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Kurzzusammenfassung

Diese Abschlussarbeit beschreibt die Implementierung eines “global caching” Algorithmus
für das alternierungs-freien Fragment des coalgebraischen µ-Kalkül, COOL. COOL kann die
erfüllbarkeit von Formeln im alternierungsfreien Fragment des coalgebraischen µ-Kalkül, der
den relationalen µ-Kalkül und CTL sowie ATL und mehrere andere Logiken enthält, feststel-
len. Der “global caching” Algorithmus ist der erste Tableau-Algorithmus, der sowohl optimal
ist als auch in einem Durchlauf arbeitet. Er ist eine Erweiterung des Algorithmus für das flache
Fragment des coalgebraischen µ-Kalküls.
Speziell im Fall vonCTL ist “model checking” eine in der Praxis häufig gebrauchte Problem-

stellung und es gibt eine Vielzahl von Anwendungen für die Erfüllbarkeitsprüfung. Folglich gibt
es hierfür bereits mehrere andere Implementierungen. COOL schneidet im Allgemeinen ver-
gleichbar mit Konkurenzimplementierungen ab und arbeitet für bestimmte Formeltypen signi-
fikant schneller.
Diese Arbeit fasst den “global caching” Algorithmus zusammen und präsentiert eine Be-

schreibung der Implementierung als Teil von COOL. Weiterhin wird die Geschwindigkeit von
COOLmit alternativenWerkzeugen verglichen. Schließlich werden diverse Optimierungen be-
schrieben, die an der aktuellen Implementierung in COOL noch vorgenommenwerden können.

Abstract

This thesis presents a first implementation of a global caching algorithm for the alternation-
free fragment of the coalgebraic µ-calculus, COOL. COOL can decide satisfiability of formu-
lae in the alternation-free coalgebraic µ-calculus which includes the relational, alternation-free
µ-calculus, CTL as well as ATL and several other logics. The global caching algorithm is the
first optimal single-pass tableaux algorithm for all the mentioned logics and builds upon the
global caching algorithm for the flat coalgebraic µ-calculus.
Especially for CTL, model checking is regularly used in practice and there are several appli-

cations for reasoning. Consequently there already exist a number of different implementations.
COOL in general performs comparable to other implementations and is significantly faster for
certain kinds of formulae.
The thesis provides a summary of the global caching algorithm and a description of the im-

plementation in COOL as well as a performance comparison between COOL and other state of
the art reasoners. Finally it provides several suggestions for further optimization.
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1 Introduction

Modal logic is a corner stone of description and verification of sequential and concurrent sys-
tems. Implicit and explicit fixpoint constructs play an essential role to reach the expressiveness
needed to describe real world systems.
Amodal logic commonly describes graph- or tree-like structures, called Kripke frames, where

certain conditions are true at nodes in this graph and certain restrictions on the child nodes
hold. One of the most fundamental of these modal logics is system K. In K one has the ability
to express that certain conditions must hold in all child nodes or that there must exist a child
where some condition is true.
It is a common requirement when specifying, for example, sequential circuits [BCLMD94]

or computer programs to add restrictions of the form “This condition needs to hold from here
for all descendants” or “From here a finite path needs to exist which finally reaches a node that
satisfy this condition”. CTL is an extension to system K that provides exactly these kinds of
restrictions.
In this thesis we are considering an implementation of the alternation-free fragment of the

coalgebraic µ-calculus. The µ-calculus contains CTL as a fragment but allows more general
fixpoint constructs. The coalgebraic generalization allows to create one reasoner, like the one
described, which can be easily extended to support not only relational modal logic bot also most
of the common non-standard modal logics. COOL, for example, already supportsATL and the
alternation-free fragment of Parikh’s game logic.
CTL is widely used in practice for verification. Where, for example, requirements expressed

in CTL are verified to hold on some sequential circuit represented by Kripke structures. This
process is called model checking. Reasoning solves a more general problem. Given a set of
requirements, expressed for example in CTL, a reasoner can decide whether it is possible to
construct a circuit fully satisfying the requirements. Other applications also include verification
of software systems. While CTL reasoning certainly has potential applications it is computa-
tionally expensive and rarely used in practice.
Recently, there has been increased academic interest in CTL reasoners resulting in several

competing implementations. All existing tableau style reasoners however either implemented
multi-pass algorithms, first transforming the problem into an exponentially sized intermediate
representation, or have suboptimal runtime (TreeTab [AGW07] runs in 2ExpTimewhileCTL
is known to be an ExpTime complete problem).
In this thesis we describe COOL, the first optimal, single-pass tableau reasoner that is able to

handleCTL. The algorithm implemented in COOL [HSE16] actually supports the alternation-
free fragment of the modal µ-calculus which includes CTL (over K), but also includes other
logics like ATL (using coalition logic as basis) which is used to describe multi-agent systems
and the *-free fragment of Parikh’s game logic [Par83; Par85] where COOL is the first-known
reasoner. This is possible by using the coalgebraic generalization of modal logic used by COOL
which was extended by support of explicit fixpoints as part of this thesis.
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Related work

There is work on reasoners for CTL [ZHD09; Mar05] as well as ATL [Dav13] and the full
µ-calculus [FL10]. These reasoners will be discussed when performing comparisons between
our solver, COOL, and the alternative implementations in chapter 6.
In [GTW11] a comparison of CTL provers was conducted. The paper also presented a wide

variety of formulae designed to show the respective strength and weaknesses of the existing
provers which were reused for our comparison where we added COOL to the picture.
Coalgebraicmodal logic was first introduced byDirk Pattinson [Pat03]. [SP09] introduced the

axiomatization in terms of one-step rules as used by COOL. The work we present in this thesis
builds upon an already existing reasoner for coalgebraic modal logic described in [GPSWW14].

Outline

This thesis is structured as follows: We first introduce some prerequisites of our work ranging
from modal logic through coalgebraic axiomatization and the fixpoint calculus this thesis adds
support for. We then discuss the previous state of our tool, COOL. In chapters 4 we discuss
the global caching algorithm and proceed in chapter 5 to the implementation of this algorithm,
the core part of the thesis. The implementation chapter is followed by an evaluation of the
implementation in comparison to state of the art solvers for several covered logics. Finally we
put some notes on possible and implemented optimizations for COOL before finishing with a
conclusion.
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2 Prerequisites

This chapter we will briefly revisit coalgebraic modal logic as well K, KD, coalition logic and
serial monotone neighborhood logic as examples. In the second part of the chapter we will in-
troduce the coalgebraic µ-calculus.

2.1 Coalgebraic modal logic

Coalgebraic modal logic [SP09] generalizes several modal logics. An instantiation of coalge-
braic modal logic is formed by a coalgebra structure (W,ξ ) where W is a set of states, T is a
functor and ξ : W → TW the transition function.

ψ,φ ::=⊥ | > | p | ¬ψ | ψ ∧φ | ψ ∨φ | ♥ ψ.

The operator ♥ stands for any modal operator found in the respective logic. Every modal
operator♥ comes with its dual operator♥ such that♥ψ = ¬♥¬ψ . The semantic of the modal
operators comes from the signature functor and an associated predicate lifting [[♥]].

Definition 2.1 (Predicate lifting). A predicate lifting for a functor T is a natural transformation
Q →Q ◦T OP where Q denotes the contravariant powerset functor SetOP → Set, i. e. the func-
tor that maps objects in the same way as the powerset functor and the map f to Q( f ) which
takes the preimages under f .

We will see an example for such a predicate lifting in Section 2.4. The semantic of coalgebraic
modal logic then is formed as follows:

[[ψ ∧φ ]] = [[ψ]]∩ [[φ ]]

[[ψ ∨φ ]] = [[ψ]]∪ [[φ ]]

[[¬ψ]] =W \ [[ψ]]

[[♥ψ]] = ξ
−1 ◦ [[♥]][[ψ]]

2.2 Coalgebraic µ-calculus

The coalgebraic µ-calculus [CKP09] enriches the logic by adding fixpoint literals. The literals
can be used to introduce a concept of iteration to the logic. This allows to add restrictions e. g.
on every state that follows (however deep) from the current one. For the µ-calculus, the syntax
is adapted as follows:

ψ,φ ::=⊥ | > | p | X | ¬ψ | ψ ∧φ | ψ ∨φ | ♥ ψ | µX .ψX | νX .ψX ,
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where ψX is a formula with distinguished variable X all of whose free occurences are positive,
i. e. all occurences are under an even number of negations. To define the semantics of the
µ-calculus we use the Knaster-Tarski fixpoint definition

Definition 2.2. Let f : P(W )→ P(W ). Pre-fixpoints of f are defined as PRE f = {X ⊆ W |
f (X)⊆ X}while post-fixpoints are defined as POSTf = {X ⊆W | X ⊆ f (X)}. If f is monotone
w. r. t. set inclusion, the least fixpoint µX is defined as the intersection of all pre-fixpoints which
is also a pre-fixpoint and a fixpoint while the largest fixpoint νX is defined as the union of all
post-fixpoints, also a post-fixpoint and a fixpoint.

With this definition we can now define the semantics of the coalgebraic µ-calculus

[[X ]]i = i(X)

[[µX .ψ]]i = µ[[ψ]]Xi

[[νX .ψ]]i = ν [[ψ]]Xi

[[ψ ∧φ ]]i = [[ψ]]i ∩ [[φ ]]i

[[ψ ∨φ ]]i = [[ψ]]i ∪ [[φ ]]i

[[¬ψ]]i =W \ [[ψ]]i

[[♥ψ]]i = ξ
−1 ◦ [[♥]][[ψ]]i,

where [[ψ]]Xi (G) = [[ψ]]i;[X 7→G] and i is a substitution mapping fixpoint variables to subsets ofW .

2.3 Tableaux rules

Satisfiability in coalgebraic modal logic can be axiomatized in terms of one-step tableau rules
[SP09].

Definition 2.3 (One-step tableau rules). [HSE16] We fix a setV of (propositional) variables. We
denote by Λ(V ) the set {♥p | ♥ ∈ Λ, p ∈V} of formulas consisting of an application of a modal
operator ♥ to an element of V . Given a set U , a U-(tableau-)sequent is a subset of U , written
u1, . . . ,un for ui ∈ U and read conjunctively. A one-step tableau rule R = (Γ0/Γ1 . . .Γn) consists
of a Λ(V )-sequent Γ0, the premise, and V -sequents Γ1, . . . ,Γn (n ≥ 0), the conclusions, with the
additional provisos that Γ0 mentions every variable at most once, and Γ1, . . . ,Γn mention only
variables occurring in Γ0.

The axiomatization comes with the notion of one-step soundness and one-step completeness.

Lemma 2.4 (One-step completeness). A set of one-step tableaux rules is one-step complete for a
modal logic if for every satisfiable formula in the logic a tableau can be constructed using only the one-step
rules.

Lemma 2.5 (One-step soundness). A set of one-step tableau rules is one-step sound for a modal logic
if every formula for which a tableau can be constructed using the one-step tableaux rules is satisfiable.

All coalgebraic logics have a one-step sound and complete axiomatization [SP09].
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2.4 Examples

2.4.1 Relational modal logic

Relational modal logic is the most common modal logic. It contains two modal operators, �
and ♦ and is interpreted over Kripke structures. CTL is a fragment of the relational µ-calculus.
InK, the functor for the coalgebra structure is the powerset functor P and the predicate lifting
gives [[�]](A) = {B ∈ P(X) | B ⊆ A} and [[♦]](A) = {B ∈ P(X) | B∩A 6= /0}.

Definition 2.6 (Kripke structure). AKripke structure consists of a set of states S and a transition
relation R ⊆ S×S as well as a map L : S → 2AP which labels each state with atomic propositions
from AP.

Intuitively �ψ requires that all child nodes satisfy the formula ψ while ♦ψ is understood to
require that there exists a child node satisfying ψ .
We will consider two variants of relational modal logic: K is interpreted over standard Kripke

frames whileKD (andCTL) additionally requires that R is a total relation, i. e. for every w ∈W
there exists at least one w′ ∈W such that (w,w′) ∈ R.
In addition to the standard tableau rules for propositional reasoning, the axiomatization of K

contains one additional rule shown in Figure 2.1a whileKD has both Figure 2.1a and Figure 2.1b
as tableaux rules.

�a1, . . . ,�an,♦b
a1, . . . ,an,b
(a)K andKD

�a1, . . . ,�an
a1, . . . ,an

(b)KD

Figure 2.1: tableau rules forK andKD

2.4.2 Serial monotone neighborhood logic

Serial monotone neighborhood logic [GS14] can be mapped to KD by replacing � with ♦�
and ♦ by�♦ [Par83]. The models are so called neighborhood frames.
Model of neighborhood frames. Each state is in relation with a set of neighborhoods which

each are a set of states. Forming the coalgebraic µ-calculus over serial monotone neighborhood
logic results in Parikh’s game logic [Par83; Par85] which can be used to formalize game-theoretic
problems.

�a
a

(a) D0

♦b
b

(b) K0

�a,♦b
a,b

(c) K1

Figure 2.2: Tableau rules for serial monotone neighborhood logic

2.4.3 Coalition logic

In coalition logic, we consider a fixed set of agents N = {1, . . .n}. Subsets of N are called
coalitions. The logic has modal operators [{C}] for eachC ⊆ N which can be intuitively read as
“coalitionC has a strategy to ensure that …”. Formally, coalition logic is interpreted over game
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frames. Each state x has function fx associated with the domain S1 ×·· ·×Sn where each Si is a
finite set of actions available to agent i in state x.
ATL [AHK02; Sch08] is a fragment of the coalgebraic µ-calculus applied on coalition logic.
The coalitions Ai need to be pairwise disjoint and, for the first rule, contained in D.

[A1]a1, . . . , [An]an,〈D〉b,〈N〉c1, . . . ,〈N〉cm

a1, . . . ,an,b,c1, . . . ,cm

[A1]a1, . . . , [An]an
a1, . . . ,an

Figure 2.3: Tableau rules for coalition logic
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3 COOL

COOL [GPSWW14] is a generic reasoner for modal logics. As such, COOL is given an in-
put formula in one of the supported logics and decides whether that formula is satisfiable. Cool
is designed to work generically with any modal logic which is representable in the coalgebraic
framework. Several of these are already implemented in COOL including K, KD and Coalition
Logics as well as combinations of logics expressed as choice or fusion (functor product or co-
product). Propositional reasoning in COOL is delegated to a dedicated satsolver. COOL had no
previous support for fixpoint logics. In the following, we will describe the basic structure of the
existing COOL which serves as a basis for the implementation of fixpoint support discussed in
Section 5. We will cover some details of data representation as well as the basic working of the
reasoner.

3.1 Formula representations

During the different preparation steps, the input formula is represented in three different
forms, each serving a particular purpose. The formula is first parsed into an AST structure
for easy structural manipulation. It is then converted to the hash-consed version where physical
and structural identity coincide. Finally the formula is converted into an array representation
suitable for fast access by the reasoner.

3.1.1 AST representation

Initially, COOL transforms the textual representation of a formula into a syntax tree. This is
done via a standard recursive-descending parser. Standard operator precedence rules for propo-
sitional logic are respected, i. e. ∧ binds stronger than ∨. All supported modal operators have
equal precedence and bind stronger than any propositional connective. COOL already trans-
forms some propositional constructs during this phase. For example implications are converted
to equivalent disjunctions.
The AST representation is well suited to do transformations. Therefore COOL executes sev-

eral transformation steps there already. First, the parsed formula is converted into negation-
normal-form (NNF). Negations may only occur directly attached to propositional atoms. After-
wards, COOL performs a simplification run on the AST. In this step, conjuncts and disjuncts
involving> or⊥ are transformed as well as, for example,�> which becomes>.

3.1.2 Hash-Consed representation

Subsequently, the formula is converted to hash-consed form. This step primarily converts
the syntax tree to a directed acyclic graph by merging all nodes of the AST that are structurally
equivalent. Additionally, for each node a second node is created representing the negated for-
mula in NNF. When finished converting to hash-consed form, COOL has constructed a node
for every subformula appearing in the input formula.
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AST representation Hash-Consed representation

∨

ψ

∧

ψ φ

�

∧

ψ φ

∨

�

∧

ψ φ

3.1.3 Array representation

The final representation, which is then used by the reasoner, is an array structure. During
hash-consing, all possible subformulae have been calculated. COOL now numbers all formulae
sequentially and allocates several arrays each holding an entry for every subformula. For example
the formulaψ = φ1∨φ2 will result in type[Iψ ] = OrF , dest1[Iψ ] =Iφ1 and dest2[Iψ ] =Iφ2 .
Iψ here is the consecutively assigned integer id of the formulaψ . Additional arrays exist to hold,
for example, the index of boxes in multimodal K. A set of formulae can now be represented as a
bit string where some formula φ is present at a node iff the Iφ th bit is set.

3.2 Reasoner structure

The reasoner then creates a bipartite graphwith two sorts of nodes. States are saturated nodes,
meaning they only contain non-clashing propositional atoms and modal operators. Cores, often
referred to as pre-states, are sets of formulae that represent the result of a modal step.
Each reasoner nodemay be in one of four possible states: satisfiable and unsatisfiable nodes are

fully processed by the reasoner and are known to be (un-)successful. Open nodes have been fully
expanded, all their child nodes are known, but it is not yet known whether they are satisfiable.
Expandable nodes have been created but not all of their child nodes have been created yet.

3.2.1 State nodes

State nodes, or states, are saturated, meaning that all the formulae present at a state are either
just propositional atoms or modal operators. States belong to an instantiation of the coalgebraic
logic which provides a set of tableaux rules. As COOL allows for composition of different logics
there may be several different sets of tableaux rules active when COOL processes a formula.
The expansion of a state creates a two-step structure. For each application of a modal tableau

rule (encoded within the functor), several child cores can be created. Satisfiability of a state has
to be considered as a ∀∃ structure. A state is successful if for every application of a modal rule
there exists at least one child core that is successful.
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3.2.2 Core nodes

Core nodes, or cores, are the results of expanding a state. The formulae in a core are therefore
the formulae directly in a modal literal from the previous state. If a state contains♥ψ as one of
its formulae, a child core now may exist which contains the formula ψ . Cores are expanded by
minisat [ES03] and said to be successful if one of their children is satisfiable.
Cores are transformed into conjunctive normal form as consumed by minisat. For every for-

mula each connective is represented recursively by a fresh literal and a set of disjuncts. For
example the formula φ = ψ1 ∨ψ2 is encoded into ¬lit(φ)∨ lit(ψ1)∨ lit(ψ2) while φ = ψ1 ∧ψ2
is transformed to ¬lit(φ)∨ lit(ψ1),¬lit(φ)∨ lit(ψ2). As all the literals representing formulae
present in the core node are added conjunctively, those implications are enough to encode the
formula for the satisfiability solver. Modal subformulae (♥ψ) are translated directly into a literal
and therefore treated by minisat just like propositional atoms.
Minisat will then produce a satisfying assignment. This assignment details exactly which con-

structs in each formula were chosen allowing COOL to reconstruct the propositional tableau
steps needed to reach the state. The extracted satisfying assignment is then added to minisat
when generating the next state. This ensures a different state is extracted each time. This pro-
cess is repeated until all possible solutions for the core have been constructed.

3.3 Reasoner execution

COOL executes reasoner steps until the query formula is known to be either successful or
unsuccessful. The reasoner starts with a single core representing the query formula and can
then either expand one of the nodes or try to assign success to nodes. This process is repeated
until the reasoner graph is fully expanded or a result has been found earlier. Expansion of nodes
has been discussed in section 3.2.
A node can become satisfiable for several reasons. It can be internally satisfiable. This happens

if a core contains only the formula > or a state is created which cannot be expanded further,
which happens for example inK if the state contains no diamond literal. A core which cannot be
expanded contains a propositional contradiction and is therefore unsatisfiable. Nodes can also
become locally (un-)satisfiable if their child nodes meet the conditions laid out in section 3.2.
COOL now runs in waves. First, for every expandable core it creates one new state and for

every new state it then creates all rule applications and all their child cores. This results in a
modified breadth-first searchwhich expands both one propositional and onemodal step at a time
and not expanding cores fully. After these expansions, COOL will try to assign success to the
nodes before doing another wave. Also, whenever COOL encounters internal unsatisfiability
it will try to propagate this information to the parents and mark them also as unsatisfiable if
possible. Details will follow in Section 7.1.
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4 Global caching algorithm

The global caching algorithm [HSE16] is an optimal single-pass tableaux algorithm for decid-
ing satisfiability in the alternation-free µ-calculus. It operates by constructing, determinizing
and solving a Büchi game on-the-fly. It is an extension of the global caching algorithm for the
flat fragment of the coalgebraic µ-calculus [HS15].

Remark 4.1 (Global caching). Global caching [GN07a; GN07b] describes a family of algorithms
constructing graph-shaped tableaux in a way that avoids generating any tableau node twice.

Definition 4.2 (Büchi game). ABüchi game is a directed graphG= (V,E)whereV are the nodes
in the graph and E ⊆V ×V is a relation and a subset of nodes F ⊆V . The graph is partitioned
into nodes belonging to player one and nodes belonging to player two. In each node belonging to
player one, the first player chooses an outgoing edge and in each node belonging to player two,
the second player may choose an outgoing edge. Player one wins the game iff he can enforce to
visit a node in F infinitely often. That is, he can choose nodes in his turns in such a way, that for
every choice player two might make, the chosen path will pass through F infinitely often.

Before describing the global caching algorithm for the alternation-free µ-calculus, we need
some definitions.

4.1 Fischer-Ladner-Closure

Definition 4.3 (Fischer-Ladner Closure). The Fischer-Ladner-Closure (FLC) [FL79; Koz88]
of a formula ψ is the smallest set of formulae such that:

ψ ∈ FLC(ψ)

φ ∈ FLC(ψ) ⇒¬φ ∈ FLC(ψ)

φ ∧ϕ ∈ FLC(ψ) ⇒ φ ∈ FLC(ψ),ϕ ∈ FLC(ψ)

φ ∨ϕ ∈ FLC(ψ) ⇒ φ ∈ FLC(ψ),ϕ ∈ FLC(ψ)

♥φ ∈ FLC(ψ) ⇒ φ ∈ FLC(ψ)

ηX .φ ∈ FLC(ψ) ⇒ φ [X 7→ ηX .φ ] ∈ FLC(ψ)

The FLC of some formula ψ is finite and no larger than 2 ·ψ [Koz83].

Intuitively, the FLC contains all formulae that may be encountered as result of tableaux rules.
As such it can be used for encoding of formulae and for complexity bounds.

4.2 Deferrals

Definition 4.4 (Deferrals). [HSE16] Given fixpoint literals χ1, . . . ,χn, where χi = ηXi.ψi, we
say that the substitution [X1 7→ χ1]; . . . ; [Xn 7→ χn] is built over χn if χi < f χi+1 for all 1 ≤ i < n,
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where we write ψ < f µX .φ if ψ ≤ φ and ψ is open and occurs free in φ . We say that e is irre-
ducible if there is no sequence [X1 7→ e1]; . . . ; [Xn 7→ en] built over some en such that e= e1([X2 7→
e2]; . . . ; [Xn 7→ en]). A closed least fixpoint that is irreducible is an eventuality. A formula ψ be-
longs to an eventuality en, if ψ = ασ for some α and σ such that σ = [X1 7→ e1]; . . . ; [Xn 7→ en] is
built over en and α < f e1. We refer to formulas that belong to some eventuality e as e-deferrals
and denote the set of e-deferrals by dfr(e).

Intuitively, deferrals encode the fact that least fixpoints must not require infinite unfolding but
rather, after a finite number of steps, reach a state where the argument to the fixpoint literal holds
independent of the unfolding of the fixpoint. As such we need a form of deferral tracking: We
need a notion of if a deferral still is present in the result of a tableau rule application or whether
it has been finished (and the eventuality therefore has reached its finite conclusion).
To see how the algorithm tracks these eventualities, we use the notion of inheriting a formula.

A node inherits some formulaψ from amodal literal♥ψ ifψ was produced by applying a tableau
rule on ♥ψ . Similarly, for propositional tableaux rules a formula ψ is inherited from φ if ψ is
the result of a tableau rule applied on φ .
The algorithm now works by annotating each reasoner node with a focus. The focus is a subset

of the deferrals at the nodes. When creating a successor node (Γ,d∆ Γ), all deferrals in the
successor node are added to the focus iff they are inherited from focused nodes in the original
node (∆,d) where d∆ Γ denotes the step of tracking the deferrals in the focus. If the focus of
a node becomes the empty set, the algorithm refocuses: All deferrals in the successor node are
added to the focus.
In terms of Büchi games the set of reasoner nodes can be identified withV , the relation E with

the successor relation on the reasoner nodes and F contains all nodes inV which have the empty
set as focus.

4.3 Propagation

Finally, success is determined by the algorithm based on a propagation step. In terms of Büchi
games the propagation step solves the (partial) game. We start by giving some definitions.

Definition 4.5. Let C ⊆ C be a set of focussed nodes. We define the functions f : P(C) →
P(C) and g : P(C)→ P(C) by

f (Y ) = {(∆,d) ∈C | ∀Σ ∈ Cn(∆).∃Γ ∈ Σ.(Γ,d∆ Γ) ∈ Y}
g(Y ) = {(∆,d) ∈C | ∃Σ ∈ Cn(∆).∀Γ ∈ Σ.(Γ,d∆ Γ) ∈ Y}

for Y ⊆C. We refer toC as the base set of f and g.

Definition 4.6 (Proof transitionals). [HSE16] For H ⊆C ⊆ C, we define the proof transitionals
f̂H : P(C)→ P(C), ĝH : P(C)→ P(C) by

f̂H(G) := ( f (H ∩G)∩F)∪ ( f (H)∩F) = f (H ∩G)∪ ( f (H)∩F)

ĝH(G) := (g(H ∪G)∪F)∩ (g(H)∪F) = g(H)∪ (g(H ∪G)∩F),

for G ⊆C, where F = {(s,d) ∈C | d = /0} and F = {(s,d) ∈C | d 6= /0} are the sets of focused
nodes with empty and non-empty focus, respectively.

Lemma 4.7. [HSE16] The proof transitionals are monotone w.r.t. set inclusion, i.e. if H ′ ⊆ H, G′ ⊆
G, then f̂H ′(G′)⊆ f̂H(G) and ĝH ′(G′)⊆ ĝH(G).
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Definition 4.8 (Propagation). [HSE16] For G ⊆ S, we define EG,AG ⊆ G×G as

EG = νH.µG. f̂H(G) and AG = µH.νG. ĝH(G),

where EG is the set of successful nodes and AG the set of unsuccessful nodes. Note that during
intermediate propagation (when the reasoner graph has not yet been fully expanded), EG and AG
do not necessarily form a partition of the set of nodes. However both sets will only monotonely
increase.

4.4 The algorithm

Decide satisfiability of a closed formula φ0.

1. (Initialization) Let G := /0, Γ0 := {φ0} be the initial node andU := {Γ0} the set of nodes
which can still be expanded.

2. (Expansion) Pick t ∈U and let G := G∪{t},U := (U −{t})∪ (
⋃

Cn(t)−G).

3. (Intermediate propagation)Optional: ComputeEG and/orAG. If (Γ0,d(Γ0))∈EG, return
‘Yes’. If (Γ0,d(Γ0)) ∈ AG, return ‘No’.

4. IfU 6= /0, continue with Step 2.

5. (Final propagation) Compute EG. If (Γ0,d(Γ0)) ∈ EG, return ‘Yes’, else ‘No’.

Soundness and completeness of the algorithm has been proven in [HSE16]:

Theorem 4.9 (Soundness). The algorithm returns ‘Yes’ on input φ0 if φ0 is satisfiable.

Corollary 4.10 (Completeness). If a run of the algorithm with input φ0 returns ‘Yes’, then φ0 is
satisfiable.

4.4.1 Complexity

Our algorithm has optimal complexity (given that the problem is known to beExpTime-hard
for all logics discussed in Section 2.4):

Theorem 4.11. The global caching algorithm decides the satisfiability problem of the alternation-free
µ-calculus in ExpTime, more precisely in time 2O(n).

Additionally, by means of step 3 in the algorithm may terminate before the graph has been
fully expanded, that is, the global caching algorithm may, for some formulae, terminate before
creating an exponentially large data structure.

13





5 Implementation

In this chapter, we will discuss the integration of the global caching algorithm as described in
the previous chapter into COOL.We start with a discussion of parser extensions and additional
preprocessing. We then discuss the additional initialization needed for the reasoner. Finally we
discuss the changed propagation algorithm for success checking.

5.1 Preparations

Preparation is structured into three phases. First, the input formula is parsed. In a second
step all fixpoint logic operators are normalized to explicit fixpoint literals. Finally the prepared
formula is verified to have several properties needed for correct operation of the algorithm.

5.1.1 Parsing

For the µ-calculus, COOL needs additional syntax for fixpoint literals, variables and – to han-
dleCTL – the operators fromCTL. Especially the text-like operators ofCTL can cause conflicts
with previously-allowed atoms. As a result, the CTL operators – as well as the strings “MU”
and “NU” – are no longer useable as atoms with fixpoints. It is advised to use only lower-case
characters for atoms if possible.
Variables bound by fixpoint literals in the input may be shadowed. Consider for example the

variable X in µX .(µX .�X)∨♦X . Here, the X below the� is bound by the inner fixpoint literal
while the X below the ♦ is bound by the outer fixpoint literal. COOL replaces variable literals
by fresh symbols in such a way that each symbol uniquely belongs to exactly one fixpoint literal.
Note that this limits the identification of subformulae in the algorithm to only those formulae not
containing any fixpoint literals. It is desirable to properly identify equivalent subformulae even
in the presence of fixpoints – this would allow for example to directly identify AG p∧¬AG p as
a contradiction and avoid exploring equivalent subformulae appearing in different places of the
input formula twice. This is, however, left aside as a future optimization.
Least fixpoints literals can be expressed equivalently by the two forms µX .ψ and MU X .ψ

while largest fixpoints literals can be written as νX .ψ and NU X .ψ . CTL formulae are accepted
in the same syntax as, for example, by TreeTab [AGW07] (e. g. AG ψ , A(φ U ψ)) as there does
not seem to be a strict syntax implemented by all solvers. For a full list of CTL construct, see
Figure 5.1.

5.1.2 CTL transformation

COOL does not handle CTL directly but considers it to be an alternative syntax for the rela-
tional µ-calculus. CTL formulae are therefore converted to their explicit form generating fresh
variable names for the implicit CTL fixpoints. This also allows combining CTL operators with
the more expressive syntax of the µ-calculus. Also, while CTL is normally understood as an
extension to KD, COOL allows CTL operators with any logic featuring the same set of modal
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operators butwith different tableaux rules. This currently includesK and serialmonotone neigh-
borhood logic [GS14]. CTL formulae are translated to the µ-calculus as follows:

Figure 5.1: Transformation of CTL constructs

AF φ ⇒ µX .(φ ∨�X)

EF φ ⇒ µX .(φ ∨♦X)

AGφ ⇒ νX .(φ ∧�X)

EGφ ⇒ νX .(φ ∧♦X)

A(φ U ψ)⇒ µX .(ψ ∨ (φ ∧�X))

E (φ U ψ)⇒ µX .(ψ ∨ (φ ∧♦X))

A(φ Rψ)⇒ νX .(ψ ∧ (φ ∨�X))

E (φ Rψ)⇒ νX .(ψ ∧ (φ ∨♦X))

A(φ Bψ)⇒ νX .(¬ψ ∧ (φ ∨�X))

E (φ Bψ)⇒ νX .(¬ψ ∧ (φ ∨♦X))

5.1.3 Verification of properties

For correct results, the input formula ψ needs to satisfy several properties. Each property is
verified in a recursive check executed after CTL normalization and before further processing
the formula. Note that any pure CTL formula trivially satisfies all criteria due to the fact that it
only includes a small number of valid fixpoint schemes in its implicit syntax.

Definition 5.1 (Positivity). Afixpoint literal η X .ψ is said to appear positive iff every occurence
ofX inψ appears under an even number of negations. InNNF, this is equivalent to the condition
that X does not occur negated.

Positivity implies monotonicity of the logic (w. r. t. set inclusion). This is required to ensure
that fixpoints actually exist. The requirement therefore is also in place for solvers of the full
µ-calculus and not a restriction on the supported fragment. The core of the algorithm testing
for positivity can be found in ListingA.2. It keeps for every bound variable a counter of negations
between the binding and the current position and, when encountering a variable, checkswhether
the counter is even.

Definition 5.2 (Guardedness). A fixpoint literal η X .ψ is called guarded iff in ψ the fixpoint
variable X only occurs in modal literals.

Guardedness is a common restriction on the µ-calculus. There exist methods to convert un-
guarded formulae to guarded ones [FL11] which come with an exponential increase in size. The
core algorithm to verify guardedness is reproduced in Listing A.3. While recursively examining
the formula, it keeps a list of variables which have been newly bound and clears this list every
time it passes a modal operator.

Definition 5.3 (Alternation-Freeness). A closed formulaψ is said to be alternation-free iff every
fixpoint literal η X .φ within ψ is either enclosed in another fixpoint literal of the same kind or
contains no free variables.

Example 5.4. The formulae µ X .µ Y.�(X ∧Y ) and µ X .(ν Y.� Y )∧� X are alternation-free
while µ X .ν Y.�(X ∧Y ) is not because the inner fixpoint is enclosed in the dual fixpoint type
and contains a free occurence of X .
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Finally, alternation-freeness is the central restriction of the algorithm presented. This still
allowshowever to fully include e. g. CTL andATLwhich are just fragments of the flatµ-calculus
with different base logics. The algorithm can be found in Listing A.1. In contrast to the other
tests which operate in pre-order, alternation-freeness is checked by a post-order traversal of the
AST. When unwinding the recursion and traversing a fixpoint literal, the algorithm notes the
kind of fixpoint (least or largest fixpoint) iff the fixpoint literal contains free variables or a special
mark otherwise. At every fixpoint literal it is verified that the current fixpoint literal is of the
same kind as the note or it was noted that the argument of the fixpoint operator contains no
open fixpoint literal. For all binary connectives, the note of both branches need to be merged. If
only one side is marked as having an open fixpoint, that mark is inherited by the binary operator.
The same is true when both branches have been marked to contain the same kind of fixpoint
literal. If the branches have non-matching marks, the next enclosing fixpoint needs to break the
assertion of alternation-freeness for one of the paths and a failure is signaled.

5.2 Initialization

After preprocessing the formula, the reasoner needs to be initialized. The set of relevant for-
mulae now needs to take into account the fixpoint expansions as calculated by the FLC as de-
scribed in Definition 4.3. The algorithm recursively traverses the formula in hash-consed form
(see Subsection 3.1.2) in pre-order and collects all the visited formulae. This step is also respon-
sible for creating expansions of the fixpoint literals. Whenever a fixpoint literal is encountered,
the algorithm substitutes all free occurrences of the respective fixpoint variable by the fixpoint
literal. This expansion can result in variable shadowing (as can be seen in Example 5.5) which
needs to be taken into account when implementing the substitution. The fixpoint is then rep-
resented in the array form (See section 3.1.3) with a silent transition from itself to the unfolded
version.
The algorithm will stop on any formula it has encountered before and therefore unfold ev-

ery fixpoint exactly once. This guarantees termination of the algorithm after 2 · n steps for any
formula of size n.

Example 5.5. µ X .� (µ Y.♦ (X∧Y ))will be unfolded to� (µ Y.♦ (µ X .� (µ Y.♦ (X∧Y ))∧Y ))
where Y is bound twice by nested fixpoints. The FLC for this formula will now contain the
following formulae:

• µ X .� (µ Y.♦ (X ∧Y ))

• � (µ Y.♦ (µ X .� (µ Y.♦ (X ∧Y ))∧Y ))

• µ Y.♦ (µ X .� (µ Y.♦ (X ∧Y ))∧Y )

• ♦ (µ X .� (µ Y.♦ (X ∧Y ))∧µ Y.♦ (µ X .� (µ Y.♦ (X ∧Y ))∧Y ))

• µ X .� (µ Y.♦ (X ∧Y ))∧µ Y.♦ (µ X .� (µ Y.♦ (X ∧Y ))∧Y )

5.2.1 Deferral annotation

The algorithm constructing the FLC is also responsible for annotating the formulae as defer-
rals if they belong to some eventuality. It does so by keeping a list of fixpoint variables belonging
to least fixpoints. Whenever a least fixpoint literal is encountered the respective variable is ap-
pended to the end of this list. When processing the next subformula, all variables that occur no
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longer free in the formula are removed. The first element in the list then is the eventuality that
this subformula belongs to.
When a subformula is encountered that has already been processed but was not marked as

deferral while the list of variables is not empty and the subformula should therefore bemarked as
deferral, the information is updated. This is necessary because the variable X is not encountered
when first processing µ X .ψ while this literal is a deferral for itself.

5.3 Graph construction

Once the FLC has been computed and annotated with the corresponding eventuality, COOL
continues constructing the reasoner graph. Each node in the reasoner contains a distinct tu-
ple (formulae, focus), where formulae is taken from the COOL version without fixpoints and
represents the set containing all formulae at this reasoner node. focus is the focus of the node
containing the subset of formulae of deferrals that have not yet been finished. The reasoner then
starts with a core node that contains the input formula as its only element and has the empty set
as focus.

5.3.1 Deferral tracking

For modal steps, a formula in the child core has to be marked as still being a deferral if the
formula and one of its sources in the state are marked as deferral belonging to the same fixpoint
and one of these source formulae was contained in the focus.

Example 5.6. Consider a state inKwith two formulae�ψ and♦ψ with both formulae as well as
ψ marked as deferral to some fixpoint identified by its variable Xi. Now according to the tableau
rules for K, one child core is created containing just ψ for both the box and diamond rule. The
formula ψ in the core now needs to be marked as unfinished eventuality if at least one of �ψ

and ♦ψ in the parent state was marked as deferral.

The implementation of deferral tracking forK is reproduced in a simplified way (the removed
code is irrelevant for the fixpoint implementation in COOL) in Listing A.4. In line 12 (22-23)
it is checked if the original formula was a deferral and whether both the created formula and
the original formula belong to the same eventuality. Lines 11-14 handle the diamond while lines
21-25 take care of the boxes. For other logics, the code is essentially the same. Every time a
formula is added to the generated core, deferral tracking is performed and the created formula
added to the focus if it matches the requirements.
When expanding a core, the formulae of the newly created state are extracted from the results

of the sat solver. The extracted literal can either be a (negated) propositional atom, in which
case it is never a deferral, or a modal formula ♥ψ . This modal formula is a deferral if the for-
mula where it is derived from has been marked as deferral to the same fixpoint as ♥ψ and was
contained in the focus.

5.3.2 Refocusing

Deferral tracking can yield reasoner nodes with empty focus. If such a node is expanded,
the children need to be refocused. When refocusing, all formulae which are marked as deferral
to some fixpoint, if any, are added to the focus and the reasoner continues with tracking these
deferrals. Refocusing as part of a modal step can be seen in the code in Listing A.4: Line 4 tests
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whether refocusing is needed and in lines 11 and 21 all deferrals are added to the focus bypassing
the deferral tracking condition.

5.4 Deciding success

The final step the reasoner has to perform is deciding whether a formula is successful. We
distinguish three different conditions for success.

Definition 5.7 (Success). A reasoner node can become (un-)successful in three different ways,
internally, locally or globally. A state can become internally successful if no more modal rules
can be applied. A core can be internally successful if it only contains the single formula > and
unsuccessful if the formulae are propositionally contradictory. It is locally (un-)successful as a
consequence of the success of its children and globally (un-)successful, if it is part of an (un-)suc-
cessful cycle.

Definition 5.8. A core node can step out of (step into) a set of nodes N iff there exist a child node
c with c /∈ N (c ∈ N). Similarly a state node can step out of (step into) a set of nodes N iff every
rule application creates at least one child node c with c /∈ N (c ∈ N).

We can now proceed to the algorithms deciding the different sorts of success.

5.4.1 Local successfulness

States are successful if all rule applications yield at least one successful child node. InK,KD
or the serial monotone neighborhood logic each rule yields exactly one child node and therefore
this condition could be simplified to requiring, that all children are successful. Some other coal-
gebraic logics however have rules that yield more than one child and the children created by the
same rule application have to be considered disjunctively.
Cores in contrast are successful if they have at least one successful child.

5.4.2 Global successfulness

The algorithm (which is reproduced in Listing A.5) considers two sets of nodes. The set X0

contains all nodes that are admissible as part of a path to a finishing node and initially contains all
open or successful nodes as well as all expandable cores. As cores only need one successful child
node, cores can, in contrast to states, be marked as successful before being fully expanded. The
set X0 is formed by setStates and setCores in the implementation. The set A0

X (setFinishingStates
and setFinishingCores) contains all nodes, which are considered admissible for finishing eventu-
alities and initially contains all successful nodes as well as all nodes with empty focus. These sets
are constructed using the stateCollector (lines 18-41) and coreCollector (lines 46-60) functions.
The algorithm then computes the fixpoints from Definition 4.8: It calculates the set of nodes

Xn+1 which are admissible as part of the path in the next step: Starting with the nodes in An
X , it

adds all parent nodes which can already step into Xn+1 to that set. This is repeated for all nodes
added to Xn+1 until no more node can be added. It then sets An+1

X = An
X ∩Xn+1 and continues

with the next iteration.
Once Xn = Xn+1 the fixpoint iteration can be stopped. All nodes still contained in Xn are

successful and can be marked as such. In terms of Büchi games, the set Xn contains now only
nodes where player one can enforce that unfocused nodes are visited infinitely often.
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5.4.3 Global unsuccessfulness

The algorithm for unsuccessful cycles works similar to the one for successful ones. It ini-
tializes the sets A0

X and X0 the same way with the only difference that expandable states are
considered instead of expandable cores as states only need one contradictory child to be marked
unsuccessful.
The algorithm initializes the set En+1

X with Xn. Every node from An
X is then removed from

En+1
X if it steps out of En+1

X . This process is repeated for all parents of removed nodes until no
more node can be removed from En+1.
At this point, all nodes in En+1 are unsuccessful (i. e. nodes where player two can enforce

that only focused nodes are passed from some time on) andmarked as such. The algorithm then
sets An+1

X = An
X \En+1

X and Xn+1 = Xn \En+1
X . Once En+1

X = /0, no more nodes can be marked
unsuccessful and the algorithm terminates.

20



6 Comparison

In this chapter we will compare COOL to reasoners supporting several subsets of logics sup-
ported by COOL. Unfortunately onlyCTL has a considerable number of other reasoners as well
as established benchmark formulae. Measurements were done on an Intel i7-4790 CPU running
at 3.60GHz. The machine had 16GiB of Memory and the stack limit was raised to 1GiB to
accommodate some of the other solvers.

6.1 CTL reasoning

COOL supports CTL as the flat fragment of the µ-calculus over KD. An extensive study of
algorithms and existing reasoners forCTL has been conducted in [GTW11]. I used a selection of
the formulae used in this evaluation as well as our own early formulae and a randomly generated
set of CTL formulae in this comparison.

6.1.1 Reasoner

There exist two general types ofCTL reasoners. Tableaux based reasoners, COOL being one
of them, are using a top-down approach. Other examples of tableau based reasoners areTreeTab,
GMUL and MLSolver. The resolution based approach has completely different runtime char-
acteristics and can decide formulae quickly that are expensive for all tableaux based reasoners
while being considerably slower on other kinds of formulae. We include CTL-RP and BDDCTL
as bottom-up reasoners in the following experiments.

Remark 6.1 (Compacting). Some of the reasoners used profit heavily from an preprocessing
step called compacting. This process is described in [GTW11]. A formula containing AG φ1 ∧
·· ·∧AG φn is transformed to the equivalent form AG (φ1∧·· ·∧φn). The reference comparison
also includes a step called “3-compact” that works around a limitation in BDDCTL on the size
of the temporal formula while maintaining most of the benefit of compacting by only collecting
groups of three AG for the transformation. This step is left out in this comparison which may
cause BDDCTL to fail processing formulae it otherwise could have processed but should not
negatively impact BDDCTL runtime where it could process a formula.

TreeTab

TreeTab is considered to be the best tableaux reasoner forCTL. It implements a single-pass al-
gorithm described in [AGW07]which is, like COOL, able to conclude before fully expanding the
graph. TreeTab inherently uses a depth-first strategy however and may therefore expand expo-
nentially sized branches before considering short branches that already determine the formula.
TreeTab is also, in contrast to COOL, not optimal and has a worst case runtime of 2ExpTime.
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Figure 6.1: Montali 1

GMUL

GMUL is an implementation of a tableaux algorithm first described in [BPM83]. It is, in gen-
eral, the fastest optimal tableaux based CTL reasoner. However, GMUL needs to fully expand
the reasoner graph before it can decide whether the eventualities are successful.

MLSolver

MLSolver [FL10] is an optimal reasoner for the full µ-calculus which includes the alternation-
free µ-calculus supported by COOL as a fragment. MLSolver works by transforming the input
formula into a parity game and using a game solver on the output. We compare COOL against
MLSolver on CTL, and later in this chapter, on the alternation-free fragment. However ML-
Solver does not support the same coalgebraic generalization as COOL and can therefore not be
used for e. g. ATL which is discussed below.
MLSolverwas usedwith the sameoptimizations as described in [GTW11],-opt comp -opt

litpro -pgs recursive, which improves significantly on the baseline performance ofML-
Solver.

CTL-RP

CTL-RP is a resolution-based reasoner described in [ZHD09]. CTL-RP works in a clausal-
normal-form SNFg

CT L. Eventualities are handled in a second reasoner phase after all resolvents
are found. It implements an optimal algorithmfinishing inExpTime. As a bottom-up reasoner,
CTL-RP performs significantly differently from the tableaux solvers.

BDDCTL

BDDCTL [Mar05] utilizes ordered binary decision diagrams to represent the formulae. Like
CTL-RP it implements a bottom-up approach and delays checking for eventualities to a second
phase.
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6.1.2 montali Formulae

The montali formulae are derived from a paper by Montali et. al.[Mon+08] and originally de-
signed to show advantage of abductive logic programming instead of LTL for verification of busi-
ness processes. They later found their way intoLTL andCTL benchmarks. They encode a pay-
ment process consisting of n sequential steps where k of them may fail. The montali formulae
used in the comparison set k to one.
They can be decided efficiently by resolution-based solvers but are difficult for most tableau-

based solvers. The results fromCOOL for the satisfiable case however are promising andCOOL
seems to scale considerably better on these compared to the other tableaux solvers while it ex-
hibits comparable behavior on the unsat formulae.
The montali formulas are created using the following fragments:

φ
i
1 := AF p1

φ
i
m := AF (pi ∧AX φ

i
m−1)

ψn := AG
n−1∧
i=0

(pi ⇒ AX A(¬piU pi+1)).

The satisfiable montali formulae are formed by φ 0
k ∧ψn while the unsatisfiable montali formula

are formed by φ 0
k ∧ψn ∧¬φ n

k with k set to one.
COOL works remarkably well on the satisfiable examples. Considering the ψn part of the

montali formulae, the reasoner needs to construct a sequence of states which contain pi for
strictly increasing i. COOL seems to be able to quickly dismiss nodes which contain several pi
and therefore postpone the eventuality A(¬piU pi+1) indefinitely.

6.1.3 exp Formulae

The exp formulae are designed to create an exponentially sized graph with exactly one cycle
spanning the whole graph. this is achieved by implementing a binary counter and, for the unsat-
isfiable formulae, requiring that the counter never has all bits set to ones.
This cycle can only be decided after fully exploring the search-space, therefore enforcing ex-

ponential runtime. These formulae can therefore be considered the worst case for COOL as
the fastest solutions here would be fully expanding the reasoner graph and only then trying to
finish the eventualities. The preference to simpler algorithms can also be observed in GMUL
overtaking TreeTab for the largest samples of these formulae.
In the next chapter we will discuss some effort to get COOL closer to this optimal behavior on

the exp style functions while still performing well on less extreme examples.

6.1.4 early and early_gc Formulae

The early formulae express a n-bit binary counter which, after a few steps starts another
counter postponing an eventuality indefinitely. The formulae have, like the exp formulae, an
exponentially large search space created by the counter. However the postponed eventuality,
which branches from the cycle created by the main counter, allows to already conclude without
expanding an exponentially large part of the search space.
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Figure 6.2: exp
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Figure 6.3: early

cn(x, i) = (¬xn−i ∧AX xn−i ∧ψn(x, i−1))∨ (xn−i ∧AX ¬xn−i ∧ cn(x, i−1))
init(x,m) = AG ((startx → (x∧

∧
0≤i<m¬xi))∧ (x → EX x))

early(n, j,k) = startp ∧ init(p,n)∧ init(r,k)∧AG ((r → c(r,k))∧ (p → c(p,n)))∧
AG ((

∧
0≤i≤ j pi → EX(startr ∧EF p))∧¬(p∧ r)∧ (r → AX r))

earlygc(n, j,k) = early(n, j,k)∧b∧ init(q,n)∧AG (¬(p∧q)∧¬(q∧ r)∧ (q → c(q,n)))

∧ AG (AF b∧ (b → (EX p∧EX startq ∧AX ¬b)))

As anticipated, COOL quickly detects the unsuccessful cycle and is therefore able to decide
the formulas quickly. While TreeTab should, in general, be able to finish early here as well,
the results indicate that it always follows the exponentially large cycle. This is likely due to the
depth-first traversal which forces TreeTab to finish the large cycle if it starts to explore it.
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Figure 6.4: random CTL formulae of size 100

6.1.5 random Formulae

Additionally, we evaluated the performance ofCTL reasoners on a randomly generated set of
formulae constructed of the propositional operators ∨ and ∧ and the CTL operators AX , EX ,
AG, AF , EG, EF , A(φUψ), A(φBψ), E(φUψ), E(φBψ)where each of the propositional oper-
ators was twice as likely to appear as each of theCTL operators. The formulae were constructed
by choosing a random operator and placing it in one of the free slots of the to-be constructed for-
mula. All slots still empty at the end were filled with one of the propositional atoms in positive
or negated form.
We used 100 operators in each formula and five propositional atoms. This resulted in a col-

lection of formulae where the reasoners were able to solve most queries within the bounds of
the experiment while still being hard enough to create meaningful results. The red marks in
the scatter plot signify unsatisfiable formulae while the green ones mark the results of satisfiable
formulae.
Of the 300 generated formula, 287 can be decided by at least one reasoner while for 13 all

reasoners failed to terminate in time. Of these 287 formulae, COOL finished 216 in less than
0.01 seconds and 32 additional ones in less than 0.1 seconds. Remarkably, GMUL consistently
performed better than COOL on the unsatisfiable formulae while COOL was faster for all sat-
isfiable formulae solved in time. The considerable advantage of TreeTab compared to COOL
is likely due to the depth-first expansion of TreeTab which provides good results if most of the
paths are enough to decide the formulae. COOL can be adapted to work in a depth-first manner
as well. However the advantage of COOL on the early and montali_sat formulae is due to the
breadth-first expansion strategy and both modes have their respective advantages..

6.1.6 Results

COOL works remarkably well compared to the other tableau based reasoners and performs
similarly to the best of them for each class of formulae. The early formulae show the strength of
COOL as optimal single-pass reasoner.
COOLhas no known set of formulaewhere it performs asymptoticallyworse than other tableaux

solvers while it is the only solver fast on the early formulae. Bottom-Up solvers still perform
better for certain problems. One would therefore probably still recommend hybrid solver as
in[GTW11] but replace TreeTab by COOL.
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Figure 6.5: random ATL formulae of size 50

Even in cases, where COOL performs exceedingly well, a comparatively large initial constant
time cost can be observed. This is likely due to the fact that COOL actually operates on the
alternation-free µ-calculus in coalgebraic generality while the other solvers only concern them-
selves with CTL.

6.2 ATL reasoning

Cool supports ATL as the flat fragment of the µ-calculus over coalition logic. The other solver
working on this logic is called TATL[Dav13].

6.2.1 random Formulae

Unfortunately, forATL there does not exist a comparable set of benchmark formulaewe could
consider. To get an impression of the performance of COOL and TATL we used a set of ran-
domly generated formulae. The generationwas similar to the construction already used forCTL
but after replacing the CTL operators by ATL ones. In contrast to the CTL case, COOL does
not directly support the usual syntax so the formulae are written in two different representa-
tions: a classical ATL representation as consumed by TATL and the explicit fixpoint syntax as
consumed by COOL. We used formulas built with 50 operators which covers the full range of
runtime allowed within the parameters of the experiment. During our experiments we discov-
ered some discrepancies between the results from COOL and the ones generated by TATL. As
a result TATL answered differently on three out of the 200 formulae used for this experiment.
The author of TATLhas confirmed that this is a bug and the result reported byCOOL is correct.
As can be seen in figure 6.5a COOL finishes for all the formulae in less than 0.01 seconds.

TATL only solved 28 of them in less than 0.1 seconds and 120 in less than one second. 22
formulae took longer than 10 seconds for TATL.

6.3 Alternation-free µ-calculus

No other reasoner is known to support the alternation-free fragment of the µ-calculus. ML-
Solver actually supports the full µ-calculus and therefore is the only competition toCOOLwhen
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Figure 6.6: random formulae from the relational µ-calculus of size 250

considering the alternation-free Fragment. For measuring the performance of COOL and ML-
Solver, random formulae from the alternation-free fragment have been created.

6.3.1 random Formulae

For evaluation of the alternation-free µ-calculuswe primarily used a set of randomly generated
formulae. The construction of formulae was similar to the one used for the random CTL for-
mulae. All formulae contain exactly 250 instances of logic constructors (from ∨, ∧,�, ♦, µ and
ν where ∨ and ∧ were twice as likely as the other constructs). The formulae were constructed
by choosing a random constructor and placing it in one of the free slots of the to-be constructed
formula. All slots still empty at the end were filled with either one of the propositional atoms in
positive or negated form or a fixpoint variable valid at this point according to the rules in 5.1.3.
The experiment was conducted with three and ten propositional atoms.
The number of constructors was chosen to have MLSolver complete reasoning on most of

them within the memory boundaries imposed. Of the 250 formulae with ten atoms, MLSolver
was unable to solve 40 within the bounds of the experiment, all due to memory exhaustion while
COOL could answer all queries. On the set with three atoms, MLSolver failed to answer 55
queries within the bounds, here two were timeouts while 53 were due to memory limits again.
COOL again could answer all queries within the bounds.
In the set of formulaewith three atoms,MLSolver finished 94 in less than 0.01 seconds and 130

in less than 0.1 second. Only 36 took longer than 1 second. MLSolver performed comparably on
the formulae with ten atoms finishing in less than 0.01 seconds for 98 formulae and in less than
0.1 seconds for 145 formulae while 22 formulae took longer than one seconds. COOL needed
more than 0.01 seconds for 12 of the formulae with ten atoms and 17 of the formulae with three
atoms.
In conclusion it is fair to say that COOL, while only supporting a fragment of the µ-calculus

implemented in MLSolver, is consistently faster than MLSolver on that fragment as far as this
can be derived from comparing random formulae.
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7 Optimization

While COOL without further optimizations already provides decent performance, a number
of optimizations can bemade to improve the speed further. Most of the optimizations described
here are further work and cannot be evaluated. However some optimizations are already imple-
mented in COOL and in these cases an evaluation is included. We also show the performance
of GMUL and TreeTab, the other main tableaux solvers, in comparison to give an impression of
state of the art performance.

7.1 When to propagate

As we have seen earlier, during the main reasoner loop, COOL has two possible actions it can
execute. It can either expand additional nodes or execute the propagation algorithm. COOL
needs to execute the propagation algorithm regularly as this is the step where success of the
formula is decided and propagationmay cause COOL to finish early. However, propagation is an
expensive operation with runtime complexity cubic in the number of reasoner nodes. Therefore
a good balance has to be foundbetween running propagation often enough to profit fromfinishing
early and not spending too much of the time in the propagation step.
The current implementation runs the propagation step after a number of waves proportional

to the number of currently open state nodes in the reasoner graph. In Figure 7.1, results for this
strategy are displayed in blue. The red values show the runtime of COOL when it is instructed
to postpone the propagation step until the full reasoner graph has been constructed while the
green values show the behavior if propagation is done after every wave of expansions.
One extreme example in terms of propagation are the exp_sat formulae from Subsection 6.1.3.

Here the full reasoner graph needs to be constructed before propagation can come to any con-
clusion. This setting favors simpler algorithms which expand the reasoner graph quickly. As
can be seen in Figure 7.1b, COOL performs comparably to other state of the art solvers if it is
instructed to never run the propagation step until the graph is fully constructed – the optimal
strategy for these formulae – while the versions which run the propagation step regularly are
performing significantly worse.
For the remaining examples, the currently implemented strategy performs consistently bet-

ter than the simple version which propagates after every wave, and significantly better than the
version which postpones propagation to the end. Both strategies which include intermediate
propagation outperform the other tableaux reasoners on the early formulae and asymptotically
conjecturedly also on the montali example where the current propagation strategy clearly per-
forms better than any existing tableaux solver.
Note that in both, Figure 7.1c and Figure 7.1b, the version of COOL which performs full ex-

pansion before attempting propagation fails due to the memory limit and cannot fully use the
allocated time. The current implementation of COOL is relatively demanding on memory. A
discussion of this problem can be found in Section 7.6 where I consider some improvements in
this area as well.
While the current propagation strategy is already relatively satisfying, there is at least one

further improvement that can be implemented. Propagation can only find new locally successful
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Figure 7.1: Different propagation heuristics

nodes if an internally successful node has been created and identified or a node expansion got
references to nodes already known as (un-)successful. Globally successful nodes can only be
found if there is at least one cycle in the graph.
Consequently there are two heuristics one can add. As long as there are no cycles in the rea-

soner graph, propagation should only be attempted if an internally successful node has been cre-
ated or node expansion resulted in a node already present in the graph (and marked as (un-)suc-
cessful there). Secondly, every time a cycle (or just any edge back into the reasoner graph) is
created, this serves as a strong indication that propagationmay findmore successful nodes. One
does, however, want to wait for some time after such an edge has been created to allow all nodes
which are part of the cycle to be sufficiently expanded for the propagation algorithm to succeed.

7.2 Local propagation

COOL as implemented only verifies the (un-)satisfiability of nodes using the fixpoint compu-
tations for global satisfiability described in Subsection 5.4.2 and 5.4.3. As we have already noted
in the previous section, this propagation is an expensive operation. The full propagation algo-
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rithm, however, is only necessary to find globally successful nodes while locally successful nodes
can be identified in a simpler algorithm.
Both, local successfulness and local unsuccessfulness can be propagated using a depth-first

search on the reasoner graph visiting all open nodes (and potentially some of the expandable
nodes as detailed in Subsection 5.4.2). At every visited node the local success condition is
checked and if no conclusion can be drawn yet, the children are processed. When returning
from the children the local condition is then reevaluated. As this algorithm is only quadratic in
the number of nodes, local propagation can be performed more often and used as a first step in
the global propagation algorithm.
Additionally this local propagation algorithm can collect only these successful nodes that have

open or expandable parent nodes. Global propagation can then use only these successful nodes
instead of all successful nodes in the graph thereby reducing the complexity of this algorithm as
well.

7.3 Removing edges

Improving on the last optimization one observes, that some edges to (un-)successful nodes
become superfluous for further propagation steps. As cores are ∃-quantified, an unsuccessful
child state does not contribute anything to deciding the success of a core. As a result, these edges
can be removed without changing the semantics of that core. Similarly, states are ∀∃-quantified.
Therefore a rule application with at least one successful child core does not contribute to the
result of that state and the edge to this child can be safely removed.
Any subgraphs that become disconnected from themain graph due to the removal of edges are

at that point not needed any more for the reasoner. Consequently any expandable nodes in such
a subgraph no longer needs to be expanded and the nodes in there do not need to be considered
when running one of the propagation algorithms. However, the full subgraph should be kept as
– due to the global caching structure of the algorithm – new edges may be created connecting
such a subgraph again and all inferred information on its nodes need to be still present in this
case.
Implementing edge removal fitswell into the local propagation algorithmdescribed previously.

That algorithm already visits all nodes reachable from the initial core and can reconstruct the
set of reachable, expandable nodes for the next waves as well as remove all the edges that are no
longer needed as part of its recursion.

7.4 Variable renaming

As discussed in Subsection 5.1.1, the way COOL currently handles variable names is not op-
timal. Preferably any subformula ψ – even if it contains fixpoint variables – would get the same
representation in hash-consed form independent from its location in the input formula. Addi-
tionally negations should be marked properly, i. e. EF ψ should be marked as the negation of
¬EF ψ = AG ¬ψ . As the hash-consing module already assigns an unique integer to each sub-
formula, as part of the implementation, the transformation into hash-consed form can perform a
deterministic variable renaming based on this integer and – as it always has the representation of
¬ψ when constructing the fixpoint literal ηX .ψ – annotate the negations as part of this process.
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7.5 Semantic branching

Semantic branching is a common optimization for reasoners which can already be found in
propositional reasoners and has been successfully implemented in GMUL. Given a formula φ ∨
ψ , when exploring ψ , we do not need to consider paths subsumed in φ as these would already
satisfy the left-hand side of the disjunction. This will, in several cases, limit the search-space of
the right-hand side to options not already considered when expanding the left-hand side. This
can be implemented by changing the tableaux rule for disjunction:

φ ∨ψ

φ ψ
⇒ φ ∨ψ

φ ¬φ ∧ψ

Remark 7.1. Implementing semantic branching may increase the search space. Consider the
disjunction φ ∨ψ where φ is a complex subformula and ψ is much simpler. While the reasoner
in both cases has to consider φ when processing the left-hand side of the disjunct, the second
tableau rule now generates ¬φ ∧ψ where the reasoner has to keep track of φ again. Semantic
branching is however still assumed to be beneficial for, at least, CTL formulae and worthwhile
to evaluate with the alternation-free µ-calculus in COOL.

7.6 Memory usage

As we have seen previously, COOL needs a large amount of memory for its operation. In
several cases this can amount to about 50 times the memory usage expected when examining
the abstract algorithm. The dominant cause for this memory consumption is due to the way the
external satisfiability solver, minisat, is used in COOL. COOL needs a fully minisat instance at
every expandable core to generate additional child states in every wave. This minisat however is
also kept when the core enters the open state and can no longer be expanded. This is a result of
an optimization in old COOL called backjumping. Deallocating minisat when a core reaches the
open state will reduce the memory footprint of COOL by about 60 % for certain sets of formulae
(i. e. the exp formulae we discussed earlier). Further work in this regard will evaluate whether
to reintegrate the old optimization (i. e. backjumping) into local propagation or properly remove
the late usage of minisat from COOL when doing fixpoint reasoning.

7.7 Additional normalization

The preprocessing of formulae in COOL performs some normalization steps on the inputs
when creating negation normal form. However some basic normalization steps are still missing.
COOL does not consider commutativity or associativity when comparing formulae.
For commutativity a formula φ ∨ψ should be reordered such that the subformula with the

smaller integer assigned by hash-consing appears first and both φ ∨ψ and ψ ∨ φ result in the
same hash-consed node. ∧ can be handled in the same way.
Associativity can either be implemented by replacing the binary ∨ and ∧ nodes by nodes

taking a set of child nodes and transforming a formula of the fom (φ1 ∨ φ2)∨ φ3 to the form
∨{ψ1,ψ2,ψ3} or by normalizing to some formψ1∨(ψ2∨(ψ3∨ . . .))with increasing hash-conse
numbers. The latter option, while more complex in general, fits considerably better into the rea-
soner design with the array representation.
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7.8 Subset Nodes

Consider a reasoner node nwith a set of formulae s and a focus f which ismarked as successful.
A second reasoner node n′ with formulae s′ and focus f ′ can already be marked as successful iff
s′ ⊆ s and f ′ ⊆ f as n places a superset of restrictions on the model compared to n′. The dual
result holds for unsuccessful nodes.
It is generally assumed, that finding arbitrary subset nodes is too expensive to make this inter-

esting as a general purpose optimization. Howeverwithin the global caching algorithmdescribed
here, there are two special cases which might be interesting to explore. If we have an fully fo-
cused node n (that is, f = s) which is already marked as successful and a node n′ which has
the same set of formulae s as n but a smaller focus, n′ can be marked as successful. This works
similarly for fully focused, unsuccessful nodes.
Finding these unfocused (or fully focused) nodes is relatively cheap as one needs to only find

one specific node in a hashtable, an implementation of this optimization will need to ensure
that such nodes are created regularly. If so, one can then try to add some heuristics to further
improve the results such as delaying further consideration of a node n′ if their unfocused (or fully
focused) relative exists but has not been marked as (un-)successful.
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8 Conclusion

In this thesiswe have described an extension toCOOL, a reasoner for coalgebraicmodal logics,
to allow certain fixpoint constructs: The alternation-free coalgebraic µ-calculus. This extension
covers several commonmodal logics likeCTL,ATL,PDL and fragments of Parikh’s game logic.
COOL is the first and only reasoner to support several of these logics. For several logics where

other reasoners exist, like ATL and the relational µ-calculus, COOL provides significant per-
formance improvements compared to the existing tools. In fact, COOL performs comparable to
the best known tableaux reasoners forCTL, a logic where several optimized reasoners exist and
is able to provide this level of performance to all supported logics.
The implementation in COOL is fully generic to the coalgebraic nature of COOL and thus

easily extensible to any other modal logic which fits this framework making COOL the obvious
choice when implementing an optimized reasoner for a new (coalgebraic) fixpoint logic.
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A Selected code samples

A.1 Verification of Properties

Listing A.1: verifyMuAltFree
1 let rec verifyMuAltFree formula =

2 let proc = verifyMuAltFree in

3 match formula with

4 | EX (_,a) | AX (_,a) -> proc a

5 | OR (a,b) | AND (a,b) ->

6 let (atype, afree) = proc a

7 and (btype, bfree) = proc b in

8 if (compare atype "µ" == 0 && compare btype "ν" == 0) ||

9 (compare atype "ν" == 0 && compare btype "µ" == 0) then

10 raise (CoAlgException ("formula␣not␣alternation-free"));
11 if compare atype "none" == 0 then

12 (btype, List.flatten [afree; bfree])

13 else

14 (atype, List.flatten [afree; bfree])

15 | MU (s, f) ->

16 let (fptype, free) = proc f in

17 (if (compare fptype "ν" == 0) then

18 raise (CoAlgException ("formula␣not␣alternation-free")));
19 let predicate x = compare x s != 0 in

20 let newfree = List.filter predicate free in

21 if newfree = [] then

22 ("none", [])

23 else

24 ("µ", newfree)

25 | NU (s, f) ->

26 let (fptype, free) = proc f in

27 (if (compare fptype "µ" == 0) then

28 raise (CoAlgException ("formula␣not␣alternation-free")));
29 let predicate x = compare x s != 0 in

30 let newfree = List.filter predicate free in

31 if newfree = [] then

32 ("none", [])

33 else

34 ("ν", newfree)

35 | VAR s -> ("none", [s])

36 | _ -> (* base case: handle recursion *)
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Listing A.2: verifyMuPositive
1 let rec verifyMuMonotone negations formula =

2 let proc = verifyMuMonotone negations in

3 match formula with

4 | MU (s, f)

5 | NU (s, f) ->

6 let newNeg = (s, 0) :: negations in

7 verifyMuMonotone newNeg f

8 | VAR s ->

9 let finder (x, _) = compare x s == 0 in

10 let (_, neg) = List.find finder negations in

11 if ((neg land 1) != 0) then raise (CoAlgException ("formula␣not␣monotone"))
12 | NOT a ->

13 let increment (s, n) = (s, n+1) in

14 let newNeg = List.map increment negations in

15 verifyMuMonotone newNeg a

16 | _ -> (* base case: handle recursion *)

Listing A.3: verifyMuGuarded
1 let rec verifyMuGuarded unguarded formula =

2 let proc = verifyMuGuarded unguarded in

3 match formula with

4 | MU (s, f)

5 | NU (s, f) ->

6 let newUnguard = s :: unguarded in

7 verifyMuGuarded newUnguard f

8 | VAR s ->

9 let finder x = compare x s == 0 in

10 if List.exists finder unguarded then

11 raise (CoAlgException ("formula␣not␣guarded"))
12 | _ -> (* base case: handle recursion *)
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A.2 Deferral tracking

Listing A.4: mkRuleK
1 (** directly return a list of rules **)
2 let mkRuleList_MultiModalK sort bs defer sl : rule list =

3 assert (List.length sl = 1);

4 let refocusing = bsetCompare (bsetMakeRealEmpty ()) defer = 0 in

5 let getRules f acc =

6 if lfGetType sort f = ExF then (* f = ∃R.C,i.e. a diamond *)
7 let bs1 = bsetMake () in

8 let defer1 = bsetMakeRealEmpty () in

9 let nextf = (lfGetDest1 sort f) in

10 bsetAdd bs1 nextf; (* bs1 := { C } *)
11 if (refocusing && (lfGetDeferral sort nextf) != (Hashtbl.hash "ε")) ||

12 ((bsetMem defer f) && (lfGetDeferral sort f) = (lfGetDeferral sort nextf))

13 then

14 bsetAdd defer1 nextf;

15 let (role : int) = lfGetDest3 sort f in (* role := R *)
16 let filterFkt f1 =

17 if lfGetType sort f1 = AxF && lfGetDest3 sort f1 = role then

18 (* if f1 = ∀R.D then bs1 = bs1 { D } *)
19 let nextf1 = (lfGetDest1 sort f1) in

20 bsetAdd bs1 nextf1;

21 if (refocusing && (lfGetDeferral sort nextf1) != (Hashtbl.hash "ε")) ||

22 ((bsetMem defer f1) &&

23 (lfGetDeferral sort f1) = (lfGetDeferral sort nextf1)) then

24 bsetAdd defer1 nextf1

25 else ()

26 else ()

27 in

28 bsetIter filterFkt bs; (* bs1 := bs1 { D | some ∀"R.D" ∈ bs } *)
29 let s1 = List.hd sl in (* [s1] := sl *)
30 let rle = (dep f, lazylistFromList [(s1, bs1, defer1)]) in

31 rle::acc

32 else acc

33 in

34 bsetFold getRules bs []
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A.3 Successfulness checking

Listing A.5: propagateSatMu
1 let propagateSatMu () =

2 let setFinishingStates = setEmptyState () in

3 let setFinishingCores = setEmptyCore () in

4 let setStates = setEmptyState () in

5 let setCores = setEmptyCore () in

6 let emptySet = bsetMakeRealEmpty () in

7 let openstates = ref 0 in

8

9 (* Collect two sets of nodes. All nodes that may be satisfiable
10 * after this iteration are collected into setStates/setCores.
11 *
12 * As every cycle containing a node with empty focus or an
13 * satisfiable node should be considered satisfiable, collect these
14 * decisive nodes into setFinishingStates/setFinishingCores
15 *
16 * This also marks in trivial cases nodes as satisfiable.
17 *)
18 let stateCollector state =

19 match stateGetStatus state with

20 | Unsat -> ()

21 | Sat ->

22 setAddState setStates state;

23 setAddState setFinishingStates state

24 | Expandable -> ()

25 | Open ->

26 openstates := !openstates + 1;

27 (* States with no rules are satisfiable *)
28 if List.length (stateGetRules state) == 0 ||

29 (* KD generates nodes with just True as formula *)
30 bsetCompare (bsetMake ()) (stateGetBs state) == 0

31 then begin

32 setAddState setFinishingStates state;

33 stateSetStatus state Sat

34 end else begin

35 setAddState setStates state;

36 if bsetCompare (stateGetDeferral state) emptySet == 0

37 then begin

38 setAddState setFinishingStates state

39 end

40 else ()

41 end

42

43 (* As it is enough for a core to have one successfull child, we can
44 * also handle (some) expandable cores.
45 *)
46 and coreCollector core =

47 match coreGetStatus core with

48 | Unsat -> ()

49 | Sat ->

50 setAddCore setCores core;

51 setAddCore setFinishingCores core

52 | Expandable

53 | Open ->

54 setAddCore setCores core;
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55 if bsetCompare (coreGetDeferral core) emptySet == 0

56 then begin

57 setAddCore setFinishingCores core

58 end

59 else ()

60 in

61 graphIterStates stateCollector;

62 graphIterCores coreCollector;

63

64 setPropagationCounter !openstates;

65

66 (* In a fixpoint the set called setStates / setCores is narrowed
67 * down.
68 *
69 * In each step only those states and cores are retained in setStates
70 * / setCores which reach one of setFinishing{States,Cores} in
71 * finitely many steps. This new set of States / Cores is collected
72 * as allowed{States,Cores} during each fixpoint iteration.
73 *
74 * Only those finishing nodes are retained that have allowed or
75 * Successfull Children.
76 *)
77 let rec fixpointstep setStates setCores =

78 let allowedStates = setEmptyState () in

79 let allowedCores = setEmptyCore () in

80

81 let rec visitParentStates (core : core) : unit =

82 if not (setMemCore allowedCores core)

83 then begin

84 setAddCore allowedCores core;

85 let verifyParent (state,_) =

86 let rules = stateGetRules state in

87 let ruleiter (dependencies, corelist) =

88 List.exists (fun (core : core) -> setMemCore allowedCores core ||

89 coreGetStatus core == Sat)

90 corelist

91 in

92 if List.for_all ruleiter rules

93 then visitParentCores state

94 in

95 List.iter verifyParent (coreGetParents core)

96 end

97

98 and visitParentCores (state : state) : unit =

99 if not (setMemState allowedStates state)

100 then begin

101 setAddState allowedStates state;

102 let verifyParent core =

103 let acceptable =

104 List.exists (fun (state : state) -> setMemState allowedStates state ||

105 stateGetStatus state == Sat)

106 (coreGetChildren core)

107 in

108 if acceptable

109 then visitParentStates core

110 in

111 List.iter verifyParent (stateGetParents state)

112 end
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113 in

114

115 (* All rule applications need to still be potentially Sat for a
116 * finishing State to be a valid startingpoint for this fixpoint.
117 *)
118 let checkFinishingState (state : state) =

119 let ruleiter (dependencies, corelist) : bool =

120 List.for_all (fun (core : core) ->

121 coreGetStatus core == Unsat ||

122 coreGetStatus core == Expandable ||

123 not (setMemCore setCores core)) corelist

124 in

125 if not (List.exists ruleiter (stateGetRules state)) then begin

126 visitParentCores state

127 end

128

129 (* There needs to be a State still potentially Sat for this core
130 * to be considered for the fixpoint
131 *)
132 and checkFinishingCore (core : core) =

133 if not (List.for_all (fun (state : state) ->

134 stateGetStatus state == Unsat ||

135 stateGetStatus state == Expandable ||

136 not (setMemState setStates state))

137 (coreGetChildren core))

138 then begin

139 visitParentStates core

140 end

141 in

142 setIterState checkFinishingState setFinishingStates;

143 setIterCore checkFinishingCore setFinishingCores;

144

145

146 if (setLengthState setStates) = (setLengthState allowedStates) &&

147 (setLengthCore setCores) = (setLengthCore allowedCores)

148 then begin

149 setIterState (fun state -> stateSetStatus state Sat) setStates;

150 setIterCore (fun core -> coreSetStatus core Sat;

151 if core == graphGetRoot ()

152 then raise (CoAlg_finished true)

153 else ()) setCores;

154 end else

155 fixpointstep allowedStates allowedCores

156 in

157 fixpointstep setStates setCores
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