The Journal of neuroscience : the official journal of the Society for Neuroscience, 2002
Mutations affecting the gating and channel properties of ionotropic neurotransmitter receptors in... more Mutations affecting the gating and channel properties of ionotropic neurotransmitter receptors in some hereditary epilepsies, in familial hyperekplexia, and the slow-channel congenital myasthenic syndrome (SCCMS) may perturb the kinetics of synaptic currents, leading to significant clinical consequences. Although at least 12 acetylcholine receptor (AChR) mutations have been identified in the SCCMS, the altered channel properties critical for disease pathogenesis in the SCCMS have not been identified. To approach this question, we investigated the effect of different AChR subunit mutations on muscle weakness and the function and viability of neuromuscular synapses in transgenic mice. Targeted expression of distinct mutant AChR subunits in skeletal muscle prolonged the decay phases of the miniature endplate currents (MEPCs) over a broad range. In addition, both muscle strength and the amplitude of MEPCs were lower in transgenic lines with greater MEPC duration. SCCMS is associated wit...
The slow-channel syndrome (SCS) is a neuromuscular disorder characterized by fatigability, progre... more The slow-channel syndrome (SCS) is a neuromuscular disorder characterized by fatigability, progressive weakness, and degeneration of the neuromuscular junction. The SCS is caused by missense mutations in the four subunits of the skeletal muscle acetylcholine receptor (AChR), which leads to altered channel gating, prolonged neuromuscular postsynaptic currents, and impaired neuromuscular transmission. Although a diverse set of mutations in different functional domains of the AChR appear to be associated with symptoms of widely ranging severity, there is as yet no mutant channel property or combination that explains the variations in disease severity. By observing the recovery time of AChR from desensitization, the authors determined that this process is significantly enhanced in SCS channels. In addition, as expected, the authors found that SCS macroscopic decay currents in transfected HEK293 cells are slower than wild type currents. While slight differences in relative Ca(2+) permeability between some SCS mutations were identified, they did not correlate with apparent disease severity. These results suggest that of the different AChR kinetic features studied, only recovery from desensitization and slow postsynaptic currents correlate with the severity observed in the different mutations of this syndrome.
We traced the cause of a slow-channel syndrome (SCS) in a patient with progressive muscle weaknes... more We traced the cause of a slow-channel syndrome (SCS) in a patient with progressive muscle weakness, repetitive compound muscle action potential and prolonged low amplitude synaptic currents to a V --> F substitution in the M1 domain of the beta subunit (betaV229F) of the muscle acetylcholine receptor (AChR). In vitro expression studies in Xenopus oocytes indicated that the novel mutation betaV229F expressed normal amounts of AChRs and decreased the ACh EC50 by 10-fold compared to wild type. Kinetic analysis indicated that the mutation displayed prolonged mean open duration and repeated openings during activation. Prolonged openings caused by the betaV229F mutation were due to a reduction in the channel closing rate and an increase in the effective channel opening rate. Repeated openings of the channel during activation were caused by a significant reduction in the agonist dissociation constant. In addition, the betaV229F mutation produced an increase in calcium permeability. The kinetic and permeation studies presented in this work are sufficient to explain the consequences of the betaV229F mutation on the miniature endplate currents and thus are direct evidence that the betaV229F mutation is responsible for compromising the safety margin of neuromuscular transmission in the patient.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 2002
Mutations affecting the gating and channel properties of ionotropic neurotransmitter receptors in... more Mutations affecting the gating and channel properties of ionotropic neurotransmitter receptors in some hereditary epilepsies, in familial hyperekplexia, and the slow-channel congenital myasthenic syndrome (SCCMS) may perturb the kinetics of synaptic currents, leading to significant clinical consequences. Although at least 12 acetylcholine receptor (AChR) mutations have been identified in the SCCMS, the altered channel properties critical for disease pathogenesis in the SCCMS have not been identified. To approach this question, we investigated the effect of different AChR subunit mutations on muscle weakness and the function and viability of neuromuscular synapses in transgenic mice. Targeted expression of distinct mutant AChR subunits in skeletal muscle prolonged the decay phases of the miniature endplate currents (MEPCs) over a broad range. In addition, both muscle strength and the amplitude of MEPCs were lower in transgenic lines with greater MEPC duration. SCCMS is associated wit...
The slow-channel syndrome (SCS) is a neuromuscular disorder characterized by fatigability, progre... more The slow-channel syndrome (SCS) is a neuromuscular disorder characterized by fatigability, progressive weakness, and degeneration of the neuromuscular junction. The SCS is caused by missense mutations in the four subunits of the skeletal muscle acetylcholine receptor (AChR), which leads to altered channel gating, prolonged neuromuscular postsynaptic currents, and impaired neuromuscular transmission. Although a diverse set of mutations in different functional domains of the AChR appear to be associated with symptoms of widely ranging severity, there is as yet no mutant channel property or combination that explains the variations in disease severity. By observing the recovery time of AChR from desensitization, the authors determined that this process is significantly enhanced in SCS channels. In addition, as expected, the authors found that SCS macroscopic decay currents in transfected HEK293 cells are slower than wild type currents. While slight differences in relative Ca(2+) permeability between some SCS mutations were identified, they did not correlate with apparent disease severity. These results suggest that of the different AChR kinetic features studied, only recovery from desensitization and slow postsynaptic currents correlate with the severity observed in the different mutations of this syndrome.
We traced the cause of a slow-channel syndrome (SCS) in a patient with progressive muscle weaknes... more We traced the cause of a slow-channel syndrome (SCS) in a patient with progressive muscle weakness, repetitive compound muscle action potential and prolonged low amplitude synaptic currents to a V --> F substitution in the M1 domain of the beta subunit (betaV229F) of the muscle acetylcholine receptor (AChR). In vitro expression studies in Xenopus oocytes indicated that the novel mutation betaV229F expressed normal amounts of AChRs and decreased the ACh EC50 by 10-fold compared to wild type. Kinetic analysis indicated that the mutation displayed prolonged mean open duration and repeated openings during activation. Prolonged openings caused by the betaV229F mutation were due to a reduction in the channel closing rate and an increase in the effective channel opening rate. Repeated openings of the channel during activation were caused by a significant reduction in the agonist dissociation constant. In addition, the betaV229F mutation produced an increase in calcium permeability. The kinetic and permeation studies presented in this work are sufficient to explain the consequences of the betaV229F mutation on the miniature endplate currents and thus are direct evidence that the betaV229F mutation is responsible for compromising the safety margin of neuromuscular transmission in the patient.
Uploads
Papers by Roberto Zayas