
Classification Using C5.0

UseR! 2013

Max Kuhn

Pfizer Global R&D

Groton, CT

max.kuhn@pfizer.com

Historical Notes

In the late 1970’s Ross Quinlan was developing tree–based models such as
ID3.

In the 1980’s these methods evolved into a classification tree model called
C4.5 (Quinlan, 1993)

Although Quinlan published very little on this model after his book, he was
continually evolving the classification tree and rule–based models into the
latest incarnation called C5.0

C5.0 was proprietary and commercially available until 2011 when a GPL
version was released.

Kuhn and Johnson (2013) have a more complete description of C5.0 (and
another unpublished model called Cubist).

Max Kuhn (Pfizer) C5.0 2 / 20

C4.5 And CART

Some of the di↵erences between CART (Breiman et al, 1984) and C4.5
are:

A di↵erent impurity measure is used (entropy).

Tree pruning is done using pessimistic pruning.

Splits on categorical predictors are handled very di↵erently.

Trees can be converted to rules.

Missing values are handled using sending fractional samples into
subsequent nodes.

(Another model, J48, is available in Weka and is very similar to C4.5.
However, it does not combine categorical predictors, which leads to very
di↵erent (= poor) trees and rules.)

Max Kuhn (Pfizer) C5.0 3 / 20

Rule–Based Models

if-then statements generated by a tree define a unique route to one
terminal node for any sample.

A rule is a set of if-then conditions that have been collapsed into
independent conditions.

For the example:

if X1 >= 1.7 and X2 >= 202.1 then Class = 1

if X1 >= 1.7 and X2 < 202.1 then Class = 1

if X1 < 1.7 then Class = 2

Rules can be simplified or pruned in a way that samples are covered by
multiple rules, eg.

C4.5 (and C5.0) have options to convert the tree to rules.

Max Kuhn (Pfizer) C5.0 4 / 20

C5.0 vs C4.5

There are a number of subtle di↵erences in the pruning process and a few
other sub–routines.

C5.0 trees (and rulesets) are usually smaller than their C4.5 counterparts.

Rulesets have di↵erent class assignment algorithms.

The main di↵erences between the two algorithms are: boosting, winnowing
and asymmetric costs for specific errors.

Max Kuhn (Pfizer) C5.0 5 / 20

Boosting

While the stochastic gradient boosting machines diverged from the original
adaboost algorithm, C5.0 does something similar to adaboost.

After the first tree is created, weights are determined and subsequent
iterations create weighted trees or rulesets.

Subsequent trees (or rulesets) are constrained to be about the same size as
the initial model.

The final prediction is a simple averages of class probabilities generated
from each tree or ruleset (i.e. no stage weights).

Max Kuhn (Pfizer) C5.0 6 / 20

C5.0 Weighting Scheme

Boosting Iteration

Sa
m

pl
e

W
ei

gh
t

0

1

2

3

4

5

6

0 50 100 150 200

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

Correctly Classified Incorrectly Classified● ●

Max Kuhn (Pfizer) C5.0 7 / 20

Example Data

We will use the HPC job scheduling data as an example. These data
consist of information about compute jobs sent to a queuing system.

Given details about the job, predict how long the job will take (i.e. very
fast, fast, moderate, long).

> str(schedulingData)

data.frame: 4331 obs. of 8 variables:
$ Protocol : Factor w/ 14 levels "A","C","D","E",..: 4 4 4 4 4 4 4 4 4 4 ...
$ Compounds : num 997 97 101 93 100 100 105 98 101 95 ...
$ InputFields: num 137 103 75 76 82 82 88 95 91 92 ...
$ Iterations : num 20 20 10 20 20 20 20 20 20 20 ...
$ NumPending : num 0 0 0 0 0 0 0 0 0 0 ...
$ Hour : num 14 13.8 13.8 10.1 10.4 ...
$ Day : Factor w/ 7 levels "Mon","Tue","Wed",..: 2 2 4 5 5 3 5 5 5 3 ...
$ Class : Factor w/ 4 levels "VF","F","M","L": 2 1 1 1 1 1 1 1 1 1 ...

> table(schedulingData$Class)

VF F M L
2211 1347 514 259

Max Kuhn (Pfizer) C5.0 8 / 20

Example Data

> library(AppliedPredictiveModeling)

> data(schedulingData)

> library(caret)

> set.seed(733)

> inTrain <- createDataPartition(schedulingData$Class, p = .75, list = FALSE)

> training <- schedulingData[inTrain,]

> testing <- schedulingData[-inTrain,]

Max Kuhn (Pfizer) C5.0 9 / 20

Syntax for a Single Tree

> library(C50)

> oneTree <- C5.0(Class ~ ., data = training)

> ## also C5.0(x, y) interface is available

> ## Factor predictors are not converted to dummy vars

> oneTree

Call:
C5.0.formula(formula = Class ~ ., data = training)

Classification Tree
Number of samples: 3251
Number of predictors: 7

Tree size: 199

Non-standard options: attempt to group attributes

> oneTreePred <- predict(oneTree, testing)

> oneTreeProbs <- predict(oneTree, testing, type ="prob")

> postResample(oneTreePred, testing$Class)

Accuracy Kappa
0.8166667 0.7025836

Max Kuhn (Pfizer) C5.0 10 / 20

Single Tree

> summary(oneTree)

Call:
C5.0.formula(formula = Class ~ ., data = training)

C5.0 [Release 2.07 GPL Edition] Wed Jul 10 21:28:01 2013

Class specified by attribute outcome

Read 3251 cases (8 attributes) from undefined.data

Decision tree:

Protocol in {H,M,O}:
:...Iterations > 150: L (61)
: Iterations <= 150:
: :...Compounds <= 211:
: :...Iterations > 50:

<snip>

Max Kuhn (Pfizer) C5.0 11 / 20

Single Ruleset
> rules <- C5.0(Class ~ ., data = training, rules = TRUE)

> postResample(predict(rules, testing), testing$Class)

Accuracy Kappa
0.8101852 0.6939689

> summary(rules)

<snip>

Rule 1: (400/2, lift 1.9)
Protocol in {C, D, I, K}
Compounds <= 640
Iterations <= 30
-> class VF [0.993]

Rule 2: (213/2, lift 1.9)
Protocol in {A, D, E, G, J, N}
Compounds <= 640
InputFields <= 39
Iterations <= 30
NumPending <= 129
-> class VF [0.986]

Rule 3: (118/1, lift 1.9)

<snip>

Max Kuhn (Pfizer) C5.0 12 / 20

Boosted Tree

> ## Rules can also be boosted

> bstTree <- C5.0(Class ~ ., data = training, trials = 10)

> bstTree

Call:
C5.0.formula(formula = Class ~ ., data = training, trials = 10)

Classification Tree
Number of samples: 3251
Number of predictors: 7

Number of boosting iterations: 10
Average tree size: 180.3

Non-standard options: attempt to group attributes

> bstTreePred <- predict(bstTree, testing)

> postResample(bstTreePred, testing$Class)

Accuracy Kappa
0.8342593 0.7322586

Max Kuhn (Pfizer) C5.0 13 / 20

Winnowing

Winnowing is a feature selection step conducted before modeling.

The data set is randomly split in half and an initial model is fit.

Each predictor is removed in turn and the e↵ect on model performance is
determined (using the other half of the random split).

Predictors are flagged if their removal does not increase the error rate.

The final model is fit to all of the training set samples using only the
unflagged predictors.

This procedure can be used via

> mod <- C5.0(Class ~ ., data = training, control = C5.0Control(winnow = TRUE))

Max Kuhn (Pfizer) C5.0 14 / 20

Some Other Features

The confidence factor for pruning can be changed (C5.0Control(CF
= .25))

The minimum number of cases in a terminal node can also be
adjusted (C5.0Control(minCases = 2))

“Fuzzy thresholding”can also be specified
(C5.0Control(fuzzyThreshold = FALSE))

An optional global pruning algorithm can be turned on
(C5.0Control(noGlobalPruning = FALSE))

By default, C5.0 will cancel boosting if it appears to be very
ine↵ective. You can turn this o↵ via (C5.0Control(earlyStopping
= FALSE))

Asymmetric costs can be assigned to specific types of errors
(C5.0(costs = matrix())). See Kuhn and Johnson (2013) for an
example.

Max Kuhn (Pfizer) C5.0 15 / 20

Using train

The caret function train has bindings to C5.0 that will tune over the
type of model, winnowing and boosting:

> tuned <- train(training[, 1:7], training$Class,

+ method = "C5.0", tuneLength = 11,

+ trControl = trainControl(method = "repeatedcv",

+ repeats = 5),

+ ## Other options can be passed thru too, e.g.

+ ## control = C5.0Control(earlyStopping = FALSE) etc.

+ metric = "Kappa")

The optimal parameters used trees, no winnowing and 70 iterations of
boosting.

> postResample(predict(tuned, testing), testing$Class)

Accuracy Kappa
0.8435185 0.7476887

Max Kuhn (Pfizer) C5.0 16 / 20

Resampling Profile
plot(tuned, metric = "Kappa")

Boosting Iterations

Ka
pp

a
(R

ep
ea

te
d

C
ro

ss
−V

al
id

at
io

n)

0.68

0.70

0.72

0 20 40 60 80 100

●

●

●
● ●

● ● ● ● ● ●

No Winnowing

0 20 40 60 80 100

●

●

●
● ●

● ● ● ● ● ●

Winnowing

Model Type
rules tree●

Max Kuhn (Pfizer) C5.0 17 / 20

Acknowledgments

Thanks to:

Ross Quinlan

Steve Weston

Nathan Coulter

R Core and R-Forge Administrator

Max Kuhn (Pfizer) C5.0 18 / 20

References

Breiman L, Friedman J, Olshen R, Stone C (1984). Classification and

Regression Trees. Chapman and Hall, New York.

Kuhn M, Johnson K (2013). Applied Predictive Modeling. Springer

Quinlan R (1993). C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers.

Max Kuhn (Pfizer) C5.0 19 / 20

Versions

R version 3.0.0 (2013-04-03), x86_64-apple-darwin10.8.0

Locale: en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-
8/en_US.UTF-8

Base packages: base, datasets, graphics, grDevices, methods, parallel,
splines, stats, tools, utils

Other packages: AppliedPredictiveModeling 1.1-001, C50 0.1.0-15,
caret 5.17-07, class 7.3-7, cluster 1.14.4, codetools 0.2-8,
CORElearn 0.9.41, digest 0.6.3, doMC 1.3.0, e1071 1.6-1,
foreach 1.4.1, Hmisc 3.10-1, iterators 1.0.6, lattice 0.20-15,
MASS 7.3-26, mlbench 2.1-1, plyr 1.8, pROC 1.5.4, reshape2 1.2.2,
rpart 4.1-1, survival 2.37-4, weaver 1.26.0

Loaded via a namespace (and not attached): grid 3.0.0, stringr 0.6.2

Max Kuhn (Pfizer) C5.0 20 / 20

