
Practical Attacks Against The I2P Network

Christoph Egger

Anonymity networks, such as Tor or I2P, were built to allow users to access network resources
(e.g., to publicly express their opinion) without revealing their identity. Newer designs, like I2P,
run in a completely decentralized way, while older systems, like Tor, are built around central
authorities. The decentralized approach has advantages (no trusted central party, better scala-
bility), but there are also security risks associated with the use of distributed hash tables (DHTs)
in this environment.

I2P was built with these security problems in mind, and the network is considered to provide
anonymity for all practical purposes. Unfortunately, this is not entirely justified. In this thesis,
we present a group of attacks that can be used to deanonymize I2P users. Specifically, we show
that an attacker, with relatively limited resources, is able to deanonymize any I2P user with high
probability.

Anonymitätsnetzwerke, wie zum Beispiel Tor oder I2P, wurden entwickelt, um Nutzern den
anonymen Zugriff auf Informationen im Netzwerk zu ermöglichen, ohne dabei ihre Iden-
tität preiszugeben. Neuartige Entwürfe für derartige Netzwerke, wie zum Beispiel I2P, ar-
beiten dabei vollständig dezentral, während ältere Systeme, wie z. B. Tor, auf eine zentrale Au-
torität aufbauen. Der dezentrale Aufbau hat Vorteile (keine vertrauenswürdige, zentrale Au-
torität, bessere Scalierbarkeit), allerdings ermöglicht er durch die Verwendung von verteilten
Streutabellen auch neuartige Angriffsszenarien.

I2P wurde unter Berücksichtigung dieser Probleme entworfen und wird als sicher in Bezug
auf praktische Angriffe erachtet. Leider ist dieses Vertrauen nicht vollständig gerechtfertigt. In
dieser Arbeit zeigen wir eine Sammlung von Angriffen, die verwendet werden können, um I2P
Nutzer zu identifizieren. Konkret zeigen wir, dass ein Angreifer mit vergleichsweise geringen
Mitteln in der Lage ist, I2P Nutzer mit hoher Sicherheit zu identifizieren.

Contents

1 Introduction 5

2 I2P Overview 8
2.1 Tunnels and Tunnel Pools . 8
2.2 Router Info and Lease Set . 9
2.3 Network Database . 9
2.4 Floodfill Participation . 10
2.5 Example Interactions . 10
2.6 Threat Model . 11
2.7 Sybil Attacks . 11
2.8 Eclipse Attacks . 12

3 The Attacks 13
3.1 Floodfill Takeover . 13
3.2 Sybil Attack . 14
3.3 Eclipse Attack . 15
3.4 Deanonymisation of Users . 15

4 Implementation and Setup 17
4.1 Node Setup . 17
4.2 Inter-Node Communication . 18
4.3 Distributed Correlation . 19

5 Evaluation 20
5.1 Floodfill Takeover . 20
5.2 Experimental Setup . 21
5.3 Sybil attack . 22
5.4 Eclipse attack . 22
5.5 Deanonymisation of Users . 22

6 Limitations 26

7 Discussion 27
7.1 Potential Improvements . 27
7.2 Discovery of the attack . 27
7.3 Implemented Improvements . 28
7.4 Suggested Improvements . 28

8 Related Work 30

4

1
INTRODUCTION

In modern societies, freedom of speech is considered an essential right. One should be able
to express his/her opinion without fear of repressions from the government or other members
of society. To protect against retribution, the laws of democratic countries recognize the im-
portance of being able to publish information without disclosing one’s identity in the process.
Unfortunately, this essential right to anonymity is not available in today’s Internet.

Local observers, such as Internet providers, site administrators, or users on the same wireless
network, can typically track a person while she is using the Internet and build a record of her
actions. While encryption hides the actual content transmitted, it is still possible to identify
which services are used. Therefore, an observer can link the user to the websites that she visits
and, based on these observations, take action.

Tor [2, 3] was one of the early solutions to provide anonymous communication on the Inter-
net. It works by routing traffic through a number of intermediate nodes, and each node only
knows about its direct communication partners. Hence, looking at the first (or last) link, it is
not possible to infer the destination (or source) of the traffic. Tor has a centralized design built
around trusted authority servers. Each of these servers keeps track of all nodes in the network
and their performance. The authority servers regularly publish this list for clients to use. Specif-
ically, the clients pick nodes from this list to create encrypted tunnels, until they reach so-called
exit nodes. These exit nodes then act as proxies, allowing Tor users to access the public Internet
(called clearnet) without revealing their identity.

As there are only few trusted authority servers, the integrity of these nodes is essential for the
entire network, making them a valuable target for attacks. In addition, since all of the authorities
need to keep track of the whole network and regularly agree on its state, this design has limited
scalability. Finally, Tor is typically used to anonymously access services on the public Internet.
As most communication on the Internet is unencrypted, this exposes the actual content of the
interaction to the exit node. It also exposes the services in the clearnet to threats coming from

5

CHAPTER 1. INTRODUCTION

the anonymity network, where finding the responsible entity (e.g., for legal response) is next to
impossible.

To address limitations of Tor’s centralized design, researchers have proposed distributed al-
ternatives. Arguably, the most popular instance of decentralized anonymity systems is I2P. I2P
stores all metadata in a distributed hash table (DHT), which is called NetDB. The DHT ensures
scalability of the network. Being run on normal I2P nodes, the NetDB also avoids a small group
of authority servers that would need to be trusted. Finally, I2P provide a separate network
(called darknet) where both, service providers and users, act only within the I2P network. All
connections inside the darknet are end-to-end encrypted, and participants are well-aware of the
anonymity of each other.

I2P uses the public Internet for transporting encrypted data between darknet nodes, but no
connections into or out of the darknet are provided. Of course, as I2P provides general-purpose
data connections, it is possible for individuals to run proxy servers. This allows I2P users to
reach the clearnet anonymously, and for people outside to access anonymized resources inside
I2P. However, proxies are not considered critical as users generally stay within the network.
Also, as there are only few of these proxies, they are easy to block by service providers who do
not want anonymous interactions.

The use of DHTs in peer-to-peer anonymity systems has been successfully attacked in the
past [11]. Continued research on this problem finally led to general results [8] that showed that
the additional effort to verify the correctness of lookup results directly increases vulnerability
to passive information-leak attacks. I2P itself has been attacked successfully by exploiting the
decentralized performance analysis of its participants [6].

The developers of I2P have reacted to the publication of attacks, and they have improved their
network to resist the DHT-based attacks introduced in [11] and [8], by limiting the database to a
subset of well-performing nodes. This reduces the number of nodes involved in each individual
lookup to only one for most cases. Moreover, the performance analysis approach was updated
to make it more difficult for an attacker to influence it in an exploitable way. As a result, I2P is
considered secure in practice. Unfortunately, this is not entirely justified.

In this thesis, we describe an attack that can be used to track a victim using anonymized re-
sources in I2P – for example, a user browsing eepsites (which is I2P’s terminology for anony-
mous websites) or chatting. We are able to list the services the victim accesses regularly, the time
of access, and the amount of time that is spent using the service. As a result, we break the user’s
anonymity with high probability

We first show how an attacker can tamper with the group of nodes providing the NetDB, until
he controls most of these nodes. This is possible because I2P has a fixed maximum number of
database nodes (only a small fraction of nodes in the entire network host the database). The set
of nodes can be manipulated by exploiting the normal churn in the set of participating nodes or
by carrying out a denial of service (DoS) attack to speed up the change. We show how a Sybil
attack [4] can be used as an alternative approach to control the NetDB.

By leveraging control over the network database, we demonstrate how an eclipse [1] [9] attack
can be launch. This results in services being unavailable or peers getting disconnected from the
network.

Finally, our deanonymization attack exploits the protocol used by peers to verify the success-
ful storage of their peer information in the NetDB. The storage and verification steps are done
through two independent connections that can be linked based on timing. Using the informa-
tion gathered by linking these two interactions, an attacker can determine (with high proba-
bility) which tunnel endpoints belong to specific participants (nodes) in the I2P network, and,
therefore, deanonymize the participant.

6

CHAPTER 1. INTRODUCTION

Experimental results were gathered by tests performed both on our test network and on the
real I2P network (against our victim nodes running the unmodified I2P software; no service
disruption was caused to the actual users of the network).

In summary, the main contributions in this thesis are the following:

1. A novel deanonymization attack against I2P, based on storage verification

2. Complete experimental evaluation of this attack in the real I2P network

3. Suggestions on how to improve the I2P to make it more robust against this class of attacks

7

2
I2P OVERVIEW

In this section, we will describe key concepts of I2P, as well as how well-known attacks have
been taken into account when designing its network infrastructure and protocols.

I2P is an application framework (or middleware layer) built around the so-called I2P router.
The router is a software component that runs on a host and provides connectivity for local I2P
applications. An application can either accesses darknet services (as a client), or it can host a
service (as a server).

Connectivity between applications is implemented via a fully decentralized peer-to-peer net-
work, which runs as an overlay on top of IP. Applications can either use a TCP-like protocol
called NTCP or a UDP-like protocol called SSU. The router maps these connections to packet-
based I2P tunnels. These I2P tunnels provide anonymity using standard onion routing (similar
to the well-known approach used by the Tor network). Tunnels are identified by the outermost
peer in the chain and a unique tunnelID (these elements are roughly analog to the IP-address
and port pair used in the clearnet).

Example applications include websites (called eepsites in the I2P community) and file shar-
ing services, which together account for at least 30 % of I2P services [10], as well as email and
chat systems. In February 2013, there were about 20,000 users in the I2P network at any given
point in time; up from around 14,000 at the beginning of 2012.

2.1 Tunnels and Tunnel Pools

I2P uses paired unidirectional tunnels handling onion-encrypted packets. It uses two different
types of tunnels: Exploratory tunnels are used for all database lookups. They typically have
a length of two hops. CLIENT tunnels in contrast are used for all data connections. These client
tunnels are bound to a local application but are used to reach any service this application is
accessing, or, in the case of a server application, for communication with several clients. They

8

CHAPTER 2. I2P OVERVIEW

have a typical length of three nodes. The administrator of each node, however, can configure
the length for each type and each direction of tunnel independently, and even add some ran-
domness to the number. However, there is an upper limit of eight hops.

For each application, the I2P router keeps a pool of tunnel pairs. Exploratory tunnels
for interactions with the NetDB are shared among all users of a router. If a tunnel in the
pool is about to expire or the tunnel is no longer useable (e.g., because one of the nodes in the
tunnel is failing) the router creates a new tunnel and adds It to the pool. Tunnels are built
using tunnelBuildMessages. They contain, for each node in the tunnel, a session key, the
tunnelID on which the node should listen for packets, and both name and tunnelID for the
next node in the chain. The tunnelBuildMessage is iteratively encrypted using the node’s
public key to only reveal the necessary information at each node and sent to the first node. Each
node then decrypts the packet and removes its information passing the tunnelBuildMessage
to the next node.

2.2 Router Info and Lease Set

The NetDB keeps two types of records: Peer and service information. Peer information is stored
in so-called routerInfo structures containing the information needed to reach a peer – its IP
address and port – as well as its public keys. This information is needed also to cooperate in
a tunnel with this peer. Peer information has no explicit period of validity, however during
normal operation peers refresh their routerInfo by uploading it to the NetDB every ten min-
utes. Participants invalidate them after a period of time depending on the number of peers they
know, in order to make sure a reasonable number of peers are known locally at any point in
time.

The leaseSets contain service information, more specifically the public keys for communi-
cating with a service as well as the tunnel endpoints that can be contacted to reach the service.
Since tunnels expire after ten minutes, old service information is useless after that period of
time and expires together with the tunnels. Users have to re-fetch them from the NetDB if they
want to continue communicating with the service even if the same application-layer connection
is used the whole time.

In order for I2P to provide anonymity, service information has to be unlinkable to the peer
information. However, in this thesis, we show a way to actually link these two pieces of infor-
mation and therefore deanonymize I2P participants.

2.3 Network Database

Database records are stored in a Kademlia-style DHT [7] with some modifications to harden it
against attacks. This modified database is called floodfill database and the participating
nodes floodfill nodes.

To request a resource on vanilla Kademlia implementations, a client requests the desired key
from the server node considered closest to the key. If the piece of data is located at the server
node it is returned to the client. Otherwise, the server uses its local knowledge of participating
nodes and returns the server it considers nearest to the key. If the returned server is closer to the
key than the one currently tried, the client continues the search at this server.

Since a malicious node at the right position relative to the key can prevent a successful lookup
in standard Kademlia, I2P adds redundancy by storing each database record on the eight closest
nodes instead of a single one. Additionally, clients do not give up when they reached the closest

9

CHAPTER 2. I2P OVERVIEW

node they can find but continue until their query limit, which currently is eight lookups, is
reached.

Both servers and records are mapped into the keyspace by their cryptographic hash on which
the notion of closeness is based.

The number of floodfill nodes is limited to only few well-connected members. This is
done because the research by Mittal et al. [8] showed how longer lookup paths compromise
anonymity. With only few nodes (around 3 % of total network size) acting as database servers
and these being well connected, it is assumed that an I2P client already knows one of the nodes
storing the information. This keeps the lookup path length to a minimum.

2.4 Floodfill Participation

FLOODFILL participation is designed to regulate the number of floodfill nodes in the net-
work and keep them at a constant count.

There are two kinds of database servers, manual floodfill participants and automatic
floodfill participants. The manual floodfill participants are configured by their operator
to serve in the database. The automatic floodfill participants are I2P nodes using the default
floodfill configuration and are therefore not configured to always or never participate. They
consider acting as floodfill nodes if the maximum amount of floodfill nodes, which was
at 300 during our attack and increased in later releases, is currently not reached. As no node has
global knowledge about all participants and nodes therefore deciding on their local knowledge
only, the actual count is a bit higher. This maximum amount of floodfill nodes does not af-
fect manual floodfill nodes. Based on their performance characteristics these automatic nodes
can decide to participate. These automatic floodfill participants regularly re-evaluate their
performance and step down if they no longer meet the needed performance characteristics.

To estimate the proportion of automatic floodfill participants, we monitored the network
database from the nodes under our control, and detected peers changing their participation sta-
tus, which does not happen for manual floodfill participants but does happen for automatic
ones. Results show that around 95 % database servers are of the automatic kind.

2.5 Example Interactions

Server applications register themselves on the local I2P router with their public key for data
encryption. The router then allocates a tunnel pool for the server application and publishes
the public key and all tunnel endpoints allocated to this application (service information) to
the NetDB. The fingerprint of the application’s public key serves as key into the NetDB. The
router then keeps the service information up-to-date every time it replaces a tunnel. This key
fingerprint remains the primary identifier to reach a service. A list of bookmarks called the
address book is supplied with the I2P software and users can amend this list for themselves and
share it with others.

Figure 2.1 shows a typical client interaction: If an application wants to access an I2P service it
first needs to locate the service. It asks the router for the service information. The routermay
have this service information stored locally (e.g., if it runs a floodfill node or the same infor-
mation was already requested recently) and be able to return it to the application immediately.
If the information is not available locally, the router sends a lookupMessage through one of
the exploratory tunnels and returns the service information to the application, if it could
be found on the NetDB, or an error otherwise. The service lookup is thereby anonymized by the

10

CHAPTER 2. I2P OVERVIEW

0

1

2
3

4

5

6

7
8

9

netDB

Server Router
Application

Server’s System

Client Router
Application

Client’s System

Server’s data tunnel pairClient’s data tunnel pair

Client’s exploratory
tunnel pair

service
lookup

Data connection

Figure 2.1: User accessing an eepsite

use of an exploratory tunnel. Otherwise, floodfill nodes would be able to link users to
services, and avoiding such links is the main goal of anonymity networks. The application can
then hand packets to the router and request them to be sent to the service through one of the
client tunnels allocated to the application. If the router receives any packets through one of
the client tunnels allocated to an application, it forwards them appropriately.

2.6 Threat Model

The I2P project has no explicit threat model specified but rather talks about common attacks
and existing defenses against them1. Overall, the design of I2P is motivated by threats similar
to those addressed by Tor: The attacker can observe traffic locally but not all traffic flowing
through the network and integrity of all cryptographic primitives is assumed. Furthermore, an
attacker is only allowed to control a limited amount of peers in the network (the website talks
about not more than 20 % of nodes participating in the NetDB and a similar fraction of total
amount of nodes controlled by the malicious entity). In this thesis, we present an attack that
requires fewer malicious nodes while still deanonymization users. This threat model is also
used by Hermann et al. [6], putting our result in some context.

2.7 Sybil Attacks

One well-known attack on anonymity systems is the so-called Sybil attack [4], where a malicious
user creates multiple identities to increase control over the system. However, I2P has some
defense mechanisms aimed at minimizing the risk of Sybil attacks.

It is possible to control more identities in the network by running multiple I2P instances on
the same hardware. However, participants evaluate the performance of peers they know of and
weight them when selecting peers to interact with instead of using a random sample. As run-
ning multiple identities on the same host decreases the performance of each of those hosts, the

1http://i2p2.de/how_threatmodel.html

11

http://i2p2.de/how_threatmodel.html

CHAPTER 2. I2P OVERVIEW

number of additional identities running in parallel is effectively limited by the need to provide
each of them with enough resources for being considered as peers.

Additionally the mapping from leaseSets and routerInfos to NetDB keys, which de-
termines the floodfill nodes responsible for storing the data, includes the current date so
the keyspace changes every day at midnight UTC. Nodes clustered at a certain point in the
keyspace on one day will, therefore, be distributed randomly on any other day. However, this
change does not include any randomness and is thus completely predictable, which can be used
in attacks.

2.8 Eclipse Attacks

With a vanilla Kademlia DHT, all requests would be answered by the node nearest to the
searched key. If this node is malicious and claims not to know the key and not to know any
other database server nearer to the key, the lookup will fail. To circumvent this attack I2P stores
the key on the eight nodes closest to the key and a requesting node will continue asking nodes
further away from the key if they no longer know any candidate nearer to the searched key.
Only after reaching a limit of eight lookups without success, the search is considered to have
failed.

12

3
THE ATTACKS

The final goal of our attacks is to identify peers using a particular service on I2P and their
individual usage patterns, including when and for how long they use this service. We describe
different ways to gain the necessary control on the NetDB and include a brief discussion of how
to perform a classical eclipse attack where access to a service inside the I2P network is blocked
by the attacker. Our attack uses a group of 20 conspiring nodes (fully controlled by us) actively
participating in the network and acting as floodfill peers. The description of our attacks is
structured as follows:

a) We take control over the floodfill database. We either forcible remove all other nodes and
take full control (Section 3.1), or use a Sybil attack (Section 3.2) to take control over a region
of the database

b) Leveraging this control of the database, we implement an Eclipse attack (Section 3.3)

c) Alternatively, we exploit our control to link store and verification connections that done by
peers who update their routerInfos, hence deanonymizing these peers (Section 3.4)

3.1 Floodfill Takeover

In this section, we describe an attack that can be used to control the majority of database nodes
in the I2P network. By taking control of the NetDB, one can log database actions for the full
keyspace. The attack is possible with relatively few resources (only 2 % of total nodes in the
network are needed). Note that the threat model limits an attacker to 20 % of floodfill nodes,
which is violated by this attack. Nonetheless, the I2P developers still consider this a serious and
valid attack.

13

CHAPTER 3. THE ATTACKS

The attacker can configure his nodes as manual floodfill nodes to make sure his nodes
participate in the database. In the remaining part of this section, we discuss how the number of
legitimate floodfill nodes can be decreased, facilitating takeover of the network database.

Around 95 % of the floodfill nodes are automatic, that is, they participate due to the need
for more database nodes and the availability of resources on their side. While there will not be
the need for more participants once the attacker has set up his nodes, all current participants
continue to serve as floodfill nodes as long as they do not get restarted and continue to have
enough resources.

Available resources are both measured in terms of available data rate, which is statically con-
figured for each node by the admin, and job lag, which is measured during operation taking
the average delay between the scheduled time where each task (e.g., tunnel building, database
lookups) is supposed to run and the actual point in time when it is started. As this delay largely
depends on the number of open tasks, and an attacker can cause additional tasks to be sched-
uled, this job lag is a good target for attack.

As load varies and routers tend to be rebooted from time to time, the least noisy and easy-to-
deploy possibility is waiting for the number of legitimate floodfill participants to decrease
while the attacker adds malicious nodes to the network. This is especially effective every time
an update to the I2P software is distributed, as updating I2P includes a restart of the router.

However, to speed up churn in the floodfill set, an attacker can influence the job lag
using a denial-of-service (DoS) attack against a legitimate floodfill participant. The attacker
creates many new tunnels through the attacked node adding a tunnel build job for each. When
specifying a non-existing identity for the node after the victim in the tunnel, it also adds a total
of eight search jobs looking for the peer information to the victim’s job queue. If the attacker is
able to create more open jobs than the node can handle, these jobs get started late building up
a job lag. The attacker needs to be careful to not actually send large amounts of data through
the attacked node as this would trigger the data rate limiting functionality and make the victim
drop tunnel requests instead of adding them to the job queue. As soon as the attacked node
drops its floodfill flag, the attacker continues with the next active floodfill node. It
is important to note that an attacker only needs capacity to launch a DoS attack on a single
legitimate floodfill node at a time. Nodes will only regain floodfill status if there are
too few active floodfill nodes in the network. In the attack scenario, however, the attacker
inserted his own nodes in the network, replacing the failing, legitimate ones.

3.2 Sybil Attack

Under certain conditions, the floodfill takeover described in the previous section is not opti-
mal. The eclipse attack described in the next section requires several floodfill nodes closest
to a keyspace location, while there are still several legitimate floodfill nodes at random
places in the keyspace after a successful floodfill takeover. Additionally, the takeover attack
requires over 300 active malicious nodes in the network.

A Sybil attack will allow the attacker to get close control over a limited part of the keyspace,
and it requires fewer resources than the complete takeover. While an attacker cannot run (too
many) I2P nodes in parallel due to the peer profiling that is in place, it is possible to compute
huge quantities of identities offline and then use the best placed ones (the ones closest to the
victim in the keyspace). To exhaust the query limit with negative responses, a total of eight
nodes near the target key are necessary (near means closer than any legitimate participant in this
region of the NetDB). To log lookups, a single attacker would suffice. As there are currently only

14

CHAPTER 3. THE ATTACKS

320 floodfill nodes active, a set of 10,000 identities, which can be computed in few minutes
time, already gives the attacker many possible identities to completely control any position in
the keyspace.

Introducing a new node in the network has a setup time of about an hour during which the
node gets known by more and more of its peers and actively used by them for lookup so it
takes some time until the Sybil attack reaches the maximal impact. In addition, as mentioned
previously, the storage location of the keys, the attacker is interested in (e.g., the key at which
the service information, that should be eclipsed, is stored), changes every day at midnight due
to the keyspace rotation. This requires attacking nodes to change their location in the keyspace
and opening a window where legitimate nodes control the position in question. However, as the
rotation is known in advance, a second set of attack nodes can be placed at the right spot before
midnight so they are already integrated once the keyspace shifts. As a result, this keyspace
rotation does not prevent our attack but only requires few additional resources.

3.3 Eclipse Attack

Our eclipse attack allows an attacker to make any database record unavailable to network partic-
ipants. It is an example of how Sybil attacks can be used against the network, independent from
the deanonymisation described in the next section. As clients use up to eight floodfill nodes
to locate a key in the network database, the attacker needs to control at least the eight nodes
closest to the key. The list of other close servers piggybacked on a negative lookup answer is
used to increase the probability of the client knowing all floodfill participants controlled by
the attacker.

Once control over a region in the keyspace is established, the attacker can block access to items
in this region by sending a reply claiming to not know the resource. If the blocked resource con-
tains service information this effectively prevents anyone from accessing the service. Similarly,
if peer information is blocked, network participants are unable to interact with a peer, isolating
it in the network.

3.4 Deanonymisation of Users

Finally, we show an attack allowing an attacker to link any user with his IP address to the
services he uses. For this attack, we use the Sybil attack described earlier to place malicious
nodes in the NetDB so they can observe events in the network related to each other. We later
use information from these events to deanonymize users.

Nodes store their database records on the closest floodfill node they know of. To verify
storage of a database record the node sends a lookup using one of its tunnels to another server
nearby after waiting for 20 seconds. If both servers, the one stored to and the one handling the
verifying lookup, are controlled by the same entity, she can observe both interactions and de-
termine the probability of both interactions originating from the same node. As many database
records are stored on the same floodfill node such a pair of malicious floodfill nodes
can easily create such a probabilistic mapping for all of these records.

Storage of peer information is done without a tunnel, that is, it is done in the clear, as the client
is exposed in the content of the database entry anyway. Storage verification on the other hand
is done through one of its exploratory tunnels to make it more difficult distinguishing
storage verification from normal lookup (if floodfill nodes could distinguish verifications
from normal lookup, they could allow verifications and still hide the stored information from

15

CHAPTER 3. THE ATTACKS

0

1

2
3

4

5

6

7
8

9

netDB

Client
store

replication

exploratory tunnel pair

verify

lookup

Figure 3.1: Deanonymizing attack

normal lookups). As a result, the first part of this interaction exposes the client node, while
the second part exposes one of his exploratory tunnel endpoints. This combination allows
us to create a probabilistic mapping between exploratory tunnel endpoints and the peers
owning the tunnel.

Therefore, if the attacker can link actions to an exploratory tunnel endpoint, she can use
this probabilistic mapping to identify the client initiating this action, effectively deanonymizing
the client. EXPLORATORY TUNNELs are used for all regular database lookups including those
for service information. A floodfill node controlled by the attacker will therefore see the
exploratory tunnel endpoints for all lookups as he interacts directly with the endpoints.
If the attacker now places malicious floodfill nodes at the right positions to observe the
lookups for services interesting to her, she can combine the probabilistic mapping with the ser-
vice lookups.

The whole process is shown in Figure 3.1: The client stores its peer information on node 7 in
the NetDB. This node then pushes the peer information to other floodfill nodes close in the
NetDB, in this case nodes 6, 8 and 9. After 20 seconds, the client starts the verification process
and requests its own peer information from node 6 using one of its exploratory tunnel
pairs. Later it requests the service information for an eepsite using the same exploratory
tunnel pair from node 4. If the attacker controls nodes 4, 6 and 7 she can deanonymize the
tunnel due to the verify interaction and knows which client is requesting the service information
on node 4.

As service information expires after ten minutes, each client needs to fetch it before starting
an interaction with a service and update it regularly during the interaction. This allows the
attacker to identify which of the observed clients interacts with each of the monitored resources
and when she does so. The regular update of service information additionally reveals how long
the service has been used. As a result, the attacker is able to deanonymize users with respect to
their usage of certain services.

16

4
IMPLEMENTATION AND SETUP

In this chapter, we give in-depth information on the test setup – inside both the “real” I2P net-
work as well as our private test installation – and the implementation used to obtain the pre-
sented results.

As bootstrapping a separated test network was never intended to work with I2P, several mod-
ifications were necessary to complete this process. Care was taken to deploy I2P nodes on dif-
ferent continents to measure the effect of geographical distance. Finally, in terms of implemen-
tation, we discuss the communication infrastructure used to coordinate the attack as well as the
design built to allow online analysis of the identifying data obtained during the attacks.

4.1 Node Setup

All nodes were set up on their own virtual machines. Every node was running slightly patched
I2P software on top of OpenJDK 6. The attack code was plugged in using ABCL. The use of
ABCL together with a Common Lisp development environment allowed for interactive devel-
opment inside the running I2P process and allowed to inspect the running process for evaluation
purposes without adding additional tailored interfaces.

For the local test network, 150 of these nodes were launched. These were running on a single
VM host and connected to a virtual network without connectivity to the outside world.

For the tests in the “normal” I2P network, 30 nodes were used, 20 attack nodes in Santa
Barbara as well as five victim nodes in both locations. They were all using one public IPv4
address each and connected to the university network in Erlangen and Santa Barbara. They
were configured to use a moderate data rate just below the XX kbps ordinary I2P floodfill
nodes use.

17

CHAPTER 4. IMPLEMENTATION AND SETUP

4.1.1 Test Network

In order to set up a test I2P network, several challenges must be met. All of these required mod-
ifications of the I2P source. First, one needs to lower several magic numbers in the I2P source
code, as the test network will contain significantly less nodes (around 150 for our experiments).
Therefore, the number of nodes expected to participate in the network must be lowered as I2P
nodes employ several health checks by counting the nodes they know or are connected to.

Second, the plain I2P router rejects to participate in any connection until it is up and running
for at least 20 minutes. During this timeframe, it verifies whether it is able to create connec-
tions through nodes in the network. However, if all nodes were just started up, no node will
accept connections. Therefore, the individual routers assume connectivity problems and abort
the startup. To handle this situation, it is necessary to have peers accept tunnel participation as
soon as they are properly initialized and before they start connectivity checks.

In parallel, one needs to take care of bootstrapping the NetDB in order to allow nodes to find
each other in the network. For the purpose of the test network, we collected router identities
via ssh and distributed them using a standard webserver running on the master node. This is
a time-critical process as well, as nodes only fetch router identities the very first time they start
up. As a result, only collecting the identities once all routers are running is not enough. Rather,
it is necessary to start a few nodes, collect their identities, and then start the other nodes.

This way, the first few routers will not know of any peers at the very beginning. Peers starting
later retrieve the peer information for the first few from the webserver and use these first few
peers for tunnel building and NetDB interactions. As a result, the first few learn about later
nodes and due to normal network activity, the knowledge on the network structure quickly
converges to normal state.

4.1.2 Real Network

Peers running in the real I2P network required significantly more resources than ones running
in the test network did. While we were able to run 150 nodes in the test network on a single
host, only 25 of them could run in parallel while participating in the real network. This is in
part due to the fact that 20 of these nodes were participating as floodfill servers. While the
whole network database consisted of 150 routerInfos, the real network counts 20,000 nodes
in total and the 20 floodfill nodes accounted for more than 5 % of all NetDB participants. As
a result, each of these nodes had to handle significantly more NetDB requests.

In addition, as the I2P network is run across the whole globe, it is not enough to measure
the impact of our attacks against nodes running on the same VM Host on the same physical
network. Additional nodes in Erlangen were used to get a more geographically diverse view
on the impact. However, all nodes were running on fast, well-connected university networks.
While this limits the generality of the results, no difference, as far as the deanonymization attack
is concerned, was measurable between the geographical diverse nodes, which can be seen as an
indication that the attacks are mostly independent from external influences.

4.2 Inter-Node Communication

All I2P routers implemented an IRC command and control channel. IRC was chosen, because it
provides both, one-to-one communication between two attacking nodes and between one node
and the user operating the attack as well as communication between groups of participants.
Several channels were used to separately instruct each group of attackers. These groups were

18

CHAPTER 4. IMPLEMENTATION AND SETUP

given distinct roles during the attacks. For example for the deanonymization described in 3.4,
one group is controlling the NetDB address space occupied by the monitored peer information,
while the other group monitors the address space used for the relevant service information.

The channel with all nodes was used for general commands such as reloading the attack
code. One-To-One queries were, for example, useful to move logged information to the node
responsible for correlation without burdening other nodes with parsing and handling of these
messages. In addition, results were forwarded to the controller in this way.

4.3 Distributed Correlation

The load for calculating correlations in the deanonymization attack was distributed across all
malicious I2P nodes in the network. The implementation made use of the already-present
kademlia distance calculation. We were, however utilizing a different modification (the string
“EVILEVIL” instead of the current date) to distribute the load evenly across all participating
nodes while the attack concentrated their IDs – and therefore also their responsibility in the
NetDB – on a single spot in the keyspace. All results were forwarded as soon as they were
available from the individual logging nodes to the human controlling the attack. The resulting
infrastructure proved scalable and fast enough to perform the whole analysis online.

19

5
EVALUATION

In this section, we describe our experiments confirming the attacks described in the previous
section. We have made sure to not disrupt any participant in the I2P network apart from our
own nodes and no identifying information has been collected about other participants in the
network. Changing the identity of attacking nodes has resulted in some broken tunnels for
independent peers but this happened at most once a day and the same loss of tunnels would
have been caused by shutting down the nodes during the night. For testing the DoS attack,
which we describe first, a special, separated test network was created to prevent any harm on
the real network. All other attacks were tested in the real I2P network.

5.1 Floodfill Takeover

After presenting evidence on how many floodfill participants are manual, we discuss the
impact of a takeover attack and the time needed for a passive takeover where the attacker only
waits for automatic floodfill nodes to resign due to normal fluctuations in the network.

The fraction of automatic floodfill nodes in the network was determined by monitor-
ing the local peer storage on the routers under our control. These routers participated as
floodfill nodes in the real I2P network, and logged whenever a node removed or added
the floodfill flag to its peer information. Automatic floodfill nodes add the floodfill
status only after being online for at least two hours and can lose and regain floodfill status
depending on network load. Manual floodfill nodes, instead, will always have the flood-
fill flag set. Over a period of ten days, our 26 nodes saw a total of 597 floodfill nodes and
an average of 413 floodfill nodes each day. During these days, only 128 of them did not
change their floodfill status. Therefore, a passive floodfill takeover attempt lasting for ten
days would leave 128 legitimate nodes in place while adding 258 malicious nodes. If we limit
the experiment to a single host instead of all hosts combined, the same fraction of about 30 %

20

CHAPTER 5. EVALUATION

Figure 5.1: Legitimate floodfill nodes after n days

 0

 20

 40

 60

 80

 100

 120

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

N
o
d
e
s

Days

nodes

did not change floodfill status. Therefore, the nodes not changing their floodfill status
were not known to a larger subset of our hosts. As seen in Figure 5.1, the amount of floodfill
nodes never losing floodfill status decreases almost linearly by five nodes every day until it
reaches 26 nodes after 44 days. From there on, the count remains stable and after 60 days, still
25 nodes are left. These are likely to be manual floodfill nodes, which would also not have
resigned in a DoS attack.

As the active floodfill takeover uses a DoS attack on target nodes, we decided to test
this attack on a closed local network. The test network consisted of 100 nodes split into five
groups: 30 slower users with default data rate configuration (96kB/s down- and 40kB/s up-
load), 30 faster users configured to use up to 200kB of data rate in both directions, 20 auto-
matic floodfill nodes, and 5 manual floodfill nodes, as well as 15 attackers. To simulate
a large-enough number of floodfill nodes, a larger fraction of peers where configured as
floodfill nodes and the maximum number of active floodfill nodes was lowered from
300 to 20. In this setup, a group of five attacking nodes was able to slow down the attacked
nodes enough for them to give up floodfill status.

5.2 Experimental Setup

In this section, we describe the setup used for all the following attacks. All of these attacks have
been successfully tested on the real I2P network. All nodes being attacked were controlled by
us and the modification of their I2P software was limited to additional logging, which allowed
us to later confirm our results.

We ran 20 attacking nodes connected to the normal I2P network. These nodes acted as
floodfill peers. Six additional nodes served as legitimate peers, and were used to verify the
attacks. All attackers were set up on a single VM host and configured to use 128kB/s of down-
load and 64kB/s of upload data rate. The legitimate nodes were split evenly between this VM
host in the US and a second VM host in Europe to make sure the results do not rely on proximity
between attackers and victims. Attackers were configured to act as manual floodfill nodes
and had additional code added, which logged network events and allowed for the blacklisting

21

CHAPTER 5. EVALUATION

of specific information, as required by the eclipse attack.
During our experiments, the I2P statistics1 reported between 18,000 and 28,000 nodes and 320

to 350 floodfill nodes, fluctuations during the day. Therefore, we were controlling less than
7 % of floodfill nodes and a negligible part of total nodes.

5.3 Sybil attack

To test our Sybil attacks we created a set of 50,000 precomputed router identities. Each identity
consists of one signing and one encryption key as well as a certificate, which is unused. Building
up the database took less than 30 minutes on a twelve-core Xeon server. This set of identities
was made available to all our I2P nodes for the following experiments.

Additionally we modified the router software to enable our attacking nodes to change their
identity to any of the precomputed ones on demand as well as to enable a group of attackers to
use a set of identities, one per node, close to a target without any two accidentally taking the
same identity. The same setup was used for the Sybil attacks in all further experiments.

5.4 Eclipse attack

To evaluate the eclipse attack, we configured our victims to download a test eepsite every
minute, and log the results. Ten attack nodes were moved to the storage location of the service
information for the test eepsite. The attackers were configured to give negative response to
all lookups for the test eepsite and only refer to each other in these negative responses such
that the victims would learn about all malicious floodfill nodes as fast as possible. A second
group of ten attack nodes was moved to the test eepsite’s storage location for the following
day, and was configured to keep the service information unavailable across the keyspace shift.

We ran the eclipse attack over a period of 42 hours. During this time, victims were on average
able to reach the blocked eepsite for a total of five minutes. Three out of six nodes were
not able to reach the eepsite at any point in time, and the most successful victim was able
to interact with it for a total of only 16 minutes during that period. When the second set of
attackers was not used, all victims could successfully reach the eepsite during a 15-minute
window around midnight (when the keyspace rotation happens).

5.5 Deanonymisation of Users

To simulate deanonymisation of users, we changed our victims’ identity so they all mapped to
the same keyspace region – they need to be closer to the malicious floodfill nodes than to
legitimate ones in the network. For our experiments, we choose the identities in such a way, that
the first fourteen bits matched. For legitimate floodfill nodes, on average the fist eight to
nine bits match. As a result, a single attack group could monitor all our victims. This allowed us
to verify the success of the attack for all our nodes without requiring additional resources. The
actual attack was then carried out by ten malicious nodes distributed to act as floodfill nodes
in the keyspace region occupied by the victims. Using this setup and considering all lookups in
a time window of 60 seconds before and after the storage as matches, we were able to see the
correct verification step for over 90 % of all storage interactions. However, for every correctly
detected verification step we additionally recorded an average of nine unrelated lookups as

1http://stats.i2p.in

22

http://stats.i2p.in

CHAPTER 5. EVALUATION

Figure 5.2: Logged service lookups per hour

 0

 10

 20

 30

 40

 50

 60

10 9 8 7 6 5 4 3 2 1

Lo
o
ku

p
s

p
e
r

h
o
u
r

Number of Nodes

lookups

likely matches. Limiting the results to all lookups happening 20 to 25 seconds after the storage,
we were still able to see over 60 % of all store-verify pairs, and 52 % of all potential correlations
matched the victim’s real tunnels. The five seconds window was chosen after analyzing the
recorded pairs as large enough to account for latency in the network while keeping the rate of
misclassification low.

While all verification should fall into the smaller five seconds window the larger time frame
also allows us to capture store/lookups where the first verification failed and storage was retried
by the victim. In this case, we could correlate the correct tunnel endpoint even when we could
only see the first store and the second verification. Better detection should be possible taking
into account that peers use the same peers over an extended period of time.

To determine the number of malicious floodfill nodes needed to reliably capture the
client’s lookup, we had all our six victims configured to query the service information of our
test eepsite and monitor how many lookups could be observed for each number of malicious
floodfill nodes. For all numbers of malicious nodes, we ran the experiment for a total of
eight hours each, during different parts of the day. This was done to avoid that the different
number of routers at different times in the day would influence the results. The experiments
(Figure 5.2) show a constant amount of around 50 lookups logged every hour until fewer than
three malicious nodes are left in the network. More precisely, there was a lookup from all our
legitimate nodes approximately every nine to ten minutes, which was caused by the lifespan
of service information. Under optimal conditions, one would expect 36 to 40 lookups per hour
for six hosts updating their local information every nine to ten minutes. However, shortly after
the service information expired, there were more than six lookups due to nodes retrying their
lookup after losing the response, adding up to the total of around 50 lookups.

The results were similar for the sites both in Europe and the US: 52% of the tunnel endpoints
that we attributed to a victim user were indeed originating from this user (call her Alice), while
in 48% of the cases, a specific lookup (and thus, tunnel endpoint) that we attributed to Alice
actually belonged to a different, random user. That is, in this step, we only correctly identify
about half the tunnel endpoints. However, this does not imply that we can detect Alice only
half the time, or that the results are only slightly better than a coin toss. Instead, it means

23

CHAPTER 5. EVALUATION

that we can detect a single access that Alice performs for resource R half the time. Monitoring
Alice’s accesses over a longer period of time then allows us to mount a much stronger attack, as
discussed below.

Assume that we monitor Alice and a resource R for a certain time period T. Let’s partition
this period into N time slots of duration d, where d = 10 minutes. This is the time interval after
which I2P refreshes the tunnel identifiers, and hence, a new lookup is performed. During each
of the i : 0 <= i < N time slots, we see a list Li of all tunnel identifiers that access resource
R. Moreover, we learn one tunnel identifier ti that we believe belongs to Alice (but we could
be wrong, since we are right only half the time). We call this probability u, and, as discussed
above, we empirically found u = 0.52. We then check whether ti ∈ Li. If this is true, we have a
hit. If not, we have a miss for time slot i. If we could always attribute each lookup (and tunnel
endpoint) correctly to the corresponding user, a single hit would be enough. Unfortunately,
u < 1.0, and hence, we require to monitor for multiple time slots.

Assume further that we observe k hits over the time period T, we want to determine the
probability that Alice has indeed accessed R. We need to assume certain parameters to compute
this probability (and ultimately, to determine a suitable threshold for k for deanonymization). In
particular, we need to assume the fraction of time slots in N where Alice accesses R (we call this
fraction p). Intuitively, if Alice accesses R often, our task will be easier. Moreover, we need to
know the probability q that any other, random node accesses R. When q p, then Alice is behaves
similar to any random node, and we cannot meaningfully distinguish her accesses from other
nodes. Hence, we require that p > q; intuitively, as p grows larger than q, our task becomes
easier.

The probability that we have k hits over N time slots can be computed with the binomial
distribution. Recall that a hit occurs when we attribute a certain lookup (tunnel identifier) with
Alice, and we see this tunnel identifier accessing R.

The probability that ti ∈ Li = x = u ∗ p + (1− u) ∗ q = 0.5p + 0.5q. This is the chance of
Alice accessing resource, in case we guessed correctly, plus the chance of a random hit when we
misidentified the tunnel. Thus:

P(k hits) =
(

N
k

)
xk ∗ (1− x)N−k (5.1)

Since we care about the probability of at least k hits, we require the cumulative distribution
function. In Figure 5.3, one can see the probability (shown y-axis) that one observe at least k hits
(shown on the x-axis) for different values of p (the probability that Alice accesses R during an
arbitrary time slot). For this graph, we assume the length of the observation period to be one
day (N = 144), and we set q = 0.001.

The value of q is relevant for false positives, and has been chosen conservatively here. Our
concrete values assumes that about 7% of all nodes access R once a day. The false positives
(incorrect attributions) are represented by the solid line for p = 0; that is, Alice does not at all
visit R. It can be seen that this line quickly drops close to zero. When we require at least two
hits per day, the chance for a false positive is about 2.4%. For less frequently-accessed resources,
this value drops quickly (0.003% for two or more hits, 0.7% for a single hit for q = 0.0001).

When we require three hits per day, Figure 5.3 shows that we would detect Alice with more
than 80% probability when she accesses the site with p = 0.05. This translates to about 7 vis-
its per day. In case Alice visits the site only one time (p = 0.007), we would need to lower
the threshold k to 1. In this worst case, we would have 52% chance of detection (exactly the
probability to get the correct tunnel), and we would risk about 7% false positives.

24

CHAPTER 5. EVALUATION

Figure 5.3: Probability of k or more hits, depending on p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

P
(

#H
its

 |
p

[F
re

qu
en

cy
 o

f R
es

ou
rc

e
A

cc
es

s]
)

Number Of Hits Observed

p = 0
p = 0.007
p = 0.01
p = 0.02
p = 0.05
p = 0.1
p = 0.2

Overall, when Alice visits a certain resources a few times per day, and this resource is not
very popular, our approach has a very high probability to correctly deanonymize Alice. As
expected, when a resource is popular in the network and Alice’s visits become more infrequent,
our system becomes less accurate and more prone to false positives.

25

6
LIMITATIONS

In this section, we discuss limitations to our attacks imposed by the nature of the design, as well
as practical limitations when carrying out the attacks in the real I2P network.

A given node has, under normal operation, three pairs of exploratory tunnels in use at any
given time and these tunnels expire after ten minutes. The correlation attack presented in Sec-
tion 3.4, however, can at most observe one tunnel every ten minutes, covering one third of the
total number of tunnels. Furthermore, as leases expire after ten minutes, the chance of correct
association increases with longer or repeated use of a darknet resource.

For a successful deanonymization of a client’s lookups, the attacker needs to have his
floodfill nodes both next to the client’s peer info storage position and the service infor-
mation’s storage position in the NetDB. Therefore, a Sybil attack requires the attacker to limit
himself to a small number of services and peers. However as there are just three floodfill
nodes required for each monitored service and the number of darknet services interesting to the
attacker is likely to be small, tracking relevant actions of a specific user is not a problem. As
many clients map to the same region in the keyspace and therefore store their peer information
to the same set of floodfill nodes, it is possible to track all these users without additional
resources. However, as the mapping to the keyspace is essentially random, the attacker cannot
select an arbitrary group of clients, but only clients close in the keyspace.

26

7
DISCUSSION

Our results confirm the well-known shortcomings of DHTs in anonymity systems [8]. Moreover,
we show that ad-hoc countermeasures implemented in the real-world distributed anonymity
system I2P open up new vulnerabilities.

7.1 Potential Improvements

The experiments have all been run with relatively few nodes configured with limited data rates.
It should be easy to set a higher limit on data rates, which will make the nodes better known
throughout the network, and, therefore, improve the results of the attacks. In order to deal with
the increased number of interactions, one needs to either improve performance of the attack
code or assign more processing power to the attack nodes.

Instead of blocking lookups for the eclipse attack, one could block the store operation. An
approach similar to the one used for the deanonymization attack can be used to make the storing
node believe that the storage was successful, while it was actually blocked: More precisely,
the attacking floodfill nodes can identify the verification step, and only signal successful
lookup for the verification while replying with a negative response to all regular lookups. The
association of storage verification for service information is more reliable than that for peer
information, as verification is done using one of the tunnels already mentioned as part of the
service information.

7.2 Discovery of the attack

After running our nodes for three weeks in the I2P network developers noticed our group of 20
floodfill nodes connecting with consecutive IP addresses and cloned configuration. They
were changing their identity together at midnight each day, and were suspiciously close to each

27

CHAPTER 7. DISCUSSION

other in the keyspace. Additionally, implementation details in our attack code resulted in re-
peated error messages – related to loosing tunnels – written to the logs of the peers with which
our attackers were interacting. Apart from the closeness in the keyspace, which is a core prop-
erty of the attack, most of these observed indications could have been hidden by an attacker if
desired by using cloud services to get nodes in different IP networks and using several hours to
actually move the attack nodes to the target location.

Using the notes already prepared for discussing our results with the I2P development commu-
nity, we used this opportunity to start the interaction following a responsible disclosure strategy.
This discussion resulted in some improvements made to I2P, which we will discuss in Section
7.3 and 7.4.

7.3 Implemented Improvements

After sharing our results with the I2P developers, first improvements were implemented to
make our attacks more difficult. The limit of floodfill nodes was raised from 300 to 500,
requiring an attacker to run almost twice as many malicious nodes to take control over the
full network database and reducing the fraction of the keyspace controlled by a single node.
Additionally, the number of tunnels built with the same previous node in the chain was limited,
so that the attacker has to route tunnel build requests through an additional hop. Therefore,
the attacker has to add an additional encryption layer to the tunnel initiation packets, requiring
expensive public key cryptography. However, as an attacker already needs 500 malicious nodes
to replace legitimate floodfill nodes, and our experiments showed that we were able to run
the DoS attack with only five malicious nodes, it is save to assume, that the attacker has the
necessary resources for this additional encryption.

Finally, only one floodfill node per /16 subnet is considered now for database lookups,
requiring an attacker to spread nodes over several networks in order to successfully execute
an eclipse attack. However, several legitimate floodfill nodes in the same /16 subnetwork
are unlikely to also serve the same part of the network database, so only malicious nodes are
affected by this change. As our attacks require at most ten floodfill nodes in the same region,
the attacker should be able to work around this limitation by using several cloud services.

I2P developers also started to discuss replacing the Kademlia implementation of the network
database with R5N [5] used by gnunet, which is designed to deal with malicious peers. This
will allow I2P to profit from current research in this area.

7.4 Suggested Improvements

While the desire to have slow nodes not participate in the floodfill database is understand-
able, this is giving an attacker the possibility to permanently remove legitimate nodes from the
database using a DoS attack. If nodes that once had floodfill status will return indepen-
dent of the current number of active floodfill nodes, an attacker needs to constantly DoS
the legitimate participants to keep them out of the database. Additionally, this should not in-
crease the number of floodfill nodes beyond a constant number, as once a certain number
of floodfill nodes is reached there will always be a large enough fraction of them online to
reach the limit of floodfill nodes, and no new volunteers will join even under high load or
attack.

Alternatively, the hard-coded number of active floodfill nodes could be removed com-
pletely, and the count of floodfill nodes could be solely regulated by the suitability metric,

28

CHAPTER 7. DISCUSSION

which would also prevent an attacker from permanently removing legitimate nodes. After dis-
cussing the issues with I2P developers, they confirmed that this is the direction I2P is taking.

To counter Sybil attacks, a client node could only start to trust a floodfill node after seeing
it participate for n days in the network. This would increase the cost for multi-day attacks, as the
attacker needs to have n + 1 attack groups active at the same time. This adds a multi-day setup
time during which his intentions could be discovered, and potential victims could be warned
using the newsfeed of the I2P client software. Since we have observed 600 distinct floodfill
nodes over the period of ten days, it should be safe to assume that enough floodfill candi-
dates exist in the network, even after adding this additional restriction. However keeping track
of clients active in the past creates problems on the client, if he is just bootstrapping and does
not have any knowledge of the past. This is also problematic for a client that has been offline
for several days. In addition, keeping track of known identities for a larger timeframe requires
storing and accessing the information effectively.

An alteration of this idea is currently being discussed by the I2P developers: If the modi-
fication used for keyspace rotation is not predictable, requiring identities to be known in the
network for one day is enough. Since it will be hard to build consensus on such an unpre-
dictable modification in a fully distributed manner, one could observe daily external events that
are hard to predict, such as the least significant digits of stock exchange indices at the end of
each day. The problem with this approach will be finding a way to automatically collect this
information in a censorship-resilient and reliable way.

Storage verification does not work against a group of malicious nodes. The randomization of
the delay between storage and verification introduced in I2P as a reaction to our research will
make correlation less certain but still allows an attacker to reduce anonymity. One way around
this would be to use direct connections also for the verifying lookup. By doing this, problems
on legitimate nodes and attacks carried out by a single malicious floodfill node could still
be detected, while no information about exploratory tunnels would be leaked. Also, if the
redundant storing is done by the client, no verification is needed.

29

8
RELATED WORK

Distributed anonymity systems, as well as I2P specifically, have been discussed in previous
work.

Tran et al. [11] described common failures of DHT-based anonymity schemes and Mittal et
al. [8] later provided a proof on the trade-off between passive information-leak attacks and ver-
ifiability of the data. I2P was built with this limitation in mind. In particular, I2P limits the
number of database nodes to a small fraction of the network and selects peers for tunnel build-
ing from a local pool rather than random walks in the NetDB, discussed in detail and attacked
by Herrmann et al. [6], to counter these problems. With only few nodes participating in the DHT,
it is a reasonable assumption that all nodes in the I2P network know the right node for every
DHT lookup already, and, therefore, no attacks on lookup capture due to increased path lengths
are possible. We have shown that I2P is still vulnerable to database-based attacks, and focused
on store events, as opposed to blocking certain lookups. Wolchok et al. [12] used Sybil nodes
with changing identities, which enabled them to crawl DHTs faster. Similar identity changing
was utilized by our work to counter the daily keyspace rotation and may also be used to cover
larger parts of the NetDB for deanonymization.

Herrmann et al. [6] showed a way to identify peers hosting I2P services exploiting the peer-
profiling algorithm to influence the set of nodes the victim interacts with. In contrast, our iden-
tification shows the actions that a known user takes in the network. Also, while they showed
the individual steps needed to deanonymize users, the complete attack was evaluated only with
victim nodes patched to only consider their attackers as tunnel participants.

30

Bibliography

[1] CASTRO, M., DRUSCHEL, P., GANESH, A., ROWSTRON, A., AND WALLACH, D. S. Secure
routing for structured peer-to-peer overlay networks. SIGOPS Oper. Syst. Rev. 36, SI (Dec.
2002), 299–314.

[2] DINGLEDINE, R., MATHEWSON, N., MURDOCH, S., AND SYVERSON, P. Tor: the second-
generation onion router 2012 draft. 2012.

[3] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor: the second-generation onion
router. In Proceedings of the 13th conference on USENIX Security Symposium - Volume 13
(Berkeley, CA, USA, 2004), SSYM’04, USENIX Association, pp. 21–21.

[4] DOUCEUR, J. The sybil attack. In Peer-to-Peer Systems, P. Druschel, F. Kaashoek, and
A. Rowstron, Eds., vol. 2429 of Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2002, pp. 251–260.

[5] EVANS, N., AND GROTHOFF, C. R5n: Randomized recursive routing for restricted-route
networks. In Network and System Security (NSS), 2011 5th International Conference on (sept.
2011), pp. 316 –321.

[6] HERRMANN, M., AND GROTHOFF, C. Privacy-implications of performance-based peer
selection by onion-routers: a real-world case study using I2P. In Proceedings of the 11th
international conference on Privacy enhancing technologies (Berlin, Heidelberg, 2011), PETS’11,
Springer-Verlag, pp. 155–174.

[7] MAYMOUNKOV, P., AND MAZIÈRES, D. Kademlia: A peer-to-peer information system
based on the xor metric. In Peer-to-Peer Systems, P. Druschel, F. Kaashoek, and A. Rowstron,
Eds., vol. 2429 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2002, pp. 53–
65.

[8] MITTAL, P., AND BORISOV, N. Information leaks in structured peer-to-peer anonymous
communication systems. ACM Trans. Inf. Syst. Secur. 15, 1 (Mar. 2012), 5:1–5:28.

[9] SINGH, A., WAN “JOHNNY NGAN, T., DRUSCHEL, P., AND WALLACH, D. S. Eclipse at-
tacks on overlay networks: Threats and defenses. In In IEEE INFOCOM (2006).

[10] TIMPANARO, J. P., CHRISMENT, I., AND FESTOR, O. Monitoring the I2P network.

[11] TRAN, A., HOPPER, N., AND KIM, Y. Hashing it out in public: common failure modes of
DHT-based anonymity schemes. In Proceedings of the 8th ACM workshop on Privacy in the
electronic society (New York, NY, USA, 2009), WPES ’09, ACM, pp. 71–80.

[12] WOLCHOK, S., HOFMANN, O. S., HENINGER, N., FELTEN, E. W., HALDERMAN, J. A.,
ROSSBACH, C. J., WATERS, B., AND WITCHEL, E. Defeating Vanish with low-cost Sybil
attacks against large DHTs. In Proc. of NDSS (2010).

31

Glossary

client individual applications running on top of the I2P framework and either providing a
service to the network or allowing the user to interacti with services.. 8, 11

eepsite are anonymously hosted websites inside the I2P network. 6, 8, 11, 16, 22, 23

exploratory tunnel used by the router for all NetDB interaction. Exploratory tunnels are
shared for all clients. 10, 11, 15, 16, 29

floodfill nodes are Database supernodes. They are the subset of all nodes in the network
with good connectivity used to serve metadata. 9–18, 20–23, 26–29

leaseSet piece of data describing a service inside the I2P Network. leaseSets are required in
order to comunicate with the service. 9, 12

NetDB Distributed Hashtable used by I2P to locate peers and information. 6, 9–16, 18, 19, 26,
30

router core component of each I2P node. Routers are responsible for maintaining the network
connections, netDB lookup and all paket dispatching. 8–11, 14, 20, 22, 23

routerInfo piece of data describing a node in the I2P network. routerInfos contain all the
information needed to comunicate with the node over the Internet. 9, 12, 13, 18

tunnelID uniq identifier used by I2P peers to associate incoming pakets with the tunnel they
belong to. tunnelIDs are local to the individual node. 8, 9

32

	Introduction
	I2P Overview
	Tunnels and Tunnel Pools
	Router Info and Lease Set
	Network Database
	Floodfill Participation
	Example Interactions
	Threat Model
	Sybil Attacks
	Eclipse Attacks

	The Attacks
	Floodfill Takeover
	Sybil Attack
	Eclipse Attack
	Deanonymisation of Users

	Implementation and Setup
	Node Setup
	Inter-Node Communication
	Distributed Correlation

	Evaluation
	Floodfill Takeover
	Experimental Setup
	Sybil attack
	Eclipse attack
	Deanonymisation of Users

	Limitations
	Discussion
	Potential Improvements
	Discovery of the attack
	Implemented Improvements
	Suggested Improvements

	Related Work

