
Graphical User Interface Using 
Flutter in Embedded Systems

Hidenori Matsubayashi
@ Sony Corporation

#lfelc



Sec.2 Tokyo Laboratory 29 R&D Center

Copyright 2020 Sony Corporation

Graphical User Interface Using Flutter
in Embedded Systems

Hidenori Matsubayashi
@ Sony Corporation

Embedded Linux Conference Europe
October 27, 2020



Hidenori Matsubayashi

Embedded Software Engineer @ Sony
Ø Living in Tokyo, Japan
Ø Specialties

Ø Embedded Linux System Development
Ø Board bring-up and software integration for:

Ø Qualcomm
Ø NXP
Ø NVIDIA

Ø Middleware
Ø Graphics
Ø Audio/Video

Ø Firmware/Low level layer
Ø RTOS
Ø Bootloader
Ø Device driver
Ø FPGA

Ø Programming Languages: C/C++, Rust, Dart

3

HidenoriMatsubayashi

Hidenori.Matsubayashi@sony.com

https://github.com/HidenoriMatsubayashi
mailto:Hidenori.Matsubayashi@sony.com


Agenda

Ø Background
Ø Overview of the new approach
Ø Demo Video
Ø Details on our approach
Ø Summary

4



Agenda

Ø Background
Ø Overview of the new approach
Ø Demo Video
Ø Details on our approach
Ø Summary

5



Background

Ø We were always searching suitable GUI toolkits for embedded systems
Ø OSS ?
Ø Commercial software ?
Ø Toolkits which is provided by SoC vendor ?

Ø There are a lot of GUI toolkits in OSS or commercial licenses.

Ø However, there arenʼt a lot of GUI toolkits available for especially 
consumer embedded products in OSS.

6



Why few toolkits for consumer embedded products in OSS? 

There are two main reasons

1. Our requirements

2. Typical challenges on Embedded platforms

7



Reason 1: Main Requirements for GUI toolkits

Ø High designability
Ø Need beautiful UI and smooth animation like smartphone and web (not like desktop apps) 

Ø Ease of development
Ø Sufficient development environment
Ø There are more information about them on the internet

Ø Good Performance / Footprint
Ø Low CPU usage
Ø Low memory usage

Ø Software Portability
Ø Support display servers (X11 / Wayland)
Ø Support cross-platforms and link an embedded products and smartphone apps

Ø Software License
Ø Sometimes, need proprietary software

8



Examples of GUI toolkits (Exclude toolkits that only focused Android, iOS and desktops)

Category Name Software License Main Maintainer
Web-based Electron MIT License GitHub

NW.js MIT License Intel
Chromium BSD 3-Clause Google
WebKit LGPL, BSD Apple
Gecko Mozilla Public License 2.0 Mozilla

Desktop-based GTK LGPL v2.1+ GNOME
Qt Commercial License (or GPL/LGPL v3.0) Qt Company
Mono MIT, BSD, GPL etc. Microsoft (Xamarin)
SDL zlib License - (OSS Community)
Kivy MIT License - (OSS Community)
wxWidgets wxWindows License - (OSS Community)
openFrameworks MIT License - (OSS Community)

Mobile-based Flutter BSD 3-Clause Google
Game-based Unreal Engine Commercial License (depends on sales) Epic Games

Unity Commercial License (depends on sales) Unity

often used

often used

our new approach
9



About WebView (WebKit / Chromium)

Ø HTLM5/JavaScript using WebView (embedded browser rendering 
engine) or browsers is often used in embedded products

Ø Pros
Ø Beautiful UI
Ø Easy to develop (include development environments)
Ø High portability (HTML/JavaScript resources), etc.

Ø Cons
Ø High introduction cost

Ø Huge source code and dependent packages (libraries)
Ø Need high performance and footprint
Ø Difficulty to access local files or Hardware resources

Ø We usually use an internal web server to resolve it

10



About native toolkits

11

Ø GTK
Ø https://www.gtk.org/
Ø Open-source cross-platform toolkit

Ø Desktop (Linux / macOS / windows)
Ø Standard GUI toolkit on Linux
Ø Not a modern design just like smartphone apps because it is for desktop apps

Ø Qt
Ø https://www.qt.io/
Ø Very popular
Ø Open-source cross-platform toolkit

Ø Desktop (Linux / macOS / windows), mobile, Embedded (Linux / RTOS), RTOS etc.
Ø Dual-licensed under commercial and open source licenses (GPL/LGPL v3.0)

Ø SDL
Ø https://www.libsdl.org/
Ø Open-source cross-platform development library without widgets
Ø Suitable for games or apps that have only simple menus

https://www.gtk.org/
https://www.qt.io/
https://www.libsdl.org/


What is Flutter?

Ø https://flutter.dev/

Ø Flutter is Googleʼs GUI toolkit for building beautiful, natively compiled applications

Ø Released in 2017

Ø Supported platforms from a single source code
Ø Mobile (Android/iOS)
Ø Web: β version
Ø Desktop (Linux/Windows/macOS): α version

Ø Programing language: Dart

12

https://flutter.dev/


Flutter architecture overview

Framework
(Dart)

Material

Widgets

Engine
(C/C++)

Embedder
(Java, C++, ..)

Platform

3rd-party OSS

Android / iOS / Linux / macOS / Windows

Flutter user apps (Dart)

Cupertino

Rendering

Animation Painting Gestures
Foundation

dart-sdk Skia Txt

Render Surface Setup Native Plugins Packaging

Vsync Waiter Thread Setup Event Loop Interop

Service Protocol Composition Platform Channels

Dart Isolate Setup Rendering System Events

Dart VM Management Frame Scheduling Asset Resolution

Frame Pipelining Text Layout

13

Porting layer for specific platforms

…

• Written in Dart language
• Create UI by using widgets
• Works on Dart-VM

• Graphics Engine by being written in C/C++
• Provide graphics shell
• Manage Dart-VM
• Drawing by using Skia

etc.



Why few toolkits for consumer embedded products in OSS? 

There are two main reasons

1. Our requirements

2. Typical challenges on Embedded platforms

14



Reason 2: Typical challenges on Embedded platforms

Ø Development is usually done on different architectures
Ø Need to support multi architecture and SoCs

Ø Limited CPU performance / memory
Ø Lower cpu-uage is better

Ø Display server types (X11 or Wayland) that are supported by BSP
Ø Especially, Wayland is mainly supported by SoC vendors

We need GUI toolkits that are as lightweight as possible and independent 
of hardware and architectures

15



BSP trends of supporting display server

Vendor SoC/Board/
Platform

Display server Notes
X11 Wayland

NXP i.MX 8M × ○ X11 isn’t supported after i.MX 6
Xilinx Zynq ○ ○ Peta Linux supports Wayland from 

2019.2
NVIDIA Jetson ○ ○ -
Qualcomm RB5 ○ ○ SoC: SD865
Raspberry Pi4 Broadcom 

BCM2711
○ △ -

Wayland is suitable for embedded systems because it is 
lightweight and less dependency packages.

Gradually shifting?

○ ･･･ Official Support
△ ･･･ Unofficial (3rd party)
× ･･･ Not supported

16



Challenges by using Wayland

Ø Unfortunately, a lot of GUI toolkits arenʼt enough support for Wayland
Ø Because they are based on X11 and still developing now
Ø e.g. Some GTK APIs arenʼt still supported on Wayland

GTK example on X11 GTK example on Wayland

Drawing size 
isn’t incorrect

17



Wrapping up of our purposes

We were looking for a toolkit that can solve the issues mentioned so far.

Ø A new GUI toolkit has high functionality and designability like WebView

Ø Suitable for Wayland and Embedded systems

Ø Lightweight, good performance

Ø Low costs

Ø Support cross-platform

Ø etc.

18



Agenda

Ø Background
Ø Overview of the new approach
Ø Demo Video
Ø Details on our approach
Ø Summary

19



New approach to GUI in embedded systems

20

Ø Flutter + Wayland is the best practice in embedded systems using Linux

Ø Why Flutter?

Ø Why is the combination of Flutter and Wayland good?



Why we choose Flutter?

Ø You can easily create a modern UI like a mobile app

Ø Supporting cross-platform (Desktop, Mobile, Web)

Ø Flutter is popular OSS and there are a lot of information

Ø Flutter is natively compiled applications (Fast!)

Ø Flutter provides the custom embedder API-layer for specific platforms
Ø https://github.com/flutter/flutter/wiki/Custom-Flutter-Engine-Embedders

Ø Fewer library dependencies (Flutter Engine)
Ø Basically your platform needs only OpenGL/EGL library

Ø Software license is BSD 3-Clause
21

https://github.com/flutter/flutter/wiki/Custom-Flutter-Engine-Embedders


Why is the combination of Flutter and Wayland good?

Ø Flutter draws graphics by using OpenGL or Vulkan
Ø Flutter draws directly UI to EGL Surface

Ø Wayland (Client)
Ø Provides EGL Surface to Flutter
Ø Sends Keyboard / Mouse input event to Flutter
Ø Communication with Flutter (Dart)
…

22

Wayland
Compositor

Flutter
Engine
(C++)

Flutter
Framework

(Dart)

Drawing
(EGL Surface)

Input Events
(Wayland protocol)

Drawing
(Layer tree)

Events
(Platform Channel)

Porting for specific platform

Wayland
Client

Events
(Embedder APIs)

Drawing
(EGL Surface)

Flutter OSS



Flutter embedder APIs example

Ø embedder header file
Ø https://github.com/flutter/engine/blob/master/shell/platform/embedder/embedder.h

23

Flutter run

Set Window Size

Send Input Events

https://github.com/flutter/engine/blob/master/shell/platform/embedder/embedder.h


Agenda

Ø Background
Ø Overview of the new approach
Ø Demo Video
Ø Details on our approach
Ø Summary

24



About demo video

25

Ø We prepared the demo app for ELC Europe 2020

Ø The System UI prototype for demo



Watch the demo video

26



[References] Performance / Footprint

27

Charts show performances when running the demo app shown in the video from booting on Jetson Nano. 
Display: WSVGA (1024x600) / Power: AC / Flutter: Release mode Flutter Engine has four threads

https://developer.nvidia.com/embedded
/jetson-nano-developer-kit

0

20

40

60

80

100

G
PU

 U
sa

ge
[%

]

Time

GPU

0

100

200

300

400

500

M
em

or
y 

U
sa

ge
[M

B]

Time

Memory

0

500

1000

1500

0

20

40

60

80

100

CP
U

 U
sa

ge
[%

]

Time

CPU0

Usage[%] Frequency[MHz]

0

500

1000

1500

0

20

40

60

80

100
CP

U
 U

sa
ge

[%
]

Time

CPU1

Usage[%] Frequency[MHz]

0

500

1000

1500

0

20

40

60

80

100

CP
U

 U
sa

ge
[%

]

Time

CPU2

Usage[%] Frequency[MHz]

0

500

1000

1500

0

20

40

60

80

100

CP
U

 U
sa

ge
[%

]

Time

CPU3

Usage[%] Frequency[MHz]

Launch Weston, 
System UI (Flutter), 

Other necessary 
services

Launch the 
Flutter sample app

Launch the 
Flutter music app

https://developer.nvidia.com/embedded/jetson-nano-developer-kit


Agenda

Ø Background
Ø Overview of the new approach
Ø Demo Video
Ø Details on our approach
Ø Summary

28



Software Architecture of Demo App

Hardware (Arm64)

Wayland/Weston

Flutter embedded shell for Wayland

System UI

Linux

User Apps

Middleware

User Application Layer (Flutter apps)

System Level Layer
- System User Interface (Window Manager)
- Managing Flutter Engine
- Managing user apps

Flutter Engine

…

Other
packages

Music PlayerClock Settings Terminal

Our demo software

Application Framework

29



System UI (prototype for demo)

30

Ø System-UI prototype was developed as the Flutter app written in Dart 
and C++

Ø Features
Ø App launcher
Ø Installing / Uninstalling apps
Ø Clock



Flutter embedded shell for Wayland

Ø Management of the Flutter Engine

Ø Simple window manager
Ø Small Wayland shell instead of Weston-desktop-

shell
Ø Creating EGL surface
Ø User input (Mouse, touch, keyboard) support

Ø Others
Ø Communication between Dart (Flutter Apps) and 

platform native programs
Ø System locale
Ø etc.

Ø For the platform-independent part, we have used 
the Flutter official source code

31



Wayland client

weston.ini (sample)
32

Ø We use Weston (Wayland compositor)

Ø Run the graphics shell for Flutter as a desktop client on Weston by 
using client-shell in weston.ini

Graphics shell for 
Flutter
on Wayland

weston-
desktop-shell

Custom section



Weston API

33

Flutter embedded shell for Wayland

Weston

Window Manager

desktop-shell.so

Compositor

libweston-desktop-6.so

libwayland-client.so libwayland-egl.solibwayland-cursor.so

libweston-6.so

EGL
Flutter
Engine

libflutter_engine.so

Ready/
Get Info

Show Mouse Cursor

Wayland Protocol Create EGL Surface Manage Flutter

libwayland-server.so

Weston APIs
weston_desktop_shell_desktop_ready
weston_config_get_name_from_env
…



Flutter Linux desktop (OSS official support version)

34

GTK

GDK

X11 Wayland

GTK Window

Flutter View
(EGL Surface)

One View of GTK
(Surface for Flutter)

Ø Official Flutter for Linux uses GTK for the graphics shell

GTK widget



IPC / Binding to native code in Flutter

Ø Communication API is provided by Flutter
Ø Method Channel
Ø Event Channel
Ø Basic Message Channel

Ø dart:ffi
Ø Foreign Function Interface for interoperability with the C programming language

Ø Unix domain sockets in dart:io

Ø 3rd party library
Ø A native Dart client implementation of D-Bus

Ø https://github.com/canonical/dbus.dart
Ø grpc-dart

Ø https://github.com/grpc/grpc-dart
…

35

https://github.com/canonical/dbus.dart
https://github.com/grpc/grpc-dart


Support Unix domain socket in grpc-dart

Ø grpc-dart is the gRPC library in Dart implementation
Ø https://github.com/grpc/grpc-dart

Ø We have been contributing to support Unix domain socket in grpc-dart
Ø https://github.com/grpc/grpc-dart/pull/327

Ø Use case
Ø IPC between dart or other language: Unix domain socket
Ø External communication between the device and other devices: HTTP/2

Flutter
(Dart) grpc-dart

Other
Process

API
(gRPC)

Other
Process

HTTP/2
(External)

Unix domain socket
(Internal)

36

https://github.com/grpc/grpc-dart
https://github.com/grpc/grpc-dart/pull/327


Flutter Engine for Linux on Arm64 Architecture

Ø Flutter Engine is the core rendering engine library by using mainly Skia
and Dart-VM (Virtual Machine)
Ø https://github.com/flutter/engine

Ø Flutter doesnʼt currently officially support Linux Arm64 hosts

Ø We have been contributing to support Linux on Arm64 hosts
Ø https://github.com/flutter/engine/pull/20254
Ø https://github.com/flutter/buildroot/pull/390

Ø You can use Flutter in Arm64 embedded systems now
37

https://github.com/flutter/engine
https://github.com/flutter/engine/pull/20254
https://github.com/flutter/buildroot/pull/390


Development Environment of Flutter

38

Ø Flutter provides the Flutter SDK to develop and debug a Flutter app
Ø https://github.com/flutter/flutter

Ø Flutter doesnʼt currently officially support Arm64 hosts such as Linux, 
macOS, Windows.

Ø We have been contributing to support multi-architecture hosts 
(especially Linux)
Ø Works on Linux Arm64 Hosts
Ø Cross-builds on Linux x64 Hosts for Arm64 targets etc.
Ø https://github.com/flutter/flutter/pull/61221
Ø https://github.com/flutter/website/pull/4740

https://github.com/flutter/flutter
https://github.com/flutter/flutter/pull/61221
https://github.com/flutter/website/pull/4740


Agenda

Ø Background
Ø Overview of the new approach
Ø Demo Video
Ø Details on our approach
Ø Summary

39



Summary

Ø Introducing the new GUI approach using Flutter in embedded systems

Ø Our motivation and purpose
Ø Use Flutter in Arm64 and Linux Embedded Systems

Ø Future works
Ø Further contributing to Flutter for Linux

Ø Flutter for Linux is α version now
Ø To be promoted to the official version as soon as possible

40



Thank you for your time

41




