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Prelude

Miranda Mowbray, Richard Pennington and Edward Welbourne.

The editor has spent a very great deal of time obtaining
Prof. Conway's article on The Elements of Audioactive
Chemistry, and feels that some of you may be interested in the
somewhat tortuous route whereby the problem came to Prof.
Conway's attention.

The earliest appearance of the problem that we know of
dates back to 1977, at the International Mathematical Olympiad
in Belgrade, Yugoslavia. It is a well-known sociological
phenomenon that, if one puts a sufficiently large number of
mathematicians into a sufficiently small area, someone is
going to start setting puzzles - and, in this case, some very
interesting puzzles were indeed set, entirely independently of
the official competition. The Dutch contingent perpetrated the
following puzzle against the British team:

1 (Try solving it yourself! Answer in Prof.
11 Conway's article.)

21 The Dutch team may have
1211 cooked this up themselves but
111221 we suspect that it is older;
312211 however, Richard was on the

What is the next line? relevant British team, and

duly brought the problem to
Cambridge, where he inflicted it on Miranda, who relates
that...

" When I first showed this puzzle to one of my friends, he

thought for some time and then gave an agonised cry, 'I've
solved it - but you need a really TWISTED mind to think of
that!' I showed it to several arts students, who were all

baffled, which is surprising as it requires no mathematical
skills beyond counting. From my mathematical friends I got the
same response as the initial one; silence and furious thinking
for between two and thirty minutes followed by anguished
howling. If hideous noises were heard echoing down the
corridors of Newnham it was a good bet I'd asked that puzzle
again."

Miranda published the puzzle in 2-Manifold, of which
Richard showed a copy to Eddy, who in turn tormented a few
people. Prof. Conway lectured the Algebra III course in
Michaelmas 1983 with a lecture to spare at the end, so his
students invited him to a party in lecture room A at the time
set aside for the spare lecture. In the course of this Eddy
told the puzzle to the good Professor, who immediately started
looking at the general case, rapidly noticing the few
properties that had previously been seen - such as that digits
other than 1,2 and 3 don't occur naturally - and then went on
to guess that the strings would split; further developments
came later. The following Spring he met Eddy in Sainsbury's,
mentioned the discovery of the elements and promissed an
article to Eureka. A year and a half later, here it is!
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The Weird and Wonderful
Chemistry of

Audioactive Decay

J.H.Conway

Introduction.

Suppose we start with a string of numbers (i.e. positive

integers), say
5555 5.

We might describe this in words in the usual way as 'five
fives', and write down the derived string

5 5.

This we describe as 'Lwo fives', so it yields the next

derived string
25

which is 'one two, one five',giving
1215
namely 'one one, one two, one one, one five', or
11121115

and so on. What happens when an arbitrary string of positive
integers is repeatedly derived like this?
I note that more usually one is given a sequence such as

55555 ; 55 ; 25 ; 1215 ; 11121115 ;.

and asked to guess the generating rule or the next tgrm: The
history of this problem is described elsewhere in this issue
of Eureka.

The numbers in our stringe are usually single-digit ones,
so we'll call them digits and usually cram them together as we
have just done. But occasionally we want to indicate the way
the numbers in the string were obtained, and we can do th%s
neatly by inserting commas recalling the commas and quotes in
our verbal descriptions, thus:

55555

thereof is called parsing.



We'll often denote repetitions by indices ip the usual way.
so that the derivation rule is .

a%Bc73b--- -+ aaBbychbd---

When we do this it is always to be understood that the
repetitions are collected maximally, so that we must have

a#b, b#c, c#d, --- .

_Since what we write down is often only a chunk of the
entire string (that is, a consecutive subsequence of its
terms), we often use the square brackets "[" or "]" to

indicate that the apparent left or right end really is the
end. We also introduce the formal digits

0, as an index, to give an alternative way of
indicating the ends (see below)
X for an arbitrary digit, possibly 0, and
#n for any digit (maybe 0) other than n.

Thus X%a%o8c? means the same as [a®bBcY
a%BcYX® means the same as a%hBc?]
a%ABcYX*0 means a®bBc? followed by another digit, and
a%pBc¥ (#2)*9 means that this digit is not a 2.

I'm afraid that this heap. of conventions makes it qguite
hard to check the proofs, since they cover many more cases
than one naively expects. To separate these cases would make
this article very long and tedious, and the reader who really
wants to check all the details is advised first to spend some
time practising the derivation process. Note that when we
write '

L>L">L" > ---
we mean just that every string of type L derives to one of
type L', every string of type L' derives to one of type L",
and so on. So when in our proof of the Ending Theorem we have
(n#2)

nN] ——=5 n*N] — pnlj
the fact that the left arrow is asserted only when n#2 does
not excuse us from checking the. right arrow for n=2. (But,
since n>1 is enforced at that stage in the proof, we needn't
check either of them for n=1.)

By applying the derivation process n times to a string L we
obtain what we call its n'th descendant, Lp. The string itself
is counted among its descendants, as the Oéh.

Sometimes a string factors as the product LR of two strings
L and R whose descendants never interfere with each other, in
the sense that (LR)n = LpRy for all n. In this case, we say
that LR splits as L.R (dots in strings will always have this
meaning). It is plain that this happens just when (L or R is
empty or) the last digit of L, always differs from the first
one of Rp. Can you find a simple criterion for this to happen?
(When you give up, you'll find the answer in our Splitting
Theorem. )

Obviously, we call a string with no non-trivial splittings
an atom, or element. Then every string is the split product,
or compound, of a certain number of elements, which we call
the elements it involves. There are infinitely many distinct
elements, but most of them only arise from specially chosen
starting strings. However, there are some very interesting
elements that are involved in the descendants of every string
except the boring ones [] and [22]. Can you guess how many of
them there are? (Hint: we have given them the names

Hydrogen, Helium, Lithium, --- , Uranium.)

It's also true (but ASTONISHINGLY hard to prove) that every
string eventually decays into a compound of these elements,
together with perhaps a few others (namely isotopes of
Plutonium and Neptunium). Moreover, all strings except the two
boring ones increase in length exponentially at the same
constant rate. (This rate is roughly 1.30357726903: it can be
precisely defined as the largest root of a certain algebraic
equation of degree 71.) Also, the relative abundances of the
elements settle down to fixed numbers (zero for Neptunium and
Plutonium). Thus, of every million atoms about 91790 on
average will be of Hydrogen, the commonest element, while
about 27 will be of Arsenic, the rarest one.

You should get to know the common elements, as enumerated
in our Periodic Table (pages 8 and 9). The abundance (in atoms
per million) is given first, followed by the atomic number and
symbol as in ordinary chemistry. The actual digit-string
defining the element is the numerical part of the remainder of
the entry, which, when read in full, gives the derivate of the
element of next highest atomic number, split into atoms. Thus,
for example, the last line of the Periodic Table tells us that
Hydrogen (H) is our name for the digit-string 22, and that the
next higher element, Helium (He), derives to the compound

Hf .Pa.H.Ca.Li
which we might call
"Hafnium-Protactinium-Hydrogen-Calcium Lithide"!

Not everything is in the Periodic Table! For instance, the
single digit string "1" isn't. But watch:

1

11

21

1211

111221

312211

13112221

11132.13211 = Hf.Sn

after a few moves it has become Hafnium Stannide! This is an
instance of our "Cosmological Theorem", which asserts that the
exotic elements (such as "1"), all disappear soon after the
Big Bang.



The Periodic Table.

abundance: -

102.56285249
9883.5986392
7581.9047125
6926.9352045
5313.7894999
4076.3134078
3127.0209328
2398.7998311
1840.1669683
1411.6286100
1082.8883285
830.70513293
637.25039755
488.84742982
375.00456738
287.67344775
220.68001229
169.28801808
315.56655252
242.07736666
2669.0970363
2047.5173200
1570.6911808
1204.9083841
1098.5955997
47987.529438
36812.186418
28239.358949
21662.972821
20085.668709
15408.115182
29820.456167
22875.863883
17548.529287
13461.825166
10326.833312
7921.9188284
6077.0611889
4661.8342720
3576.1856107
2743.3629718
2104.4881933
1614.3946687
1238.4341972
950.02745646
728.78492056

(Uranium to Silver)

En inside the derivate of Epyq :

3

13
1113
3113
132113
1113122113 <
311311222113

Ho.1322113

1113222113 |
3113322113

Pm.123222113

111213322113

31121123222113

132112211213322113
111312212221121123222113
3113112211322112211213322113
1321132122211322212221121123222113
111312211312113221133211322112211213322113
Ge.Ca.312211322212221121123222113
13112221133211322112211213322113
11132.Pa.H.Ca.W

311312

1321131112

11131221133112

311311222.Ca.Co

1321132.Pm

111312211312

3113112221131112

Ho.13221133112

1113222.Ca.Co

311332

132.Ca.Zn

111312

31131112 4
1321133112

11131.H.Ca.Co

311311

13211321

11131221131211

311311222113111221

Ho.1322113312211

Eu.Ca.3112221

Pm.13211

11131221

3113112211

132113212221

.

The Periodic Table.

(Palladium to Hydrogen)

abundance: -

559.06537946
428.87015041
328.99480576
386.07704943
296.16736852
227.19586752
174.28645997
133.69860315
102.56285249
78.678000089
60.355455682
46.299868152
35.517547944
27.246216076
1887.4372276
1447.8905642
23571.391336
18082.082203
13871.124200
45645.877256
35015.858546
26861.360180
20605.882611
15807.181592
12126.002783
9302.0974443
56072.543129
43014.360913
32997.170122
25312.784218
19417.939250
14895.886658
32032.812960
24573.006696
18850.441228
14481.448773
11109.006821
8521.9396539
6537.3490750
5014.9302464
3847.0525419
2951.1503716
2263.8860325
4220.0665982
3237.2968588
91790.383216

=N WS OO W0

En

Pd
Rh
Ru
Tc
Mo
Nb
r
Y

Sr
Rb
Kr
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
v

Ti
Sc
Ca
K

Ar
Cl
S

P

Si
Al
Mg
Na
Ne

(]
N
C
B
Be
Li
He
H

En inside the derivate of Ep4+i1

111312211312113211
311311222113111221131221
Ho.132211331222113112211
Eu.Ca.311322113212221
13211322211312113211
1113122113322113111221131221
Er.12322211331222113112211
1112133.H.Ca.Tc

3112112.0

1321122112

11131221222112
3113112211322112
13111321222113222112
11131221131211322113322112
31131122211311122113222.Na
Ho.13221133122211331
Eu.Ca.Ac.H.Ca.312

131112

11133112

Zn.32112

13122112

111311222112

31132.8i

13211312

11131221131112
3113112221133112
Ho.Pa.H.12.Co

1112

3112

132112

1113122112

311311222112

Ho.1322112

1113222112

3113322112

Pm.123222112

111213322112

31121123222112
132112211213322112
111312212221121123222112
3113112211322112211213322112
1321132122211322212221121123222112
111312211312113221133211322112211213322112
Ge.Ca.312211322212221121123222112
13112221133211322112211213322112
Hf .Pa.22.Ca.Li



The Theory.

We start with some easy theorems that restrict the possible
strings after the first few moves. Any chunk of a string that
has lasted at least n moves will be called an pn-day-old
string.

The One-Day Theorem. Chunks of types

a x,b x, x4 Or more gnd x3y3

don't happen in day-old lists. (Note that the first one has a
given parsing.)

Praof. The first possibility gomes from x2xP, which,
however, should have been written x3%0, in the previous day's
string. The other two, however parsed, imply cases of the
first.

The Two-Day Theorem. No digit 4 or more can be born on or
after the second day. Also, a chunk 3x3 (in particular 33)
can't appear in any 2-day-old list.

Proof. The first possibility comes from a chunk x% oy more:
while the second, which we now know must parse ,3 x,3 y, can
only come from a chunk x3y?, of the previous day's string.

When tracking particular strings later, we'll use these
facts without explicit mention.

The Starting Theorem. Let R be any chunk of a 2-day-old
string, considered as a string in its own right. Then the
starts of its descendants ultimately cycle in one of the ways

{1 or ({11X! » (13 » [31X*3 or
K/

[22] or [221X! » (2213 » [2231x*3
Re _

If R is not already in such a cycle, at least three distinct
digits appear as initial digits of its descendants.

Proof. If R is non-empty and doesn't start with 22, then it
either starts with a 1 and is of one of the types
[11X0 O 1 or [11(22 OF 3 or 32) or [12X! OF #1 or [13
or starts with a 2 and is of one of the types
[lez or #2 gy [23

r starts with a 3 and is of one of the types

[31X3 Oor #3 or [32x3 or #3

or starts with some n>3 and has form [nt.

10

It is therefore visible in
[1123 [32X3 [11] [32x#3 (ni [23
N

[31x34[11324 [12x1%[21x2¢[11224 [12X$14[21x#2+[11x1+[139[31X$3
R/

which establishes the desired results for it.

This proves the theorem except for strings of type [22R"
all of whose descendants start with 22. This happens only if
no descendant of R' starts with a 2, and so we can complete
the proof by applying the results we've just found to R'.

The Splitting Theorem. A 2-day-old string LR splits as L.R
just if one of L and R is empty or L and R are of the types
shown in one of:

L | R
n} [m (n34,m<3)

2] [1'X! or (1% or [31X"*3 or [n! (n3>4)
#2] | [2211%X! or (2213 or [2231X*3 or [22n(0 O 1)  (n34)

Proof. This follows immediately from the Starting Theorem
applied to R and the obvious fact that the last digit of L is
constant.

Now we investigate the evolution of the end of the string!

The Ending Theorem. The end of a string ultimately cycles
in one of the ways:

2.311322112212221}» 2.13211322211312113211]}
T ¥
2.12322211331222113113112211]« 2.1113122113322113111221131221]}

2.31221132221222112112322211n]
E v (n>1)
2.1311222113321132211221121332211n}

or 22]

[Note: our splitting theorem shows that these strings actually
do split at the dots, although we don't use this.]

Proof. A string with last digit 1 musL end in one of the
ways visible in

1)3]+(¢2)X11]§(¢2)X12]921 or )411]421 Or 2312313522117132212]52311]

and its subsequent evolution is followed on the right hand
side of figure 1.
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A string with last digit n>1 must end nN] or p*nj] and so
evolves via
ﬂn=2)
n (n#2)

n"] ————5 n*715 n'15 1n]» 11nls (#1)1in]- 21in}» 2211n}

and the last string here is the first or second on the left of
Figure 1.

(#2)2211n] (n>1) (#2)2221]

(#2)22211n] 3211]
32211n] 31221]
322211n] 3112211}

(#3)332211n] 3212221]
2322211n] 312113211]
21332211n] 3111221131221])
2112322211n] (#3)331222113112211]
221121332211n]} 2.311322113212221]
22112112322211n] 2.13211322211312113211]
2211221121332211n] 2.1113122113322113111221131221}
221222112112322211n] 2.311311222.12322211331222113112211]
21132211221121332211n] 2.1112133.22.12.311322113212221}
221132221222112112322211n]}
22113321132211221121332211n]} (period 4)

22.12.31221132221222112112322211n]

2.1311222113321132211221121332211n] 6————————> (period 2)
2.11132.13.22.12.31221132221222112112322211n}

Figure 1. The evolution of endings other than 22].

This figure proves the theorem except for the trivial case
2273, (When any of these strings contains a dot, its subsequent
development is only followed from the digit just prior to the
rightmost dot.)

We are now ready for our first major result:

The Chemical Theorem.

a) The descendants of any of the 92 elements in our
Periodic Table are compounds of those elements.

b) All sufficiently late descendants of any of these
elements other than Hydrogen involve all of the 92
elements simultaneocusly.

c) The descendants of any string other than [] or [22]
also ultimately involve all of those 92 elements
simultaneously.

d) These 92 elements are precisely the common elements as
defined in the introduction.

Proof. a) follows instantly from the form in which we have
presented the Periodic Table.
b) It also follows that if the element E, of atomic number
n appears at some time t, then for any m<n, all of the
elements on the Ep line of the table will appear at the later
time t+n-m. In particular,
En at t => Hf&Li at t+n-1 (if n32),
Hf&Li at t == Hf&Li at t+2 & t+71,
Hf at t == Sr&U at t+72-38,
U at t == En at t+92-n.
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From these we successively deduce that if any of these 92
elements other than Hydrogen is involved at some time tg,
Hafnium and Lithium will simultaneously be involved at some
strictly later time < t,+100, and then both will exist at all
times 2>t +200, Uranium at all times 2>t +300, and every other
one of these 92 elements at all times 2t +400.

In other words, once you can fool some of the elements into
appearing some of the time, then soon you'll fool some of them
all of the time, and ultimately you'll be fooling all of the
elements all of the time!

c) If L is not of form L'22], this now follows from the
observation that Calcium (digit-string 12) is a descendant of
L, since it appears in both the bottom lines of Figure 1.
Otherwise we can replace L by L', which does not end in a 2.

d) follows from a),b),c) and the definition of the common
elements.

Now we'll call an arbitrary string common just if it's a
compound of common atoms.

The Arithmetical Theorem.
a) The lengths of all common strings other than boring old
[] and [22] increase exponentially at the same rate A>1.
b) The relative abundances of the elements in such strings
tend to certain fixed values, all strictly positive.

Notes. Since each common element has at least 1 and at most
42 digits we can afford to measure the lengths by either
digits or atoms - we prefer to use atoms. The numerical value
of X is 1.30357726903; the abundances are tabulated in the
Periodic Table.

Proof. Let v be the 92-component vector whose (i)-entry is
the number of atoms of atomic number i in some such string.
Then at each derivation step, v is multiplied by the matrix M
whose (i,]j)-entry is the number of times E4 is involved in the
derivate of Ej. Now our Chemical Theorem shows that some power
of M has strictly positive (i,j)-entries for all i#1 (the
(1,j)-entry will be 0 for 3Jj#1, 1 for 3j=1, since every
descendant of a single atom of Hydrogen is another such).

Let X be an eigenvalue of M with the largest possible
modulus, and vy a corresponding eigenvector. Then the non-zero
entries of vgMD' are proportional to AR, while the entries in
the successive images of all other vectors grow at at most
this rate. Since the 92 coordinate vectors (which we'll call
H,He,--- ,U in the obvious way) span the space, at least one
of them must increase at rate .

On the other hand, our Chemical Theorem shows that the
descendants of each of He,Li,--- ,U increase as fast as any of
them, and that this is at some rate >1, while H is a fixed
vector (rate 1). These remarks establish our Theorem.

[We have essentially proved the Frobenius-Perron Theorem,
that the dominant eigenvalue of a matrix with positive entries
is positive and occurs Jjust once, but I didn't want to
frighten you with those long names.]

13



The Transuranic Elements.
For each number n3>4, we define two particular atoms: -

an isotope of Plutonium (Pu) : 31221132221222112112322211n
an isotope of Neptunium (Np) : 1311222113321132211221121332211n

For n=2 these would be Lithium (Li) and Helium (He); for
n=3 they would be Tungsten (W) and Tantalum (Ta), while for
n?4 they are called the transuranic elements. We won't bother
to specify the number n in our notation.

We can enlarge our 92-dimensional vector space by adding
any number of new pairs of coordinate vectors Pu, Np
corresponding to pairs of transuranic elements.

Our proof of the Ending Theorem shows that every digit 4 or
more ultimately lands up as the last digit in one of the
appropriate pair of transuranic elements, and (see the bottom
left of Figure 1) that we have the decomposition

Pu » Np » Hf.Pa.H.Ca.Pu.

Now PuiNp is an eigenvector of eigenvalue *1 modulo the
subspace corresponding to the common elements, since Pu—Np
modulo that space. Because these eigenvalues are strictly less
than \ in modulus, the relative abundances of the transuranic
elements tend to 0.

So far, I can proudly say that this magnificent theory is
esgsentially all my own work. However, the next theorem, the
finest achievement so far in Audioactive Chemistry, is the
result of the combined labours of three brilliant
investigators.

The Cosmological Theorem.

Any string decays into a compound of common and
transuranic elements after a bounded number of derivation
steps. As a consequence, every string other than the two
boring ones increases at the magic rate A, and the relative
abundances of the atoms in its descendants approach the values
we have already described.

Proof of the Cosmological Theorem would fill the rest of
Eureka! Richard Parker and I found a proof over a period of
about a month of very intensive work (or, rather, play!). We
first produced a very subtle and complicated argument which
(almost) reduced the problem to tracking a few hundred cases,
and then handled these on dozens of sheets of paper (now
lost). Mike Guy found a simpler proof that used tracking and
backtracking in roughly equal proportions. Guy's proof still
filled lots of pages (almost all lost), but had the advantage
that it found the longest-lived of the exotic elements, namely
the isotopes of Methuselum (2233322211n; see Figure 2). Can
you find a proof in only a few pages? Please!

14

2233322211n (n>1)
223332211n

223322211n

222332211n

322322211n

13221332211n
111322112322211n
31132221121332211n
132113322112112322211n
La.H.12322211221121332211n
1112133221222112112322211n
Sr.3221132211221121332211n
132221132221222112112322211n
1113322113321132211221121332211n
3123222.Ca.(Li or W or Pu)
1311121332

11133112112.2Zn
Zn.321122112

131221222112
1113112211322112
311321222113222112
1321131211322113322112
111312211311122113222.Na
3113112221133122211332
Ho.Pa.H.Ca.Ac.H.Ca.Zn

Figure 2. The descendants of Methuselum.

The degree of \.

Plainly X is an algebraic number of degree at most 92. We
first reduce this bound to 71 by exhibiting a 2l1-dimensional
invariant subspace on which the eigenvalues of M are 0 or =*1.
To do this, we define the vectors

v,=H, v,=He-Ta, v3=Li-W, --- ,vyg=Ca-Pa,
or, in atomic number notation,
V1=E,, V3=E;~Eq3, V3=E3-Ej4, -+ /,V20=E39-Eg;:
and also define
v23={Sc+Sm-H-Ni-Er-3U0}/2,
then observe that
V21 > V2 ? Vig ? " 3 Vg 3 V3 & Vy, Vy ? V.

An alternative base for this space consists of the
eigenvectors

vy and v3 t v,
of M with the respective eigenvalues
1 and 1,

15



together with the following Jordan block of size 18 for the
eigenvalue O

Va3-Vig ? Vag~Vis * """ > Vs~V3 3y ve-vy 2 0.

[{This shows that M 1is one of those "infinitely rare"
matrices that cannot be diagonalised. Don't expect to follow
these remarks unless you've understood more of linear algebra
than I fear most of your colleagues have!]

Richard Parker and I have recently proved that the residual
718t degree equation for A is irreducible, even when it is
read modulo 5. We use the fact that the numbers in a finite
field of order g all satisfy x9 = x (since the non-zero ones
form a group of order g-1, and so satisfy xd-1 = 1).

Working always modulo 5, we used a computer to evaluate the
sequence of matrices

- -= 5 - s = 5 = 5
Mg = M, M; = M5, My = M5 My =M%, ..., Myy = My2°,

and to verify that the nullity (modulo 5) of Mp4a — M was
21 for 1 <n < 70, pbut 92 for n = 71. Note that the 21
vectors of the above 'alternative pase' are eigenvectors of My
whose eigenvalues (modulo 5) lie in the field of order 5.

If the 718t degree equation were reducible modulo 5, then
M, would have an eigenvector Llinearly independent of these

with eigenvalue lying in some extension field of order g = 50
(1L < n £ 70). But then the eigenvalues ¢ of these 22
eigenvectors would all satisfy ¢d = ¢, and the 22

eigenvectors would be null-vectors for
(M3)9 - Mz = Mnt2 - My,
contradicting our computer calculations.

It is rather nice that we were able to do this without
being able to write down the polynomial. However, Professor
Oliver Atkin of Chicago has since kindly calculated the
polynomial explicitly, and has also evaluated its largest root
A as

1.3035772690342963912570991121525498

approximately. The polynomial is

K71 x69-2x68_ x674 2x664 2x654 x64- x63- x62- x61
_ x60- x59+2x58+ 5x57+ 3x56- 2x55-10x54- 3x%3- 2x52+6x51
+6x50+ x494+0x48- 3x47- 7x46— 8x45- 8x44+10x43+ 6x42+8x41
_5x40.-12x394+7x38 - 7x37+ 7x36+ x35- 3x34+10x33+ x32-6x31!

—2x30-10x29-3x28+ 2x27+ 9x26- 3x25+14x24- 8x23 -7x21
+0x204 3x19-4x18-10x17- 7x16+12x15+ Tx14+ 2x13-12x12-4x!1
-2x10+ 5x° + x7 - 7x6 + 7x5 - 4x* +12x® - 6x2% +3x-6
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