijit Paithankar

Carlos Arango Gutierrez

Contributors

Thank you!

