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Abstract
We obtain a new relation between the distributions μt at different times t ≥ 0 of the
continuous-time totally asymmetric simple exclusion process (TASEP) started from
the step initial configuration. Namely, we present a continuous-time Markov process
with local interactions and particle-dependent rates which maps the TASEP distribu-
tions μt backwards in time. Under the backwards process, particles jump to the left,
and the dynamics can be viewed as a version of the discrete-space Hammersley pro-
cess. Combined with the forward TASEP evolution, this leads to a stationary Markov
dynamics preserving μt which in turn brings new identities for expectations with
respect to μt . The construction of the backwards dynamics is based on Markov maps
interchanging parameters of Schur processes, and is motivated by bijectivizations of
the Yang–Baxter equation. We also present a number of corollaries, extensions, and
open questions arising from our constructions.
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Fig. 1 A forbidden jump (on the left) and a jump (on the right) in TASEP

1 Introduction

1.1 TASEP

The Totally Asymmetric Simple Exclusion Process (TASEP) is a prototypical stochas-
tic model of transport in one dimension. Introduced around 50 years ago in parallel
in biology [59,60] and probability theory [80], it has been extensively studied by a
variety of methods.

TASEP is a continuous-timeMarkov process on the space of particle configurations
inZ in which at most one particle per site is allowed. Each particle has an independent
exponential clock of rate 1 (that is, the random time T after which the clock rings
is distributed as Prob(T > s) = e−λs , s > 0, where λ = 1 is the rate). When the
clock rings, the particle jumps to the right by one if the destination is free of a particle.
Otherwise, the jump is blocked and nothing happens. See Fig. 1 for an illustration.

In this work we focus on the process with the most well-studied initial condition—
the step initial condition. Under it, the particles initially occupy Z<0, while Z≥0
is free of particles. Denote by h(t, x) the TASEP interface (where t ∈ R≥0, x ∈
Z), which is obtained by placing a slope +1 or a slope −1 segment over a hole or
particle, respectively, with the agreement that the step initial configuration corresponds
to h(0, x) = |x |. See Fig. 3 for an illustration. We also denote the TASEP distribution
at time t (with step initial condition) by μt .

It was shown by [76] (see also, e.g., [50], [75, Chapter 4] for an alternative approach
based on symmetric functions) that the interface grows linearly with time and tends to
the limit shape, under the hydrodynamic scaling (i.e. linear space and time scaling),
which is a parabola:

1

L
h(τ L, κL) → κ

2 + τ 2

2τ
, L → +∞, (1.1)

where κ and τ are scaled space and time, and |κ| ≤ τ .
In the past 20 years, starting with [50], much finer results about asymptotic behav-

ior of TASEP have become available through the tools of Integrable Probability
(cf. [18,25]). This asymptotic analysis revealed that TASEP belongs to the (one-
dimensional) Kardar–Parisi–Zhang (KPZ) universality class [33,72]. In particular, the
TASEP interface at time L , on the horizontal L2/3 and vertical L1/3 scales, converges
to the Airy2 process, which is the top line of the Airy2 line ensemble (about the latter
see, e.g., [35]). Furthermore, computations with TASEP allow to formulate general
predictions for all one-dimensional systems in the KPZ class (e.g., see [39,81]). The
progress in understanding multitime asymptotics of the TASEP interfaces is rapidly
advancing at present (see Remark 7.4 for references to recent results).
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Fig. 2 An illustration of the backwards process. Jump rates attached to holes and a possible jump are
indicated

1.2 The backwards dynamics

The goal of our work is to present a new surprising property of the family of TASEP
distributions {μt }t≥0. We show that the distributions μt are coupled in the reverse
time direction by a time-homogeneous Markov process with local interactions (the
interaction strength depends on the location in the system). Let us now describe this
backwards dynamics.

Denote by C the (countable) space of configurations onZwhich differ from the step
configuration by finitely many TASEP jumps.1 Consider the continuous-time Markov
chain on Cwhich evolves as follows. At each hole there is an independent exponential
clock whose rate is equal to the number of particles to the right of this hole. When
the clock at a hole rings, the leftmost of the particles that are to the right of the hole
instantaneously jumps into this hole (in particular, the particles almost surely jump to
the left). See Fig. 2 for an illustration or (7.2) for a description of the generator. Note
that, for configurations in C, almost surely at most one particle can move at any time
moment because there are only finitely many holes with nonzero rate.

The jumping mechanism described above has the following features:

– gaps attract neighboring particles from the right;
– the rate of attraction is proportional to the size of the gap;
– the jumping particle lands inside the gap uniformly at random.

The same features of the jumping mechanism appear in the well-known continuous-
space Hammersley process [2,49], and the discrete-space Hammersley process
[42,44]. For this reason we call our Markov process (which evolves in the dis-
crete space) the backwards Hammersley-type process, or BHP, for short. Note that
compared to the well-known continuous-space Hammersley process, our BHP is
space-inhomogeneous: the jump rate at a hole also depends on the number of par-
ticles to the right of it. The evolutions of the interface under TASEP and the BHP are
given in Fig. 3.

Let {Lτ }τ∈R≥0 be the Markov semigroup of the BHP defined in Sect. 1.2. That is,
Lτ (x, y), x, y ∈ C, is the probability that the particle configuration is y at time τ given
that it started at x at time 0 (here we use the fact that BHP is time-homogeneous).

Remark 1.1 The backwards process is well-defined. Indeed, for each initial condition
x ∈ C of the backwards process, the set of its possible further states is finite. Therefore,
the probability Lτ (x, y) for any x, y ∈ C is well-defined (and can be obtained by
exponentiating the corresponding finite-size piece of the BHP jump matrix).

1 In other words, C consists of configurations {x1 > x2 > x3 > · · · } ⊂ Z which possess a rightmost
particle x1, and such that xN = −N for all N large enough.
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1.3 Main result

Recall that μt is the distribution of the TASEP configuration at time t (with the step
initial condition). The measure μt is supported on the space C for all t ≥ 0.

Theorem 1 The BHP maps the TASEP distributions backwards in time. That is, for
any t, τ ∈ R≥0, we have

μt Lτ = μ e−τ t . (1.2)

In detail, this identity means that for any x ∈ C we have

∑

y∈C
μt (y)Lτ (y, x) = μ e−τ t (x).

As τ → +∞, the right-hand side of (1.2) becomes μ0, which is the delta measure
on the step configuration. This agrees with the observation that for any x ∈ Cwe have2

lim
τ→+∞Lτ (x, y) = 1y=step configuration.

Theorem 1 leads to a stationary Markov dynamics on the TASEP measure μt (it
is discussed in Sect. 1.7). In particular, this stationary dynamics brings new identities
for expectations with respect to μt . One of these identities is given in Corollary 7.3.

The simulation depicting the TASEP evolution from the step initial configuration
to t = 350, and then the action of the BHP on this interface is available online [56].
The interfaces in Fig. 3 are snapshots of this simulation.

1.4 Remark: Reversal of Markov processes

Before discussing the strategy of the proof of Theorem 1 let us mention that TASEP,
like any Markov chain (under certain technical assumptions), can be reversed in time,
and its reversal is again a Markov chain—but usually time-inhomogeneous and quite
complicated.

For TASEP, let {Tt }t∈R≥0 be its Markov semigroup. Defining

Trev
t,s (x, y) = μs(y)

μt (x)
Tt−s(y, x), t > s,

we see that Trev also maps the TASEP distributions back in time: μtTrev
t,s = μs ,

s < t . In other words, the probabilities Trev come from the time-reversal of the
TASEP conditional distributions. TheMarkov process corresponding to {Trev

t,s } is time-
inhomogeneous, and its interactions are substantially nonlocal. Theorem 1 implies
that the BHP {Lτ } is a different, much more natural, Markov process which maps the
TASEP distributions back in time.

2 Throughout the paper 1E stands for the indicator function if the event E .
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Mapping TASEP back in time 485

Fig. 3 An illustration of the TASEP interface growth (top) and the interface decay under the backwards
dynamics (bottom). In both pictures, lighter curves are the interfaces at later times. One can see that the
TASEP evolution is symmetric about the vertical axis, while the backwards dynamics is not symmetric.
Because of this asymmetry, there are in fact two backwards processes—one focusing on holes and the other
focusing on particles. We only consider one of them in the present work

By a different mapping of the distributions we mean the following. One can check
that the joint distribution of the TASEP configuration at two times e−τ t and t differs
from the joint distribution of (x, y), where y is distributed as μt , and x is obtained
from y by running the BHP process Lτ .

1.5 Idea of proof of Theorem 1

We prove Theorem 1 in Sections 4, 5, and 6. Here let us outline the main steps.

123



486 L. Petrov, A. Saenz

1

q

q2

q3

q4

x1
1

x2
2

x3
3

x2
1

x3
2 x3

1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤>

Fig. 4 A configuration {x j
i } in Z × Z≥1. The leftmost (marked) particles are identified with TASEP. The

interlacing condition x j+1
i+1 < x j

i ≤ x j+1
i holds throughout the configuration

First, we modify the problem by introducing an extra parameter q ∈ (0, 1), and
consider the TASEP in which the k-th particle from the right, k ∈ Z≥1, has the jump
rate qk−1.3 Let the distribution at time t of this TASEP (with step initial configuration)
be denoted by μ

(q)
t .

Second, we use the well-known mapping of the TASEP to Schur processes. Schur
processes [67] (and their various generalizations including the Macdonald processes
[14]) are one of the central tools in Integrable Probability. The particular Schur pro-
cesses we employ are probability distributions on particle configurations {x j

i }1≤i≤ j in
Z × Z≥1 which satisfy an interlacing condition, see Fig. 4.

There exists a Schur process (depending onq and the time parameter t ∈ R≥0) under
which the joint distribution of the leftmost particles {xNN }N∈Z≥1 in each horizontal row
is the same as of the q-dependent TASEP particles x1(t) > x2(t) > · · · (i.e., this
is μ

(q)
t ). This mapping between TASEP and Schur processes is described in [16],

but also follows from earlier constructions involving the Robinson–Schensted–Knuth
correspondence. We recall the details in Sect. 3.

This Schur process corresponding to μ
(q)
t depends on q via the spectral parameters

1, q, q2, . . . attached to the horizontal lines (as indicated in Fig. 4). The new ingredients
we bring to Schur processes areMarkov maps interchanging two neighboring spectral
parameters (say, the j-th and the ( j + 1)-th). By a Markov map we mean a way to
randomly modify the interlacing particle configuration in Z × Z≥1 such that:

– At the j-th horizontal level the particles almost surely jump to the left;
– All other levels are untouched;
– The interlacing conditions are preserved;
– If the starting configuration was distributed as a Schur process, then the resulting
configuration is distributed as a modified Schur process with the j-th and the
( j + 1)-th spectral parameters interchanged.

3 We emphasize that this q-version of the TASEP should not be confused with the q-TASEP of [14,77].
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Fig. 5 Left: Probabilities in the Bernoulli randomwalk. Center: A sample trajectory of the Bernoulli random
walk. Right: Local step of the process Dτ

We refer to this as the “L Markov map” since it moves particles to the left (it has a
counterpart, the “R Markov map”, but we do not need it for the main result). The L
Markov map at each j-th level depends only on the ratio of the spectral parameters
being interchanged.

Combining the LMarkov maps in such a way that they interchange the bottommost
spectral parameter 1 with q, then with q2, then with q3, and so on, we can move
this parameter 1 to infinity, where it “disappears” (see Fig. 9 for an illustration). The
resulting distribution of the configuration will again be a Schur process with the same
spectral parameters (1, q, q2, . . .), but with themodified time parameter, t �→ qt . Here
we use the fact that the measure does not change under the simultaneous rescaling of
the spectral parameters.

Considering the action of this combination of the L Markov maps on the leftmost
particles {xNN }, we arrive at an explicit Markov transition kernel on C, denoted by L(q),
with the property that (this is Theorem 5.7)

μ
(q)
t L(q) = μ

(q)
qt for all t ∈ R≥0.

Finally, iterating the action ofL(q) and taking the limit as q → 1, we arrive at Theorem
1.

1.6 “Toy” example: coupling of Bernoulli randomwalks

The Schur process computations leading to Theorem 1 have an elementary con-
sequence which we now describe. Its connection to Schur processes is detailed in
Sect. 8.7.

Fix β ∈ (0, 1), and let bβ be the distribution of the simple random walk in the
quadrant Z

2≥0, under which the walker starts at (0, 0) and goes up with probability β

and to the right with probability 1 − β, independently at each step.
Consider the continuous-time Markov process on the space of random walk tra-

jectories under which each (up, right) local piece is independently replaced by the
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(right, up) piece at rate m + n − 1, where (m, n) ∈ Z
2≥1 are the coordinates of the

local piece. See Fig. 5 for an illustration. Clearly, in each triangle {m+n ≤ K }, almost
surely at each timemoment there is at most one change of the trajectory. Moreover, for
different K these processes are compatible, so by the Kolmogorov extension theorem
they indeed define a continuous-time Markov process on the full space of random
walk trajectories. Denote the resulting Markov semigroup by {Dτ }τ∈R≥0 .

Proposition 2 For any β ∈ (0, 1) and τ ≥ 0 we have

bβ Dτ = bβ(τ), where β(τ) = βe−τ

1 − β + βe−τ
.

The action of Dτ decreases the parameter β and almost surely moves the trajectory
closer to the m (horizontal) axis. By symmetry, one can also define a continuous-
time Markov chain which moves the vertical pieces of the trajectory to the left, and
increases the parameter β. It could be interesting to look at the stationary dynamics—a
combination of the two processes running in parallel which does not change β—and
understand its large-scale asymptotic behavior. We do not focus on this question in
the present work.

1.7 Stationary dynamics on the TASEPmeasure

Fix t ∈ R>0. The backwards Hammersley-type process slowed down by a factor
of t compensates the time change of the forward TASEP evolution. Running these
two processes in parallel thus amounts to a continuous-time Markov process which
preserves the TASEP distribution μt .

One can say that the TASEP distributions μt are the “blocking measures” for the
stationary dynamics [57] (see also [5]).

The presence of the stationary dynamics on μt allows to obtain new properties
of the TASEP measure. In particular, we write down an exact evolution equation for
EG(N 0

t ), where N 0
t is the number of particles to the right of zero at time t , and G is

an arbitrary function. This equation contains one more random quantity—the number
of holes immediately to the left of zero. See Corollary 7.3 for details.

Moreover, in Sect. 7 we rederive the limit shape parabola for the TASEP by looking
at the hydrodynamics of the process preserving μt . Indeed, recall that the TASEP local
equilibria—the ergodic translation invariant measures on configurations on the full
line Z which are also invariant under the TASEP evolution—are precisely the product
Bernoulli measures [57]. In the bulk of the BHP, the difference between jump rates of
consecutive particles is inessential. Thus, the product Bernoulli measures also serve
as local equilibria for the BHP.4 By looking at the local equilibria, one can write down
two hydrodynamic PDEs for the TASEP limit shape: first is the well-known Burgers’
equation, and the second is a PDE coming from the BHP, which is specific to the step
initial condition. After simplifications, these PDEs lead to the parabola (1.1).

4 In fact, they are the only (extreme) local equilibria because the particle-hole involution turns the homo-
geneous BHP into the PushTASEP (= long-range TASEP), and local equilibria for the latter are classified
[3,48].
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Beyond hydrodynamics, the asymptotic fluctuation behavior of the TASEP mea-
sures μt as t → +∞ is understood very well by now, starting from [50]. It would be
very interesting to extend these results to the combination TASEP + t−1BHP which
preserves μt .

1.8 Further extensions

TheMarkov maps on Schur processes we introduce to prove our main result, Theorem
1, offer a variety of other applications and open problems. We discuss them in more
detail Sect. 8. Here let us briefly outline the main directions:

– The one-dimensional statement (mapping the TASEP distributions back in time)
has an extension to two dimensions. Namely, there is a continuous-time Markov
process on interlacing particle configurations (as in Fig. 4) which maps back in
time the distributions of the anisotropic KPZ growth process on interlacing arrays
studied in [16].

– Instead of Schur processes, one can consider interlacing configurations of finite
depth. This includes probability distributions on boxed plane partitionswithweight
proportional to qvol (where vol is the volume under the boxed plane partition). In
this setting our constructions produce Markov chains mapping the measure qvol to
themeasure q−vol, and vice versa. (A simulation is available online [70].)Applying
this procedure twice leads to a new sampling algorithm for the measures q±vol.

– A certain bulk limit of our two-dimensional Markov maps essentially leads to the
growth processes preserving ergodic Gibbsmeasures on two-dimensional interlac-
ing configurations introduced and studied in [83]. Thus, one can view our Markov
maps as exact “pre-bulk” stationary dynamics on two-dimensional interlacing con-
figurations.

– Theorem 1 may be interpreted as the statement that the family of measures {μt } is
coherent with respect to a projective system determined by the process {Lτ }. Pro-
jective systems [23] generalize the notion of branching graphs, and the latter play
a fundamental role in Asymptotic Representation Theory [24,84]. (Even further,
the distributions of the anisotropic KPZ growth are also coherent, on a projective
system whose “levels” are spaces of two-dimensional interlacing configurations.)
The framework of projective systems/branching graphs provides many natural
questions in this setting.

– Structurally, ourMarkovmaps are inspired by the study of stochastic vertexmodels
and bijectivization of the Yang–Baxter equation [29,30]. Compared with the Schur
case, the full Yang–Baxter equation for the quantum sl2 contains more parameters.
In this setting, Schur polynomials should be replaced by the spin Hall-Littlewood
or spin q-Whittaker symmetric functions [12,27]. It is interesting to see how far
Theorem 1 can be generalized to other particle systems arising in this framework,
including ASEP, various stochastic six vertex models, and random matrix models.

– There exists a backwards dynamics for the ASEP started from a family of shock
measures [9]. This ASEP backwards dynamics is obtained via a duality. While the
shock measures are very different from the step initial configuration, it would be
interesting to find connections of Theorem 1 to Markov duality.
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490 L. Petrov, A. Saenz

Concrete open questions along these directions are formulated and discussed in
Sect. 8.

1.9 Outline

In Sects. 2 and 3 we recall the necessary facts about Schur processes, TASEP, and their
connection. In Sect. 4 we introduce the L and RMarkovmaps at the level of interlacing
arrays. The action of each such map swaps two neighboring spectral parameters. In
Sect. 5 we combine the L Markov maps in such a way that their combination L

(q)

preserves the class of q-Gibbs measures on interlacing arrays (which includes the
Schur processes related to the q-dependent TASEP). We compute the action of L

(q)

on q-Gibbs measures and the corresponding Schur processes. In Sect. 6 we take a
limit q → 1, which leads to our main result, Theorem 1. In Sect. 7 we illustrate the
relation between the TASEP and the backwards evolutions at the hydrodynamic level
by looking at the stationary dynamics on the TASEP distribution μt . Finally, in Sect. 8
we discuss possible extensions of our constructions indicated in Sect. 1.8 above, and
formulate a number of open questions.

2 Ascending Schur processes

This section is a brief review of ascending Schur processes introduced in [67] and
their relation to TASEP. More details may be found in, e.g., [18].

2.1 Partitions

A partition λ = (λ1 ≥ · · · ≥ λ�(λ) > 0), where λi ∈ Z, is a weakly decreasing
sequence of nonnegative integers. We denote |λ| := ∑N

i=1 λi . We call �(λ) the length
of a partition. By convention we do not distinguish partitions if they differ by trailing
zeroes. In this way �(λ) always denotes the number of strictly positive parts in λ.
Denote by Y the set of all partitions including the empty one ∅ (by convention,
�(∅) = |∅| = 0).

2.2 Schur polynomials

Fix N ∈ Z≥1. The Schur symmetric polynomials in N variables are indexed λ ∈ Y

and are defined as

sλ(x1, . . . , xN ) :=
det

[
x

λ j+N− j
i

]N
i, j=1∏

1≤i< j≤N (xi − x j )
, N ≥ �(λ).

If N < �(λ), we set sλ(x1, . . . , xN ) = 0, by definition.
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The Schur polynomials sλ indexed by all λ ∈ Y with �(λ) ≤ N form a linear basis
in the space C[x1, . . . , xN ]SN of symmetric polynomials in N variables. Each sλ is a
homogeneous polynomial of degree |λ|.

The Schur polynomials are stable in the following sense:

sλ(x1, . . . , xN , 0) = sλ(x1, . . . , xN ). (2.1)

This stability allows to define Schur symmetric functions sλ, λ ∈ Y, in infinitely many
variables. These objects form a linear basis of the algebra of symmetric functions Λ.
We refer to [61, Ch. I.2] for the precise definition and details on the algebra Λ.

2.3 Skew Schur polynomials

The skew Schur polynomials sλ/κ , λ, κ ∈ Y are defined through the branching rule
as follows:

sλ(x1, . . . , xN ) =
∑

κ∈Y

sκ(x1, . . . , xK )sλ/κ(xK+1, . . . , xN ). (2.2)

Indeed, sλ(x1, . . . , xN ) is a symmetric polynomial in x1, . . . , xK , and so the skew
Schur polynomials in (2.2) are the coefficients of the linear expansion. These skew
Schur polynomials are symmetric in xK+1, . . . , xN and satisfy the stability property
similar to (2.1). We have sλ/∅ = sλ.

Let λ, κ ∈ Y. Plugging in just one variable into sλ/κ simplifies this symmetric
function. Namely, sλ/κ(x) vanishes unless κ and λ interlace (notation κ ≺ λ; equiv-
alently, λ/κ is a horizontal strip):

λ1 ≥ κ1 ≥ λ2 ≥ κ2 ≥ . . . . (2.3)

Moreover,

sλ/κ(x) = x |λ|−|κ|1κ≺λ. (2.4)

For any λ ∈ Y, the set {κ : κ ≺ λ} is finite.
Iterating (2.2) and breaking down all skew Schur polynomials into single-variable

ones, we see that each Schur polynomial has the following form:

sλ(x1, . . . , xN )

=
∑

λ(1)≺...≺λ(N )=λ

x |λ(1)|
1 x |λ(2)|−|λ(1)|

2 . . . x |λ(N−1)|−|λ(N−2)|
N−1 x |λ(N )|−|λ(N−1)|

N , (2.5)

where the sum is taken over all interlacing arrays of partitions of depth N in which the
top rowcoincideswithλ (seeFig. 6 for an illustration). In combinatorial language, (2.5)
is the representation of a Schur polynomial as a generating function of semistandard
Young tableaux, cf. [45].
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Remark 2.1 If N < �(λ), then there are no interlacing arrays of depth N whose top
row is λ because at each level one can add at most one nonzero component. Thus, the
right-hand side of (2.5) automatically vanishes if N < �(λ). This agrees with the fact
that sλ(x1, . . . , xN ) = 0 if N < �(λ).

The following two identities for skew Schur polynomials play a fundamental role
in our work. The first identity is a straightforward consequence of the symmetry of
the Schur polynomials.

Proposition 2.2 For any λ,μ ∈ Y and variables x, y we have

∑

κ∈Y

sλ/κ(x)sκ/μ(y) =
∑

κ̂∈Y

sλ/κ̂(y)sκ̂/μ(x).

The sums in both sides are finite.

The second is the skew Cauchy identity, see [61, Ch. I.5].

Proposition 2.3 For any λ,μ ∈ Y and variables x1, . . . , xN , y1, . . . , yM we have

∑

ν∈Y

sν/μ(x1, . . . , xN )sν/λ(y1, . . . , yM )

=
N∏

i=1

M∏

j=1

1

1 − xi y j

∑

κ∈Y

sλ/κ(x1, . . . , xN )sμ/κ(y1, . . . , yM ).

(2.6)

This is an identity of generating series in xi , y j under the standard geometric series
expansion 1

1−xi y j
= 1 + xi y j + (xi y j )2 + . . .. Moreover, (2.6) holds as a numerical

identity if xi , y j ∈ C are such that |xi y j | < 1 for all i, j .

Remark 2.4 If we set λ = μ = ∅ in (2.6), the sum in the right-hand side disappears
(because s∅/κ = 1κ=∅), and we obtain

∑

ν∈Y

sν(x1, . . . , xN )sν(y1, . . . , yM ) =
N∏

i=1

M∏

j=1

1

1 − xi y j
. (2.7)

Again, this is a numerical identity provided that |xi y j | < 1 for all i, j .

2.4 Specializations

When x ≥ 0, we have sλ/κ(x) ≥ 0 from (2.4). More generally, the Schur polynomials
sλ(x1, . . . , xN ) are nonnegative for real nonnegative x1, . . . , xN .

We will also need the Plancherel specializations of Schur functions sλ. These
specializations, indexed by t ≥ 0, may be defined through the limit

sλ(ρt ) := lim
K→+∞ sλ

(
t

K
, . . . ,

t

K

)
, λ ∈ Y, (2.8)
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where t
K is repeated K times.

Remark 2.5 We also have sλ(ρt ) = t |λ| dim λ

|λ|! , where dim λ is the dimension of the

irreducible representation of the symmetric group S|λ|, or, equivalently, the number
of standard Young tableaux of shape λ.

Generic nonnegative specializations will be denoted as ρ : Λ → R, and we will
also use the notation sλ(ρ) for ρ(sλ). For the purposes of the present paper, ρ would
be either a Plancherel specialization, or a substitution of a finitely many nonnegative
variables into the symmetric function.

Remark 2.6 A classification of Schur-positive specializations (that is, algebra homo-
morphisms Λ → R which are nonnegative on Schur functions) is known and is
equivalent to the celebrated Edrei–Thoma theorem. See, for example, [24] for a mod-
ern account discussing various equivalent formulations.

2.5 Schur processes

Schur measures and processes are probability distributions on partitions or sequences
of partitions whose probability weights are expressed through Schur polynomials in
a certain way. They were introduced in [66,67].

A Schur measure is a probability measure onYwith probability weights depending
on two nonnegative specializations ρ1, ρ2:

P[ρ1 | ρ2](λ) = 1

Z
sλ(ρ1)sλ(ρ2), Z =

∑

λ∈Y

sλ(ρ1)sλ(ρ2). (2.9)

The normalizing constant Z can be computed using theCauchy identity (2.7) (provided
that the infinite sum converges).

Schur processes are probability measures on sequences of partitions generalizing
the Schur measures. We will only need the particular case of ascending Schur pro-
cesses. These are probability measures on interlacing arrays

λ(1) ≺ λ(2) ≺ . . . ≺ λ(N ), λ( j) ∈ Y

(for some fixed N ) depending on a nonnegative specialization ρ and c1, . . . , cN ≥ 0:

P[
c | ρ](λ(1), . . . , λ(N )) := 1

Z
sλ(1) (c1)sλ(2)/λ(1) (c2) . . . sλ(N )/λ(N−1) (cN )sλ(N ) (ρ).

(2.10)

The normalizing constant has the form [this follows from (2.2) and (2.7)]:

Z =
∑

λ∈Y

sλ(c1, . . . , cN )sλ(ρ) (2.11)
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Fig. 6 An interlacing array

(provided that the series converges). We call N the depth of a Schur process. We will
sometimes call the ci ’s the spectral parameters of Schur process P[
c | ρ].

The next statement immediately follows from (2.2) and the skew Cauchy identity:

Proposition 2.7 Under the Schur process (2.10), the marginal distribution of each
λ(K ), 1 ≤ K ≤ N, is given by the Schur measure P[(c1, . . . , cK ) | ρ].

2.6 Schur processes of infinite depth

Let us denote by S the set of interlacing arrays of infinite depth {λ( j)} j∈Z≥0 , where
λ( j) ∈ Y and λ( j−1) ≺ λ( j) (cf. Fig. 6 for an illustration).

Remark 2.8 The interlacing array in Fig. 6 and the one in Fig. 4 in the Introduction
are related by xNk = λ

(N )
k − N + k. We work with the {λ(N )

k } notation throughout the
paper.

By the Kolmogorov extension theorem, a measure on S is uniquely determined by
a collection of compatible joint distributions of {λ(1) ≺ · · · ≺ λ(N )}N≥1. If these joint
distributions satisfy the 
c-Gibbs property, then the resulting measure on S is 
c-Gibbs.

Thus, Proposition 2.7 implies the following extension of the definition of a Schur
process. Given an infinite sequence c1, c2, . . . , of nonnegative reals such that the sums
like (2.11) converge for all N , one can define the Schur process P[
c | ρ] of infinite
depth, i.e., a probability measure on S. Indeed, this is because the distributions (2.10)
for different N are compatible with each other by Proposition 2.7, so the measure on
S with the desired finite-dimensional distributions exists.

2.7 �c-Gibbs measures

Fix nonnegative reals c1, c2, . . .. A probability distribution on S is called 
c-Gibbs if
for any N , given λ(N ) = λ, the conditional distribution of the bottom part λ(1) ≺ . . . ≺
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λ(N−1) ≺ λ of the interlacing array has the form

Prob(λ(1), . . . , λ(N−1) | λ(N ) = λ)

= sλ(1) (c1)sλ(2)/λ(1) (c2) . . . sλ(N−1)/λ(N−2) (cN−1)sλ/λ(N−1) (cN )

sλ(c1, . . . , cN )
. (2.12)

The expression in the denominator is simply the normalizing constant. One can say
that each interlacing array in (2.12) is weighted proportional to the corresponding term
in the expansion (2.5). Note that the 
c-Gibbs property depends on the order of the ci ’s,
but the normalizing constant in (2.12) does not.

The next lemma is straightforward consequence of (2.12).

Lemma 2.9 Fix any j ≥ 2. Under a 
c-Gibbs measure, the conditional probability of
λ( j) given all λ(i), with i �= j , is proportional to sλ( j+1)/λ( j) (c j+1) sλ( j)/λ( j−1) (c j ).

Denote the space of all 
c-Gibbs measures on S byG
c. Note that this space does not
change if we multiply all the parameters by the same positive number: G
c = Ga·
c,
a > 0. Indeed, this follows from (2.12) and the homogeneity of the Schur polynomials.

Remark 2.10 When all ci ≡ 1, the conditional distribution (2.12) becomes uniform
(on the set of all interlacing arrays of depth N with top row λ). This uniform Gibbs
case justifies the name 
c-Gibbs in the general situation.

The Schur process P[
c | ρ] is a particular example of a 
c-Gibbs measure. The full
classification of 
c-Gibbs measures is known only in several particular cases. In the
uniform case ci ≡ 1 this is the celebrated Edrei–Voiculescu theorem (see Sect. 8.1
and also, e.g., [22] for a modern account discussing various equivalent formulations).
When the ci ’s form a geometric sequence, the classification was obtained much more
recently in [46] (see also [47] for a generalization).

3 Schur processes and TASEP

In this section we recall a coupling between TASEP (with step initial configuration
and particle-dependent speeds) and a marginal of an ascending Schur process. This
mapping can be seen as a consequence of the column Robinson–Schensted–Knuth
insertion [64,65,85]. One can also define a continuous-time Markov dynamics on
interlacing arrays whose marginal is TASEP [16] (see also [25]).

3.1 TASEP

Let c1, . . . , cN , . . . be positive reals. The continuous-time TASEP (Totally Asymmet-
ric Simple Exclusion Process) with step initial condition and speeds 
c is defined as
follows. It is a Markov process on particle configurations x(t) = (x1(t) > x2(t) >

· · · ) on the integer lattice, such that

– The initial particles’ locations are xi (0) = −i , i = 1, 2, . . . (this is the step initial
configuration);
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. . . x2(t) x1(t)

rate c1

Fig. 7 An example of a jump and a forbidden jump in TASEP

– The configuration has the rightmost particle x1;
– The configuration is densely packed far to the left, that is, for all large enough M
(where the bound on M depends on t) we have xM (t) = −M ;

– There is at most one particle per site.

Denote the space of such left-packed and right-finite particle configurations on Z by
C.

The continuous-time Markov evolution of TASEP proceeds as follows. Each par-
ticle xi has an independent exponential clock with rate ci . That is, the time before xi
attempts to jump is an exponential random variable: Prob(time > t) = e−ci t , t ≥ 0.
(We will refer to ci ’s as to the particle speeds.) When the clock of xi rings, the particle
jumps to the right by one if the destination is not occupied. If the destination of the
jumping particle is occupied, the jump is forbidden and the particle configuration does
not change. Because the process starts from the step initial configuration, only finitely
many particles are free to jump at any particular time. Therefore at any time almost
surely at most one jump happens. See Fig. 7 for an illustration.

3.2 Coupling to a Schur process

Fix N ∈ Z≥1, positive reals c1, . . . , cN , and t ≥ 0. Consider the Schur process
P[
c | ρt ] defined by (2.10), where ρt is the Plancherel specialization. Note that the
series for the normalizing constant (2.11) always converges because

Z =
∑

λ∈Y

sλ(c1, . . . , cN )sλ(ρt ) = lim
K→∞

∑

λ∈Y

sλ(c1, . . . , cN )sλ

(
t

K
, . . . ,

t

K

)

= lim
K→∞

N∏

i=1

1

(1 − ci t/K )K
= e(c1+...+cN )t ,

and the last expression is an entire function in t and ci . Since this procedure works
for all N , we can view P[
c | ρt ] as a Schur process of infinite depth, i.e., a probability
measure on S.

When t = 0, P[
c | ρ0] concentrated on the single interlacing array densely packed
at zero, that is, with each λ( j) = (0, . . . , 0) ( j times).

The next result is present in [16], but alternatively follows from much earlier con-
structions involving Robinson–Schensted–Knuth correspondences [64,65,85].
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Theorem 3.1 Fix t ≥ 0 and particle speeds c1, c2, . . ., and consider the TASEP as in
Sect. 3.1 at time t. Then we have equality of joint distributions at the fixed time t:

xi (t)
d= λ

(i)
i − i, i = 1, 2, . . . , (3.1)

whereλ(i) are the randompartitions coming from the Schur processP[
c | ρt ] described
above.

Remark 3.2 A dynamical version of this result is also proven in [16]: there exists a
continuous-time Markov chain on interlacing arrays (even a whole family of them,
cf. [25,26]) whose action on a Schur process P[
c | ρt ] continuously increases the
parameter t . We will refer to the dynamics from [16] as the push-block process (see
Definition 8.8 for details). For the push-block process on interlacing arrays, (3.1) holds
as equality of joint distributions of Markov processes. In other words, (3.1) is also true
for multitime joint distributions of these processes. However, we do not need this
dynamical result for most of our constructions.

4 Markovmaps

This section introduces our main objects—the Markov maps L( j)
α and R( j)

α which
randomly change the j-th row λ( j) in an interlacing array while keeping all other rows
intact. These maps act on 
c-Gibbs measures by permuting spectral parameters.

4.1 First level

Let us first describe the maps for j = 1 (the simplest nontrivial case) to illustrate their
structure and properties.We use the shorthand notation λ(2) = (λ1, λ2) and λ(1) = κ1.
The interlacing means that λ2 ≤ κ1 ≤ λ1.

Definition 4.1 (Truncated geometric distribution) Let A ∈ Z≥0 and α ∈ [0, 1]. A
discrete random variable Y = Yα(A) on {0, 1, . . . , A} is called truncated geometric
if it has the distribution

Prob(Y = k) =
{

(1 − α) αk, 0 ≤ k ≤ A − 1;
αA, k = A.

Definition 4.2 (The L and R maps, first level) For α ∈ [0, 1], let L(1)
α be the Markov

map5 whose action on the pair κ ≺ λ does not change λ, and replaces κ1 as follows:

L(1)
α : κ1 �→ λ2 + Yα(κ1 − λ2).

5 A Markov map is the same as a stochastic matrix or a one-step transition operator of a Markov chain (it
is also sometimes called “link” in the literature). An application of a Markov map is a random update of
the underlying configuration. At the same time, each Markov map is a deterministic linear operator in the
space of probability distributions on configurations. When applying a map M to a probability measure π ,
we write this as π �→ πM .
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κ1

λ1λ2

1 − α

α(1 − α)

α2(1 − α)

α3(1 − α)

α4(1 − α) α5

L
(1)
α

κ1

λ1λ2
1 − α

α(1 − α)α2

R
(1)
α

Fig. 8 Probabilities of all possible moves in the maps L(1)
α (top) and R(1)

α (bottom). The parts of the
partitions are represented by bold vertical bars

The action of R(1)
α is simply the reflection of L(1)

α :

R(1)
α : κ1 �→ λ1 − Yα(λ1 − κ1).

The notation for the L and R operators is suggested by the directions in which they
move κ1. See Fig. 8 for an illustration.

Remark 4.3 If α = 1, both L(1)
1 and R(1)

1 are identity operators. If α = 0, then

Y0(A) = 0 almost surely, and so the actions of both L(1)
0 or R(1)

0 lead to the maximal
possible displacement of κ1, respectively, to the left or to the right.

The next lemma plays a key role and will later generalize to other rows of the
interlacing array. Denote by si , i = 1, 2, . . . the i-th elementary permutation of the
spectral parameters,

si 
c := (. . . , ci−1, ci+1, ci , ci+2, . . .). (4.1)

Lemma 4.4 If c1 ≥ c2 and c1 �= 0, then the Markov operator L(1)
c2/c1

mapsG
c toGs1
c.
If c1 ≤ c2 and c2 �= 0, then the Markov operator R(1)

c1/c2
maps G
c to Gs1
c.

Proof Let us consider only L(1)
α , the case of R(1)

α is analogous. By Remark 4.3, when
c1 = c2, L

(1)
1 is the identity. But in this case s1
c = 
c, so there is nothing to prove.

We can assume that c1 > c2. Denote α = c2/c1. Using the 
c-Gibbs property,
we see that given λ = (λ1, λ2), the conditional probability weight of κ = (κ1) is
proportional to sκ(c1)sλ/κ(c2), which by (2.4) leads to

Prob(κ1 | λ) = α−κ1

∑λ1
k=λ2

α−k
.
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The action of the operator L(1)
α on this distribution is readily computed:

λ1∑

κ̂1=λ2

Prob(κ̂1 | λ) · L(1)
α (κ̂1 → κ1)

= 1
∑λ1

k=λ2
α−k

⎛

⎝α−κ1 · ακ1−λ2 +
λ1∑

κ̂1=κ1+1

α−κ̂1 · (1 − α)ακ1−λ2

⎞

⎠

= 1
∑λ1

k=λ2
α−k

(
α−λ2 + α−λ1 − α−κ1

1 − α
· (1 − α)ακ1−λ2

)

= ακ1−λ1−λ2

∑λ1
k=λ2

α−k
= ακ1

∑λ1
k=λ2

αk
.

The final expression is the conditional probability weight of κ1 given λ under the
s1
c-Gibbs property. This completes the proof. 
�
Remark 4.5 1. In words, Lemma 4.4 states that the action of the L or R operators
reverses the geometric distribution on the segment [λ2, λ1].
2.Note also that we apply L(1)

c2/c1
only if c2 ≤ c1 (and the opposite ordering restriction

for R(1)
c1/c2

). If c1 > c2 in L(1)
c2/c1

, then the algebraic computations in the proof of
Lemma 4.4 are still valid. But the operator itself loses probabilistic meaning as some
of its matrix elements become negative.

4.2 Remark: Relation to bijectivization

The Markov maps of Definition 4.2 which interchange the spectral parameters were
suggested by the idea of bijectivization of the Yang–Baxter equation first employed
in [30] (see also [1,29]).

First, note that one can deduce the symmetry of the skewSchur polynomials (Propo-
sition 2.2) from the Yang–Baxter equation. This argument is present, for example, in
[12, Theorem 3.5] in aUq(ŝl2) setting with additional parameters q, s (the Schur case
corresponds to q = s = 0).

Next, bijectivization refines the Yang–Baxter equation into a pair of forward and
backward local Markov moves which randomly update the configuration. Here the
locality means the following. Encode κ1 using the occupation variables {ηx }x∈Z,
where ηκ1 = 1 and all other ηx ≡ 0. The application of a single local Markov move
(forward or backward) would change one of the occupation variables.

Then, considering a sequence of forward or backward moves leads, respectively,
to the L and R operators. This can be seen by setting t = s = 0 in [30, Figure
4], taking a sequence of these moves, and passing from the occupation variables
(equivalently, vertical arrows in the notation of that paper) to the elements of the
interlacing array. For brevity, we do not explain the details of derivation of the L
and R Markov operators from the bijectivization as an independent proof of the key
Lemma 4.4 is rather straightforward.
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4.3 General case

Let us now describe theMarkov maps L( j)
α and R( j)

α for general j . This is an extension
ofDefinition 4.2. For the next definitionwe use the conventionλ

( j)
0 = ∞ andλ

( j)
j+1 = 0

for all j ∈ Z≥0 (recall that by Remark 2.1 in the j-th row of the interlacing array there
cannot be more than j nonzero entries).

Definition 4.6 (The L and R maps, general case) Fix α ∈ [0, 1] and j ≥ 2. Let L( j)
α

be the Markov map whose action on interlacing arrays of infinite depth {λ(i)}i≥1 does
not change λ(i) for i �= j , and replaces λ( j) as follows:

L( j)
α : λ

( j)
k �→ max{λ( j−1)

k , λ
( j+1)
k+1 } + Y (k)

α , k = 1, . . . , j,

where {Y (k)
α } jk=1 is a collection of independent truncated geometric random variables

with Y (k)
α distributed as Yα

(
λ

( j)
k − max{λ( j−1)

k , λ
( j+1)
k+1 }).

The action of R( j)
α is simply the reflection of L( j)

α :

R( j)
α : λ

( j)
k �→ min{λ( j−1)

k−1 , λ
( j+1)
k } − Y (k)

α , k = 1, . . . , j,

where {Y (k)
α } jk=1 is a collection of independent truncated geometric random variables

with Y (k)
α distributed as Yα

(
min{λ( j−1)

k−1 , λ
( j+1)
k } − λ

( j)
k

)
.

In words, under both L( j)
α and R( j)

α each λ
( j)
k , k = 1, . . . , j , is randomly indepen-

dently moved to the left (resp., to the right) within the segment

[
max{λ( j−1)

k , λ
( j+1)
k+1 },min{λ( j−1)

k−1 , λ
( j+1)
k }

]
(4.2)

towhich λ
( j)
k is constrained by interlacing. Themoves of each λ

( j)
k are exactly the same

as on the first level and are governed by the truncated geometric random variables.

The next statement is a generalization of Lemma 4.4. Recall that si denotes the i-th
elementary permutation of the spectral parameters 
c.

Proposition 4.7 Fix j ≥ 1. If c j ≥ c j+1 and c j �= 0, then the Markov operator

L( j)
c j+1/c j

maps G
c to Gs j 
c. If c j ≤ c j+1 and c j+1 �= 0, then the Markov operator

R( j)
c j /c j+1

maps G
c to Gs j 
c.

Proof Let us consider L( j)
α only; the case of R( j)

α is analogous. Denote α = c j+1/c j .
We may assume that α �= 1 as otherwise there is nothing to prove. Let us also take
j ≥ 2 as the case j = 1 is Lemma 4.4.
Using the 
c-Gibbs property, we see that given all λ(i) with i �= j , the condi-

tional probability weight of λ( j) is proportional to sλ( j)/sλ( j−1) (c j ) sλ( j+1)/λ( j) (c j+1)
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(cf. Lemma 2.9). By (2.4), this implies

Prob
(
λ( j) | λ(i), i �= j

)
=

j∏

k=1

P
(
λ

( j)
k | λ

( j−1)
k−1 , λ

( j−1)
k , λ

( j+1)
k , λ

( j+1)
k+1

)
, (4.3)

where

P(m | a, b, c, d) = α−m
( min{a,c}∑

r=max{b,d}
α−r

)−1

.

For λ( j) = (λ
( j)
1 , . . . , λ

( j)
j ), the operator L( j)

α acts on each λ
( j)
k independently. Thus

we may write L( j)
α as a product of local Markov maps which act on each segment (4.2)

in the samemanner as in Sect. 4.1. Similarly to Lemma 4.4 we conclude that the action
of L( j)

α reverses each local geometric distribution P(m | a, b, c, d). Therefore, L( j)
α

turns (4.3) into the conditional probability weight of λ( j) under a s j 
c-Gibbs measure.
This completes the proof. 
�

5 Action on q-Gibbs measures

This section shows that suitably composed L maps preserve the class of q-Gibbs
measures on interlacing arrays, and describes how a q-Gibbs measure changes under
this action.

5.1 q-Gibbs property

Fix q ∈ (0, 1]. A 
c-Gibbs measure on the set S of infinite interlacing arrays is called
q-Gibbs if ci = qi−1 for all i ∈ Z≥1. We denote the set of q-Gibbs measures by Gq .

Remark 5.1 One can define the volume of an interlacing array of finite depth N by

vol(λ(1) ≺ · · · ≺ λ(N )) :=
N−1∑

i=1

|λ(i)|. (5.1)

Then the q-Gibbs property is equivalent to saying that conditioned on λ(N ), the
probability weight of the interlacing array λ(1) ≺ . . . ≺ λ(N ) is proportional to
q−vol(λ(1)≺···≺λ(N )) (e.g., see [63]). Note that sometimes (in particular, in [46]) the
term “q-Gibbs measures” refers to the elements of Gq−1 in our notation.

When q = 1, the q-Gibbs measures correspond to the uniform conditioning
property (cf. Remark 2.10). Throughout this section we work under the assumption
0 < q < 1.
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1

q

q2

q3

q4

· · ·

L
(1)
q

L
(2)
q2

L
(3)
q3

L
(4)
q4

λ(1)

λ(2)

λ(3)

λ(4)

λ(5)

Fig. 9 Construction of the map L
(q). The spectral parameters q j correspond to the action on q-Gibbs

measures considered in Sect. 5.4, and the lines indicate the swapping of the spectral parameters after each

j-th map L( j)
q j

5.2 Iterated Lmap

When ci = qi−1, we have ci+1 < ci for all i . By Proposition 4.7, it means that the
action of L(i)

ci+1/ci
permutes the spectral parameters qi and qi−1. Iterating such L(i)

from i = 1 to infinity and keeping track of the permutations of the spectral parameters,
we arrive at the following definition:

Definition 5.2 (Iterated L map) LetM be a probability measure on S and setM(0) :=
M. Denote, inductively, M( j) := M( j−1)L( j)

q j (see Fig. 9 for an illustration). Let L
(q)

be the Markov map which acts on probability measures on S by

L
(q) : {M(λ(1), . . . , λ(N ))}N≥1 �→ {M(N+1)(λ(1), . . . , λ(N ))}N≥1.

Let us explain why L
(q) is well-defined. Recall that a probability measure on S is

uniquely determined by a family of compatible joint distributions of (λ(1), . . . , λ(N ))

(cf. Sect. 2.6).Next, for all K > N wehaveM(K )(λ(1), . . . , λ(N )) = M(N+1)(λ(1), . . . , λ(N )).
This guarantees that the collection ofmeasures {M(N+1)(λ(1), . . . , λ(N ))}N≥1 is indeed
compatible, and thus defines a measure on S which we denote by ML

(q).

5.3 q-Gibbs harmonic families

LetM be a q-Gibbs measure on S. By the q-Gibbs property, for each N ≥ 1 the prob-
ability weight of λ(1), . . . , λ(N ) is represented as a product of the marginal probability
weight of λ(N ) and a q-Gibbs factor corresponding to the conditional distribution of
λ(1) ≺ . . . ≺ λ(N−1) given λ(N ). This allows to write

M(λ(1) ≺ · · · ≺ λ(N )) = sλ(1) (1)sλ(2)/λ(1) (q) . . . sλ(N )/λ(N−1) (qN−1) · ϕN (λ(N )),
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where ϕN is a function on the N -th level of the array defined as

ϕN (ν) = M(λ(N ) = ν)

sν(1, q, . . . , qN−1)
. (5.2)

Because the functions ϕN for different N come from the same q-Gibbs measure M,
they must be compatible. This compatibility relation reads

∑

λ : μ≺λ

ϕN (λ) sλ/μ(qN−1) = ϕN−1(μ) (5.3)

for all N ≥ 1 and all μ = (μ1, . . . , μN−1) on the (N − 1)-st level of the array (at
the zeroth level we set ϕ0(∅) = 1, by agreement). We call a family of functions {ϕN }
satisfying (5.3) and ϕ0(∅) = 1 a q-Gibbs harmonic family. The term “harmonic”
comes from the Vershik–Kerov theory of the boundary of branching graphs (e.g.,
see [55]). Clearly, a q-Gibbs measure on S is uniquely determined by its associated
q-Gibbs harmonic family {ϕN }.

5.4 Action of the iterated Lmap on q-Gibbs measures

If M ∈ Gq , then the action of L
(q) (that is, the sequence of the Markov maps L( j)

q j )
on M swaps the spectral parameters as in Fig. 9, moving c1 = 1 all the way up to
infinity where it “disappears”. The resulting spectral parameters (q, q2, q3, . . .) are
proportional to the original ones. This suggests that L

(q) should preserve the class of
q-Gibbsmeasures. The next result shows that this is indeed the case, and also describes
the action of L

(q) on Gq in the language of harmonic families.

Theorem 5.3 The Markov map L
(q) maps preserves Gq , the set of q-Gibbs measures

on S. More precisely, L
(q) maps each q-Gibbs harmonic family {ϕN }N∈Z≥1 to a new

q-Gibbs harmonic family {ϕ̂N }N∈Z≥1 as follows:

ϕ̂N (μ) = q |μ|∑

λ

ϕN+1(λ)sλ/μ(1) = q |μ| ∑

λ : μ≺λ

ϕN+1(λ). (5.4)

Proof The second equality in (5.4) immediately follows from (2.4). Let us first explain
why the sum in (5.4) is finite. We have by the definition (5.2) of ϕN :

1 =
∑

λ

ϕN+1(λ) sλ(1, q, . . . , qN ) ≥
∑

λ

ϕN+1(λ) 1λ1qλ2 . . . (qN )λN+1 , (5.5)

where we bounded the Schur polynomial from below by taking one of its monomials
(since all the monomials are nonnegative). The condition μ ≺ λ in (5.4) means that
only the sum over λ1 in (5.4) is over an infinite set, and it thus converges thanks to
(5.5).

Now let {λ(i)} be a random interlacing array distributed according to the q-Gibbs
measure coming from {ϕN }. Let the random array {θ(i)} be the image of {λ(i)} under
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L
(q). Fix N ≥ 1. The distribution of θN (described by the function ϕ̂N which we aim

to compute) is a result of applying the sequence of Markov maps L(1)
q , . . . , L(N )

qN (in

this order). Because the last of these operators depends on λ(N+1), we see that the
distribution of θ(N ) is not determined only by the joint distribution of λ(1), . . . , λ(N ).
In other words, to compute ϕ̂N we need to first extend ϕN to ϕN+1, and utilize the
q-Gibbs property.

Let us apply this idea. Fix λ(N+1) = λ. This condition completely determines the
conditional joint distribution of λ(1), . . . , λ(N ) via the q-Gibbs property. By iterating
Proposition 4.7, we see that after applying the Markov maps L(1)

q , . . . , L(N−1)
qN−1 , the

joint distribution of λ(N ) and θ(N−1), conditioned on λ(N+1) = λ comes from the
(q, q2, . . . , qN−1, 1, qN )-Gibbs property:

Prob
(
λ(N ) = κ, θ(N−1) = ν | λ(N+1) = λ

)

= sν(q, q2, . . . , qN−1)sκ/ν(1)sλ/κ(qN )

sλ(1, q, . . . , qN )
.

After the application of L(N )

qN , the partition λ(N ) turns into θ(N ), and we similarly have

Prob
(
θ(N ) = μ, θ(N−1) = ν | λ(N+1) = λ

)

= sν(q, q2, . . . , qN−1)sμ/ν(qN )sλ/μ(1)

sλ(1, q, . . . , qN )
.

Let us rewrite the last expression to compare it to the q-Gibbs conditional distribution.
In the numerator, due to the homogeneity of Schur and skew Schur polynomials, we
have:

sλ/μ(1)sμ/ν(q
N )sν(q, . . . , qN−1)

= q |ν|sν(1, q, . . . , qN−2)q |μ|−|ν|sμ/ν(q
N−1)sλ/μ(1)

= q |μ|sν(1, q, . . . , qN−2)sμ/ν(q
N−1)sλ/μ(1).

(5.6)

To extract from this the marginal distribution of θ(N ) (that is, to get to ϕ̂N ), we need to
multiply (5.6) by Prob(λ(N+1) = λ)/sλ(1, . . . , qN ) (which is exactly ϕN+1(λ)) and
sum the resulting expression over both λ and ν. We have

Prob(θ(N ) = μ) =
∑

ν,λ : ν≺μ≺λ

q |μ|sν(1, . . . , qN−2)sμ/ν(q
N−1)sλ/μ(1) ϕN+1(λ).

The sum over ν is simplified using the branching rule (2.2), and so

Prob(θ(N ) = μ)

sμ(1, q, . . . , qN−1)
= q |μ| ∑

λ : μ≺λ

ϕN+1(λ) sλ/μ(1).
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We see that at the level of marginal distributions, the family {ϕN } turns into {ϕ̂N
}
,

where ϕ̂N is defined by (5.4).
It remains to show that the new family {ϕ̂N } satisfies the q-Gibbs harmonicity. That

is, we want to show for all N that

∑

μ

ϕ̂N (μ)sμ/ν(q
N−1) = ϕ̂N−1(ν) = q |ν|∑

κ

ϕN (κ)sκ/ν(1)

(the second equality is simply the definition of ϕ̂N−1). We have

∑

μ

ϕ̂N (μ)sμ/ν(q
N−1) =

∑

μ,λ

ϕN+1(λ)sλ/μ(1)q |μ|sμ/ν(q
N−1)

= q |ν|∑

μ,λ

ϕN+1(λ)sλ/μ(1)sμ/ν(q
N )

= q |ν|∑

λ

ϕN+1(λ)sλ/ν(1, q
N )

= q |ν|∑

λ,κ

ϕN+1(λ)sλ/κ(qN )sκ/ν(1)

= q |ν|∑

κ

ϕN (κ)sκ/ν(1),

as desired. In the last step we used the harmonicity of the original family {ϕN }. This
completes the proof. 
�
Remark 5.4 Note that Theorem 5.3 fundamentally relies on the fact that the q-Gibbs
measure lives on an infinite array. Indeed, for an array of finite depth it is not possible
to move the spectral parameter 1 all the way up to infinity. In the proof of Theorem 5.3
we use the fact that the array has infinite depth when we extend ϕN to ϕN+1. The case
of arrays of finite depth is discussed in Sect. 8.

5.5 Application to Schur processes and TASEP with geometric speeds

Schur processes P[
c | ρt ] with ci = qi−1 are particular cases of q-Gibbs measures
with

ϕN (λ) = e−t(1+q+...+qN−1) sλ(ρt )sλ(1, q, . . . , qN−1)

sλ(1, q, . . . , qN−1)
= e−t(1+q+...+qN−1)sλ(ρt ),

where we took into account the normalization of the Schur measures. The Markov
map L

(q) acts on these Schur processes as follows:

ϕ̂N (μ) = q |μ|e−t(1+q+...+qN )
∑

λ

sλ(ρt ) sλ/μ(1)

= et e−t(1+q+...+qN )q |μ|sμ(ρt )
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= e−qt(1+q+...+qN−1)sμ(ρq·t ),

where we used the skew Cauchy identity ((2.6) with κ = ∅) and the homogeneity
of the Schur polynomials [both properties clearly survive the Plancherel limit (2.8)].
Therefore, we have

P[(1, q, q2, . . .) | ρt ] L
(q) = P[(1, q, q2, . . .) | ρqt ]. (5.7)

Recall that by Theorem 3.1, the joint distribution of the quantities {λ(N )
N − N }N≥1

under the Schur processP[(1, q, q2, . . .) | ρt ] is the same as the joint distribution of the
particle locations {xN (t)}N≥1 at time t of the TASEP with particle speeds ci = qi−1

and the step initial configuration. Denote this joint distribution of particles {xN (t)} by
μ

(q)
t .
Our next observation is that the action of the Markov map L

(q) on the random
interlacing array {λ(N )}N≥1 can be projected to the leftmost components {λ(N )

N }N≥1,
and the result is still a Markov map. In more detail, let {θ(N )}N≥1 be the random
interlacing array which is the image of {λ(N )}N≥1 underL

(q). From the very definition
of L

(q), we see that conditioned on {λ(N )}N≥1, the distribution of {θ(N )
N }N≥1 depends

only on the leftmost components {λ(N )
N }N≥1, and not on the rest of the array λ. Let us

describe this projection of L
(q) explicitly in terms of locations of the TASEP particles

xN (via the identification xN = λ
(N )
N − N ). Recall from Sect. 3.1 that C stands for the

space of left-packed, right-finite particle configurations on Z.

Definition 5.5 Let 0 < q < 1. We aim to define a Markov map L(q) on C. Fix a
configuration x1 > x2 > · · · in C. By definition, its random image x̂1 > x̂2 > · · ·
under the action of L(q) is

x̂i = xi+1 + 1 + Yqi (xi − xi+1 − 1), i = 1, 2, . . . ,

where the Yqi ’s are independent truncated geometric random variables (see Defini-
tion 4.1).

Remark 5.6 A homogeneous version of L(q) appeared in [28], it is solvable through
coordinate Bethe Ansatz [73].

Theorem5.3, identity (5.7), and the fact thatL(q) is a projection ofL(q) immediately
imply the following result:

Theorem 5.7 For any t ≥ 0, we have

μ
(q)
t L(q) = μ

(q)
qt ,

where μ
(q)
t is the distribution of the TASEP with geometric rates (with ratio q) and

step initial configuration, and L(q) is the Markov map from Definition 5.5.
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6 Limit q → 1 and proof of themain result

Here we take the limit as q → 1 of the results of the previous section, and arrive at a
continuous-time Markov chain mapping the TASEP distributions backwards in time.
This proves our main result, Theorem 1.

Iterate Theorem 5.7 to observe that for any T ∈ Z≥1:

μ
(q)
t (L(q))T = μ

(q)

qT t
, (6.1)

where (L(q))T simply denotes the T -th power. Next, introduce the scaling:

q = e−ε, T = �τ/ε�, (6.2)

where ε > 0 will go to zero, and τ ∈ R≥0 is the scaled continuous time. Clearly, we
have qT = e−τ (1 + O(ε)). We aim to take the limit as q → 1 in (6.1).

Recall that by μt , t ∈ R≥0, we denote the distribution of the TASEP with constant
speeds ci ≡ 1 at time t , started from the step initial configuration. Also recall that C
is the space of left-packed, right-finite particle configurations on Z. The space C has a
natural partial order: x precedes y if xi ≤ yi for all i .

Lemma 6.1 For any fixed τ, t ∈ R≥0 and any δ > 0 there exists a finite set Cδ =
Cδ(t, τ ) ⊂ C such that

μt (Cδ) > 1 − δ, μe−τ t (Cδ) > 1 − δ, μ
(q)
t (Cδ) > 1 − δ, μ

(q)

qT t
(Cδ) > 1 − δ

for all sufficiently small ε > 0.

Proof Take finite Cδ ⊂ C such that μt (Cδ) > 1 − δ, and, moreover, Cδ is closed with
respect to the partial order (i.e., if x precedes y and y ∈ Cδ , then x ∈ Cδ). This is
possible because μt is a probability measure on C, and closing a finite set with respect
to our partial order keeps it finite. (One can even estimate the size of Cδ because the
first particle x1(t) performs speed 1 directed a random walk.)

Next, μe−τ t (Cδ) > 1− δ because the TASEP dynamics almost surely increases the
configuration with respect to the order. The rest of the claim follows by monotonically
coupling the TASEP μ• with constant speeds to the TASEP μ

(q)• with the q-geometric
speeds. Here monotonicity means that the TASEP with the q-geometric speeds is
always behind (in our partial order) the q = 1 TASEP; this monotone coupling exists
since q < 1. 
�

By Lemma 6.1, it suffices to consider the limit of identity (6.1) as q → 1 on finite
subsets of C. In the right-hand side we immediately get μ(q)

qT t
→ μe−τ t . In the left-hand

side we have μ
(q)
t → μt . It remains to take the limit of the T -th power of the Markov

map L(q).
The limit transition in (L(q))T is in the spirit of the classical Poisson approximation

to the binomial distribution—the probability of jumps gets smaller, but the number
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of trials (i.e., the discrete time) scales accordingly. More precisely, we have for the
random variables Yqk in Definition 5.5:

Prob(Yqk (A) = m) =
{

(1 − qk)qmk, 0 ≤ m < A;
q Ak, m = A

=
{
kε + O(ε2), 0 ≤ m ≤ A;
1 − Akε + O(ε2), m = A.

(6.3)

This leads to the following definition of the continuous-time backwards dynamics:

Definition 6.2 (Backwards Hammersley-type process Lτ ) Consider the continuous-
time dynamics on C defined as follows. Each particle xk , k = 1, 2, . . . independently
jumps to the left to one of the holes {xk+1 + 1, xk+1 + 2, . . . , xk − 1} at rate k
per hole. Equivalently, each particle xk has an independent exponential clock of rate
k(xk−xk+1−1); when the clock rings, xk selects a hole between xk+1 and xk uniformly
at random and instantaneously moves there.6

Note that for configurations in C, the total jump rate of all particles is always finite.
Therefore, the dynamics on C is well-defined. Denote by Lτ , τ ∈ R≥0, the Markov
transition operator of this dynamics from time 0 to time τ (note that the dynamics is
time-homogeneous). Observe that the step configuration (xi = −i for all i = 1, 2, . . .)
is absorbing for the backwards dynamics Lτ .

Thanks to Lemma 6.1 and (6.3), we have the convergence (L(q))T → Lτ . This
completes the proof of the main theorem μt Lτ = μ e−τ t .

7 Stationary dynamics on the TASEPmeasure

Here we illustrate the relation between the TASEP and the backwards Hammersley-
type process by constructing a Markov dynamics preserving the TASEP measure μt .
We also discuss hydrodynamics of these two processes.

In this section we denote particle configurations by occupation variables η : Z →
{0, 1}, with η(x) = 1 if there is a particle at location x ∈ Z, and η(x) = 0 otherwise.
The step initial configuration is η(x) = 1 iff x < 0. Recall that by C we denote the
space of left-packed, right-finite configurations. Denote by C = {0, 1}Z the space of
all particle configurations in Z.

7.1 Definition of the stationary dynamics

Let AT := ATASEP be the infinitesimal generator for the TASEP with homogeneous
particle speeds ci = 1 (Sect. 3.1), and {Tt }t≥0 be the corresponding Markov semi-
group.Let AL := ABHP the infinitesimal generator of the backwardsHammersley-type

6 Themechanism of jumping into a hole selected uniformly at random is similar to the Hammersley process
[2,49]. Therefore, we will sometimes refer to Lτ (as well as its two-dimensional version Lτ discussed in
Sect. 8.1 below) as Hammersley-type process (BHP, for short).
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process (BHP), see Definition 6.2, and {Lτ }τ≥0 denote the BHP semigroup. For a fixed
configuration η ∈ C, we denote by ηx,y , x �= y, the configuration

ηx,y(z) =

⎧
⎪⎨

⎪⎩

η(z) + 1, z = y;
η(z), z �= x, y;
η(z) − 1, z = x .

In words, ηx,y corresponds to a particle jumping from location x ∈ Z to location
y ∈ Z. Note that ηx,y may not be in C even if η ∈ C.

The infinitesimal generator for the TASEP acts as follows:

(AT f )(η) =
∑

x∈Z

η(x)(1 − η(x + 1))
(
f (ηx,x+1) − f (η)

)
, (7.1)

for f a cylindrical function on η ∈ C (i.e. a function that depends on finitely many
coordinates of η). The factor η(x)(1 − η(x + 1)) takes care of the TASEP exclusion
rule. The infinitesimal generator of the BHP acts as follows:

(AL f )(η) =
∑

x∈Z

η(x)

( ∞∑

y=x

η(y)

) ∞∑

m=1

(
m∏

k=1

(1 − η(x − k))

)
(
f (ηx,x−m) − f (η)

)
,

(7.2)

for f a cylindrical function on η. Note that summations in the action of AL are well
defined since for η ∈ C we have η(x) = 0 for x � 0 and η(x) = 1 for x � 0.

Recall that μt is the distribution of the TASEP configuration at time t started from
the step initial configuration. Denote the corresponding random particle configuration
by ηt . We have ηt ∈ C almost surely.

For any t ∈ R>0, define the operator

A := t AT + AL . (7.3)

This is the generator of the continuous-time Markov process which is a combination
of the BHP and the TASEP sped up by the factor of t . By a “combination” we mean
that both processes run in parallel.

Proposition 7.1 The TASEP distribution {ηt } is invariant under the continuous-time
Markov process with generator A, that is,

E [(A f )(ηt )] = 0

for all cylinder functions f .

Proof By Theorem 1, we have

μt Lτ Tt(1−e−τ ) = μt (7.4)
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for any t, τ ≥ 0. Fixing t ≥ 0, differentiating the above identity in τ , and sending τ

to zero, we get μt (t AT + AL) = 0. This establishes the result. 
�
Remark 7.2 It should be possible to show that the process with the generator (7.3),
started from any configuration x ∈ C, converges (as time goes to infinity) to its station-
ary distribution μt . However, we do not focus on this question in the present paper.

A local version of Proposition 7.1 holds, too. That is, the Bernoulli measures of
any given density ρ ∈ [0, 1] on particle configurations on Z are invariant under both
the TASEP and the homogeneous version of the BHP. (Locally the rates under BHP
are constant, so the invariance should be considered under the homogeneous BHP.)
The remarkable content of Proposition 7.1 is that the invariance is global on “out-
of-equilibrium” random configurations with the distribution μt , if the speeds of the
TASEP and the inhomogeneous BHP are related in as in (7.3).

As a consequence of Proposition 7.1, let us take a specific function of the configu-
ration:

N 0 := η(0) + η(1) + η(2) + . . . , f (η) := G(N 0), (7.5)

whereG(·) is a functionZ≥0 → R. Note that 2N 0 is the height function at zero. Let ηt
be the random configuration of the TASEP at time t with the step initial configuration,
and N 0

t := ηt (0) + ηt (1) + . . ..

Corollary 7.3 With the above notation, we have

∂

∂t
EG(N 0

t ) = −1

t
E

(
N 0
t

(
G(N 0

t − 1) − G(N 0
t )
) ∞∑

x=1

x ηt (−x − 1)
x∏

k=1

[1 − ηt (−k)]
)

.

In the sum over x in the right-hand side almost surely only one term is nonzero, and
the whole sum is equal to the distance of the rightmost particle in Z<0 to zero.

Proof The left-hand side is equal to E
(
AT f (ηt )

)
, which by Proposition 7.1 is the

same as −t−1
E(AL f (ηt )). The rest follows from the computation of AL f (ηt ) for the

particular function (7.5), which is straightforward. 
�

7.2 Hydrodynamics

The hydrodynamic limit for the TASEP is well known, with early results by [58] on the
convergence to a local equilibriumandby [76] on the connection of the density function
to the Burgers’ equation. The latter means that under linear space and time scaling,
the limiting density density function ρ(t, z) of the TASEP is the entropic solution of
the following initial-value problem for the one-dimensional Burgers’ equation:

∂ρ

∂t
= −∂[ρ(1 − ρ)]

∂z
;

ρ(0, z) =
{
1, z ≤ 0

0; z > 0.

(7.6)
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We refer to [10] for further details, see also [43] for a recent review. The solution to
(7.6) is given by

ρ(t, z) =

⎧
⎪⎨

⎪⎩

1, z < −t;
(t − z)/2t, −t ≤ z ≤ t;
0, z > t .

(7.7)

The limiting density ρ(t, z) describes the law of large numbers type behavior of the
TASEP.

Remark 7.4 (Asymptotic analysis of TASEP) More recently, in the last 20 years, much
finer scaling limits for the TASEP have become available, beginning with the work
of Johansson [50] on the Tracy-Widom fluctuations of the position of the particles in
the TASEP. More generally, the TASEP with various other examples of initial data
has been shown to converge to the top lines of the Airy1 or Airy2 line ensembles
under the appropriate scalings, see, e.g., the survey [39] and references therein for
details. The progress in understanding theTASEPasymptoticswith general initial data,
and also the asymptotics of the space-time structure in TASEP is currently ongoing
[4,7,8,31,36,40,41,51–53,62].

While we expect the BHP and the stationary dynamics from Sect. 7.1 to have appli-
cations for all these types of scaling limits, we begin by considering the hydrodynamic
limit of the BHP in this section.

Let ηt ∈ C be the random configuration at time t ≥ 0 of the TASEP with step initial
conditions. For any ε > 0, the (ε-scaled) random empirical measure on R associated
to ηt ∈ C is given as follows:

πε
t := ε

∑

x∈Z

ηt (x) δεx . (7.8)

In particular, we have scaled the mass of each point by ε, scaled the lattice distance by
ε, but the time remains unscaled. Denote the set of compactly supported continuous
functions on the line by C0(R). The integral of a function f ∈ C0(R) against the
measure πε is denoted by 〈πε, f 〉. Clearly, 〈πε

t , f 〉 = ε
∑

x∈Z
f (εx) ηt (x).

The next statement canbe found in, e.g., [78]. The sequence ofmeasures {πε
t/ε}ε∈R>0

converges as ε → 0 in probability to ρ(t, z)dz so that the density function ρ(t, z) is
the entropic solution of the initial value problem for the Burgers equation (7.6). That
is, for each t ≥ 0, given any δ > 0,

lim
ε→0

Prob

(∣∣∣ε
∑

x∈Z

f (εx)ηt/ε(x) −
∫ ∞

−∞
f (z)ρ(t, z)dz

∣∣∣ ≥ δ

)
= 0 (7.9)

for any f ∈ C0(R). Note that now we have scaled time by ε−1 in the empirical
measure.

This result for TASEP generalizes to a large class of initial conditions. For instance,
given a continuous density profileρ0 : R → [0, 1], a sequence {νε}ε∈R>0 of probability
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measures onC = {0, 1}Z is said to be associated to the profileρ0 if for every f ∈ C0(R)

and every δ > 0, we have

lim
ε→0

νε

[∣∣∣ε
∑

x∈Z

f (εx) η(x) −
∫ ∞

−∞
f (w) ρ0(w)dw

∣∣∣ > δ

]
= 0.

Then, the empirical measure πε
t/ε for the TASEP, with initial conditions now given by

νε converges in probability to an absolutely continuous measure ρ(t, z)dz so that the
density function is the entropic solution to the Burgers’ equation with the initial value
given by the density profile ρ(t, z), see [78]. We expect a similar hydrodynamic result
to hold for the BHP with some modifications: (1) a different PDE arising from the
infinitesimal generator of the BHP, and (2) no time scaling for the empirical measure
since lattice scaling also scales the particle numbers and, consequently, the speed of
the particles.

Conjecture 1 Let ρ0 : R → [0, 1] be an initial density profile and let {νε}ε∈R>0 be
a sequence of probability measures on C associated to ρ0.7 Also, for a fixed ε > 0,
take ηε

t ∈ C to be the random configuration at time t > 0 of the BHP, with the initial
configuration ηε

0 determined by the measure νε . Then, for every t > 0, the sequence
of random empirical measures πε

t defined as in (7.8) converges in probability to the
absolutely continuous measure πt (dz) = ρ(z, t)dz in the sense of (7.9). The density
ρ(t, z) is a solution of the initial value problem

∂ρ(t, z)

∂t
= ∂

∂z

[
1 − ρ(t, z)

ρ(t, z)

∫ ∞

z
ρ(t, w)dw

]
;

ρ(0, z) = ρ0(z).

(7.10)

Remark 7.5 In Conjecture 1, it is unclear to the authors if there is a unique solution to
the initial value problem (7.10). In particular, it is unclear what type of solution the
limiting density profile ρ(t, z) should be.

Remark 7.6 The differential equation (7.10) can be informally obtained by looking
at the local version of the BHP. That is, locally we expect the configuration to be
close to the independent Bernoulli random configuration on the whole line Z with
the density ρ(t, z). Then the expression under ∂/∂z in the right-hand side of (7.10)
is the (negative) flux. Indeed,

∫∞
z ρ(t, w)dw means the inhomogeneous rate in the

BHP, while −(1−ρ(t, z))/ρ(t, z) is the local flux of the homogeneous BHP with left
jumps and speed 1. See Proposition 7.8 for more discussion.

Let us check that Conjecture 1 holds for the initial data associated with the TASEP
distributions μt .

7 We need to make sure that the BHP evolution is well-defined, so the initial configuration must be in
C ⊂ C.
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Proposition 7.7 Fix some t0 ∈ R and let ηε
0 ∼ με−1et0 be the TASEP random con-

figuration at time ε−1et0 . Then, the sequence {ηε
0}ε∈R>0 is associated to the density

profile

ρ0(z) =

⎧
⎪⎨

⎪⎩

1, z < et0;
et0−z
2et0 , −et0 ≤ z ≤ et0;
0, z > et0 ,

and Conjecture 1 is true for the measures νε = με−1et0 .

Proof By results for the TASEP, we know that the sequence ηε
0 is associated to the

density profile ρ0 given in the statement. Also, by Theorem 1,we know that the random
configuration ηε

t obtained from νε = με−1et0 by the BHP evolution as in Conjecture
1, is distributed according to με−1et0−t .

So, again by results for the TASEP, we know that the sequence of randommeasures
πε
t converges to an absolutely continuousmeasureπt (dz) = ρ(z, t)dzwith the density

given by

ρ(t, z) =

⎧
⎪⎨

⎪⎩

1, z < et0−t ;
et0−t−z
2et0−t ; −et0−t ≤ z ≤ et0−t

0, z > et0−t .

One can then check directly that the above ρ(t, z) solves the initial value problem
(7.10). This completes the proof. 
�

We base Conjecture 1 on the random evolution of the empirical measure πε
t given

by the infinitesimal generator for the BHP.

Proposition 7.8 Let f : R → R be a twice differentiable compactly supported func-
tion and let ηt ∈ C be the random configuration given by the BHP. Here the time t ≥ 0
and the initial configuration η0 ∈ C are fixed. Then, there are martingales Mε, f

t with
respect to the natural filtration σ(ηε

s , s ≤ t) so that

〈πε
t , f 〉 = 〈πε

0 , f 〉 +
∫ t

0
〈πε

s , gε f ′〉ds + Mε, f
t + O(ε2),

for πε
t the random empirical measure of ηt and the function

gε(x) := −
( ∞∑

y=�ε−1x�
ε ηs(y)

)( ∞∑

m=1

m
m∏

k=1

(
1 − ηs(�ε−1x� − k)

))
.

Proof We have

∂

∂t
E 〈πε

t , f 〉 = E AL 〈πε
t , f 〉,
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where we regard 〈πε
t , f 〉 as a function of the configuration ηt . We can compute

AL 〈πε
t , f 〉 =

∑

x∈Z

[ ∞∑

m=1

(
f (εx − εm) − f (εx)

εm

)
m

m∏

k=1

(1 − η(x − k))

]

×
( ∞∑

y=x

εη(y)

)
η(x).

With the help of the approximation

f (εx − εm) = f (εx) − f ′(εx)(εm) + O(ε2),

the statement follows from standard results on Markov chains. 
�

7.3 Limit shape for TASEP with step initial condition

Let us present an alternate derivation for the limit shape of the TASEP with the step
initial configuration assumingConjecture 1 but independent of the similar result for the
TASEP. We only assume that the TASEP empirical measure converges to ρ satisfying
the following system of equations:

∂ρ(t, z)

∂t
+ ∂

∂z

[
1 − ρ(t, z)

tρ(t, z)

∫ ∞

z
ρ(t, w)dw

]
= 0;

∂ρ(t, z)

∂t
+ ∂

∂z
[ρ(t, z)(1 − ρ(t, z))] = 0.

(7.11)

In particular, we show that this system of partial differential equations determines a
unique solution under some general assumptions.

First, eliminate the time derivative so that

∂

∂z

[
1 − ρ(t, z)

ρ(t, z)

(
ρ(t, z)2 − 1

t

∫ ∞

z
ρ(t, w)dw

)]
= 0.

Then,

1 − ρ(t, z)

ρ(t, z)

(
ρ(t, z)2 − 1

t

∫ ∞

z
ρ(t, w)dw

)
= c(t).

Note that, for all t ∈ R≥0, there is a z ∈ Z small enough so that ρ(t, z) = 1. This
implies that the constant c(t) is in fact zero. Thus, we have

ρ2(t, z) = 1

t

∫ ∞

z
ρ(t, w)dw.
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Taking the space derivative, we have

∂ρ(t, z)

∂z
= − 1

2t
. (7.12)

Revisiting the system of equations (7.11), we may now write the second equation as
follows

∂ρ(t, z)

∂t
= 1

2t
(1 − 2ρ(t, z)).

By separation of variables, we may solve the equation above up to a constant of
integration, but this constant of integration may be determined by (7.12). Thus, we get
the well-known hydrodynamic density function

ρ(t, z) = 1

2
− z

2t
, z ∈ [−t, t].

We have thus shown that the comparability of the TASEP and the BHP uniquely
picks out the entropic solution to theBurgers’ equation for the limiting density function
with the step initial condition.

8 Extensions and open questions

In this section we describe a number of modifications and extensions of the construc-
tions presented earlier, and outline a number of open questions.

8.1 More general q-Gibbs measures

The Markov map L
(q) from Definition 5.2 acts nicely on Schur processes

P[(1, q, q2, . . .) | ρ] with general specializations ρ. Even more generally, we can
consider two-sided Schur processes which live on interlacing arrays of signatures. Sig-
natures are analogues of partitions inwhich parts are allowed to be negative. Interlacing
arrays of signatures are simply the collections {λ(k)

j }1≤ j≤k , satisfying the interlacing

inequalities as in Fig. 6, and with λ
(k)
j ∈ Z. (Note that we consider arrays of infinite

depth.)
For a specialization ρ parametrized as

ρ = (α±;β±; γ ±), α±
1 ≥ α±

2 ≥ · · · ≥ 0, β±
1 ≥ β±

2 ≥ · · · ≥ 0, γ ± ≥ 0,
∞∑

i=1

(α±
i + β±

i ) < ∞, β+
1 + β−

1 ≤ 1,
(8.1)

and a signature λ = (λ1 ≥ · · · ≥ λN ), λi ∈ Z, define

sλ(ρ) := det
[
ψλi+ j−i (ρ)

]N
i, j=1 , (8.2)
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where ψn(ρ), n ∈ Z, are the coefficients of the expansion

∑

n∈Z

ψn(ρ)un = eγ +(u−1)+γ −(u−1−1)
∏

i≥1

1 + β+
i (u − 1)

1 − α+
i (u − 1)

1 + β−
i (u−1 − 1)

1 − α−
i (u−1 − 1)

, (8.3)

and |u| = 1. One of the equivalent forms of the Edrei–Voiculescu theorem (e.g.,
see [22]) states that (8.3) parametrizes the space of all totally nonnegative two-sided
sequences.

Remark 8.1 In particular, taking α±
i = β±

i = 0 for all i , γ − = 0, and γ + = t turns
the just defined specialization ρ into ρt defined in Sect. 2.4.

Define the two-sided ascending Schur process P[(1, q, q2, . . .) | ρ] as the unique
q-Gibbs measure on interlacing arrays of signatures such that for any N ,

P[(1, q, q2, . . .) | ρ](λ(1), . . . , λ(N ))

= 1

Z
sλ(1) (1)sλ(2)/λ(1) (q) . . . sλ(N )/λ(N−1) (qN−1) sλ(N ) (ρ), (8.4)

where the skew Schur functions for signatures can be defined by (2.4). Define the
Schur process P[
1 | ρ] as the q → 1 degeneration of (8.4) (here and below we denote
by 
1 the sequence of spectral parameters which are all equal to 1). Another equivalent
form of the Edrei–Voiculescu theorem states that P[
1 | ρ] are all possible extreme
Gibbs measures on interlacing arrays of signatures (a Gibbs measure is called extreme
if it cannot be represented as a convex combination of other Gibbs measures).We refer
to [11] for further details on the definition of the two-sided Schur processes.

Theorem 8.2 Let ρ be a specialization with parameters (8.1) such that α−
i = 0 for all

i . Then we have for all 0 < q < 1:

P[(1, q, q2, . . .) | ρ] L
(q) = P[(1, q, q2, . . .) | ρ(q)],

where ρ(q) is the specialization corresponding to the parameters

α̂+
i = α+

i q

1 + α+
i − α+

i q
, α̂−

i = 0

β̂+
i = β+

i q

1 − β+
i + β+

i q
, β̂−

i = β−
i q

−1

1 − β−
i + β−

i q
−1

γ̂ + = qγ +, γ̂ − = q−1γ −.

(8.5)

Note that α̂+
i , β̂±

i ≥ 0, and β̂+
1 + β̂−

1 ≤ 1.

Proof of Theorem 8.2 This follows from Theorem 5.3 similarly to the computation in
the beginning of Sect. 5.5. Namely, denote (8.3) by Ψ (u; ρ). The q-Gibbs measure
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(8.4) corresponds to the q-Gibbs harmonic family

ϕN (λ) = sλ(ρ)

Ψ (1; ρ)Ψ (q; ρ)Ψ (q2; ρ) . . . Ψ (qN−1; ρ)
.

Note that Ψ (1; ρ) = 1 but it is convenient to include this factor here. Note also that
the condition α−

i ≡ 0 ensures that the series Ψ (qm; ρ) converge for all m ∈ Z≥1. The
action of L

(q) turns the q-Gibbs harmonic family {ϕN } into

ϕ̂N (λ) = q |λ|sλ(ρ)

Ψ (q; ρ)Ψ (q2; ρ) . . . Ψ (qN ; ρ)
= det[ψλi+ j−i (ρ) qλi+ j−i ]Ni, j=1

Ψ (q; ρ)Ψ (q2; ρ) . . . Ψ (qN ; ρ)
.

In particular, for N = 1 we have

ψn(ρ
(q)) = ψn(ρ) qn

Ψ (q; ρ)
, n ∈ Z,

which readily translates into the modification of the parameters (8.5) in the claim. 
�
Measures on interlacing arrays of the form P[(1, q, q2, . . .) | ρ] are not extreme

q-Gibbs. A classification of extreme q-Gibbs measures is obtained in [46] (note that
our q corresponds to 1/q in that paper, so the description of the boundary needs to be
reversed). Extreme q-Gibbs measures P

(q)
n are parametrized by infinite sequences

n = (n1 ≥ n2 ≥ . . .), ni ∈ Z.

Moreover, limN→+∞ λ
(N )
j = n j for each fixed j = 1, 2, . . ., where λ

(N )
j come from

the random configuration distributed according to P
(q)
n . It is not hard to show the

following.

Proposition 8.3 The action of the Markov map L
(q) on extreme q-Gibbs measures

corresponds to the left shift in the space of parameters:

P
(q)

(n1,n2,n3,...)
L

(q) = P
(q)

(n2,n3,n4,...)
.

In [17] a decomposition of the non-extreme q-GibbsmeasuresP[(1, q, q2, . . .) | ρ]
onto the extreme ones P

(q)
n is given in terms of a determinantal point process on the

set of shifted labels. The shifted labels in our notation are n1 − 1 > n2 − 2 > · · · ,
and they form a random point configuration on Z whose correlation functions have a
determinantal form. The action of L

(q) on n from Proposition 8.3 removes the largest
point in this determinantal process on Z, and shifts all its other points by one to the
right.

Question 2 How to explicitly link the action of L
(q) on n with the modification of the

parameters (8.5) of the determinantal point process describing P[(1, q, q2, . . .) | ρ]?
Does this correspondence (between the action on the parameters of the kernel and the
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action on the underlying random point configuration) survive any limit transition to
more familiar determinantal point processes (e.g., random matrix spectra or Airy2)?

8.2 Limit q → 1 and action on Gibbsmeasures

The q → 1 limit of Theorem 8.2 can be obtained similarly to the argument in Sect. 6.
Define by Lτ , τ ∈ R≥0, the continuous-time Markov semigroup under which each
particle λ

(k)
j at each k-th level of the interlacing array independently jumps to the left

into one of the possible locations m, where

max
{
λ

(k+1)
j+1 , λ

(k−1)
j

}
≤ m ≤ λ

(k)
j − 1,

at rate k per each of these possible locations.
However, this definition presents an issue since in a generic interlacing array, under

Lτ infinitely many particles jump in finite time. Moreover, because for any k ∈ Z≥1

jumps of λ
(k)
j depend on the (k + 1)-st level, one cannot simply restrict Lτ to the first

several levels. Therefore, we have to consider a smaller space of interlacing arrays:

Definition 8.4 Let the subset Sc ⊂ S consist of interlacing arrays {λ(N )
j }1≤ j≤N sat-

isfying λ
(N )
j = 0 for all N and all J (N ) ≤ j ≤ N , where N − J (N ) → +∞ as

N → +∞.

For each fixed K , the restriction of Lτ to

{λ(N )
j : N ∈ Z≥1, N − K + 1 ≤ j ≤ N }

(that is, to the K leftmost diagonals) is a Markov process, in which only finitely many
particles jump in finite time. For different K , these Markov processes are compatible.
Therefore, Lτ makes sense on the state space Sc. Below we denote by Lτ the Markov
semigroup constructed in this manner.

Theorem 8.5 The action of the semigroup Lτ on extreme Gibbs measures P[
1 | ρ],
where ρ is a specialization as in (8.1)–(8.3) with α−

i = β−
i = 0 for all i , γ − = 0,

and β+
1 < 1, transforms the parameters of ρ exactly as in (8.5), but with q replaced

by e−τ .

Idea of proof One can check that the Schur process P[
1 | ρ] with α−
i = β−

i = 0 for
all i , γ − = 0, and β+

1 < 1 is supported on the subset Sc described in Definition 8.4.
Similarly to Sect. 6, we see that under the scaling q = e−ε, T = �τ/ε�, ε → 0, we
have (L(q))T → Lτ . Next, the modification of the parameters (8.5) is a one-parameter
semigroup. That is, applying L

(q) one more time replaces q everywhere in (8.5) by
q2. Because qT ∼ e−τ , we get the result. 
�

In particular,Lτ maps the push-block process of [16] (seeDefinition 8.8) backwards
in time in the same sense as Theorem 1.
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8.3 Iterated Rmaps

Consider the maps R( j)
α defined in Sect. 4. Similarly to Sect. 5.2, we can define the

iterated R map R
(q) by

R
(q) := R(1)

q R(2)
q2

R(3)
q3

. . .

(this definitionhas the same formalmeaning as for themapL
(q), seeSect. 5.2). Themap

R
(q) acts nicely onq−1-Gibbsmeasures (i.e., corresponding to 
c = (1, q−1, q−2, . . .)).

Namely, one can check that an analogue of Theorem 5.3 holds, with q replaced by q−1

in the definition of the harmonic functions and in (5.4). The q → 1 continuous-time
limit Rτ of R

(q) is also readily defined with the help of Definition 8.4—this is just
the mirroring of Lτ from Sect. 8.1, in which all particles jump to the right. One can
obtain the following analogue of Theorems 8.2 and 8.5 for the action of R

(q) and Rτ

on q−1-Gibbs Schur processes:

Theorem 8.6 Let ρ be a specialization as in (8.1)–(8.3) such that α+
i = 0 for all i . We

have for all 0 < q < 1:

P[(1, q−1, q−2, . . .) | ρ] R
(q) = P[(1, q−1, q−2, . . .) | ρ(1/q)],

whereρ(1/q) hasmodified parameters as in (8.5), butwith q replaced by1/q.Moreover,
if α+

i = β+
i = 0 for all i , γ + = 0, and β+

1 < 1, then P[
1 | ρ] Rτ = P[
1 | ρ(eτ )],
where ρ(eτ ) is defined in a similar way.

Question 3 Is it possible to extend thedefinitionofRτ to Schurprocesseswithγ + > 0?
(This is equivalent to extending Lτ to the case γ − > 0.)

If such an extension is possible, then Rτ would turn the time t in the Schur process
P[
1 | ρt ] (with the Plancherel specialization γ + = t and all other parameters zero)
into eτ t , that is, forward. Note that this process would move infinitely many particles
in finite time and move individual particles very far, too.

Recall that P[
1 | ρt ] can be generated by the push-block dynamics (Definition 8.8).
Under this dynamics, the rightmost components {λ(N )

1 } of the interlacing array evolve
as a PushTASEP, a close relative of TASEP, but with a pushing mechanism [15,16].
Therefore, a positive answer to Question 3 would lead to a continuous-time semigroup
which maps PushTASEP forward in time.

8.4 Arrays of finite depth

Fix N ∈ Z≥1 and let Sλ,N be the space of interlacing arrays λ(1) ≺ . . . ≺ λ(N−1) ≺
λ(N ) with fixed top row λ(N ) = λ, where λ = (λ1 ≥ · · · ≥ λN ≥ 0), λi ∈ Z. Fix
pairwise distinct spectral parameters c1, . . . , cN > 0.

Recall the single level Markov maps L( j)
α , R( j)

α , j = 1, . . . , N − 1, defined in

Sect. 4. Consider the product space S̃λ,N := Sλ,N ×SN , whereSN is the symmetric
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group. For each elementary permutation si = (i, i + 1), 1 ≤ i ≤ N − 1, define the

Markov map T (si ) on S̃λ,N
as follows. On the SN part it deterministically acts by

σ �→ siσ . On each fiber Sλ,N × {σ } it acts as the Markov map

T (si ) :=
{
L(i)
cσ(i+1)/cσ(i)

, if cσ(i) > cσ(i+1);
R(i)
cσ(i)/cσ(i+1)

, otherwise.
(8.6)

Note that T (si ) do not satisfy the symmetric group relations when acting on S̃λ,N
(in

particular, T (si )2 is not identity).
Let M

λ

c denote the 
c-Gibbs measure on Sλ,N :

M
λ

c (λ

(1), . . . , λ(N−1)) = sλ(1) (c1)sλ(2)/λ(1) (c2) . . . sλ/λ(N−1) (cN )

sλ(c1, . . . , cN )
.

Note that in contrast with arrays of infinite depth (cf. Sect. 2.7), here the 
c-Gibbs
property determines the measure M

λ

c uniquely.

LetwN = (N , N−1, . . . , 2, 1) be the longest element in the symmetric groupSN ,
and wN = si1si2 . . . siN (N−1)/2 , 1 ≤ ik ≤ N − 1, be its reduced word decomposition
which is also assumed fixed. Define

T := T (si1)T (si2) . . . T (siN (N−1)/2) (8.7)

(in this notation we do not indicate the dependence on the choice of a particular

reduced word). Clearly, T
2 acts as the identity on the SN part of S̃λ,N

. Moreover,
T
2 preserves the measure M

λ

c viewed as the measure on Sλ,N × {e}. Indeed, this is

because by Proposition 4.7 each T (si )mapsM
λ
σ 
c toM

λ
siσ 
c. The mapT

2 can be viewed

as a sampling algorithm for the measure M
λ

c :

Proposition 8.7 Start with any (nonrandom) interlacing array (λ(1) ≺ · · · ≺
λ(N−1) ≺ λ) and apply the Markov map T

2k to it. The distribution of the result-
ing random interlacing array converges, as k → +∞, to M

λ

c in the total variation

norm.

Proof This follows from the standard convergence theorem forMarkov chains on finite
spaces. Indeed, the Markov chain corresponding to T

2k is

– aperiodic since T
2 assigns positive probability to the trivial move;

– irreducible because T
2 assigns positive probability to changing only one entry

λ
(k)
j , 1 ≤ j ≤ k ≤ N − 1 in the interlacing array (the set Sλ,N is connected by

such individual changes).

This completes the proof. 
�
Question 4 How fast is the convergence in Proposition 8.7, depending on the system
size (which is ∼ Nλ1)? What is the mixing time of T?
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Fig. 10 Samples from the measures Mq−1 (left) and Mq (right) with a = b = c = 50 and q = 0.95. The
sample on the left is generated by the shuffling algorithm of [19], and the picture on the right is the result
of applying the map T

8.5 q-distributed lozenge tilings

Let us now consider a concrete case of the setup outlined in the previous Sect. 8.4. Fix
N and the top row λ = (b, b, . . . , b, 0, 0 . . . , 0), where b repeats a times and 0 repeats
c times, with a + c = N . Then interlacing arrays of depth N and top row λ are in
bijection with lozenge tilings of a hexagon with sides a, b, c, a, b, c, or, equivalently,
with boxed plane partitions (see Fig. 10 for an illustration and, e.g., [25] for more
details).

Let Mq−1 and Mq denote the measures under which the probability weight of
a lozenge tiling is proportional to q−vol or qvol, respectively, where the volume is
defined in (5.1). These two measures are 
c-Gibbs with 
c = (1, q, q2, . . . , qN−1) and

c = (qN−1, . . . , q, 1), respectively (recall that multiplying 
c by a scalar does not
change the 
c-Gibbs property).

Take the reduced word

wN = (s1s2 . . . sN−1)(s1s2 . . . sN−2) . . . (s1s2)(s1),

and let T be the corresponding Markov map (8.7). One readily sees that the action of
T on Mq−1 :

– Turn Mq−1 into Mq ;
– Almost surely moves vertical lozenges (see Fig. 10) to the left because in (8.6) we
always choose the option L;

– Changes the (N − 1)-st row of the tiling only once, the (N − 2)-nd only twice,
and so on.

An exact sampling algorithm for Mq−1 was presented in [19]. Starting with the
exact sample of Mq−1 (Fig. 10, left) and applying T, we obtain an exact sample of
Mq (Fig. 10, right), while randomly moving the vertical lozenges to the left. An
implementation of this mapping Mq−1 T = Mq with all the intermediate steps can be
found online [70].
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Fig. 11 A lozenge configuration in the bulk and a possible move under the bulk limit of Lτ : the vertical
lozenge with a black dot can move to one of the white dotted locations, at rate 1 per white dot. Square marks
indicate lozenges which are blocked in the push-block dynamics

The map T works in the same way for an arbitrary top row λ (when the polygon
being tiled is not necessarily a hexagon, but can be a general sawtooth domain as in,
e.g., [69]). The advantage of the hexagon case is the presence of the exact sampling
algorithm [19].

Question 5 Consider lozenge tilings of growing sawtooth domains with top rows λ =
λ(N ) which depend on N in some way. Can the symmetry of the q±vol measures
manifested by the map T be utilized to obtain the limit shape and fluctuations of the
leftmost piece of the frozen boundary as N → +∞?

Here by the leftmost piece we mean the part of the curve separating the leftmost
region occupied by only vertical lozenges, and the liquid region. Existence and char-
acterization of limit shapes for q±vol is due to [32,54], and some explicit formulas
were obtained recently in [37].

8.6 Dynamics in the bulk

Consider the Schur process P[
1 | ρt ] (also sometimes known as the Plancherel mea-
sure for the infinite-dimensional unitary group). It is convenient to use lozenge tiling
interpretation of interlacing arrays as in the previous Sect. 8.5. From [16,20] it is
known that as N , k, and t go to infinity proportionally to each other, the local lat-
tice configuration of lozenges around each λ

(N )
k converges to the ergodic translation

invariant Gibbs measure on lozenges tilings of the whole plane (see Fig. 11 for an
illustration). Such ergodic measures form a two-parameter family [79]. As parameters
one can take the densities of two of the three types of lozenges. We remark that the
ergodic Gibbs measures are far from being independent Bernoulli ones. In particular,
the joint correlations of lozenges possess a determinantal structure [67].
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We say that (N , k, t) correspond to the bulk of the system if the limiting density
of each of the types of lozenges around λ

(N )
k (t) is positive. One can also consider

the bulk limit of the dynamics Lτ . Because Lτ maps the Schur process P[
1 | ρt ] to
P[
1 | ρe−τ t ] and t → +∞, we need to scale τ as τ = τ/t (here τ ∈ R>0 is the new
scaled time which stays fixed). Then e−τ/t t ∼ (

1 − τ
t

)
t = t − τ. Considering Lτ/t

is equivalent to slowing down all the jump rates in L by the factor of t . Since we are
looking around level N and N grows proportionally to t , the slowed down dynamics
in the bulk will have equal jump rates on all levels at finite distance from the N -th one.

Therefore, under the bulk limit of Lτ , each vertical lozenge can move into one of
the holes to the left of it (with the requirement that the interlacing is preserved), at a
constant rate per hole (for simplicity, we can assume that this rate is equal to 1). See
Fig. 11 for an illustration.

Consider the combination of the dynamics Lτl/t and Rτr/t running in parallel,8

where l, r > 0 are parameters. In the bulk limit of this combination, we readily
obtain the Hammersley-type process in the bulk with two-sided jumps. This two-sided
dynamics was introduced and studied in [83], where it was shown that this dynamics
preserves the ergodic Gibbs measures on tilings of the whole plane. We see that our
Markov maps Lτ and Rτ can be viewed as the pre bulk limit versions of the two-sided
Hammersley-type processes of [83].

Let us now discuss connections to the push-block dynamics of [16]. For complete-
ness, let us recall its definition:

Definition 8.8 (Push-block dynamics) Each vertical lozenge has an independent expo-
nential clock of rate 1. When the clock rings, the lozenge tries to move to the right by
one. If it is blocked by a vertical lozenge from below (see the square mark in Fig. 11),
then the jump is suppressed. If there are vertical lozenges above the one moving, then
they also get pushed to the right by one.

The one-sided particular case of the Hammersley-type processes is the push-block
dynamics, up to rotating the picture by π/3 and focusing on the yellow lozenges in
Fig. 11 instead of the vertical (gray) ones.

Thus, in the bulk limit Theorem 8.5 informally turns into the statement that one
can run the one-sided Hammersley-type process and the push-block dynamics (both
in terms of the vertical lozenges), and the resulting process preserves ergodic Gibbs
measures. This statement follows from [83], as well as its rather straightforward gen-
eralization given next:

Proposition 8.9 Running six one-sided Hammersley-type processes in parallel, where
each individual process moves one type of lozenges in one of the directions eiπk/3,
0 ≤ k ≤ 5, at a specified rate αk ≥ 0, preserves ergodic Gibbs measures on tilings of
the whole plane.

8 Here we are ignoring the issues with definitions of the continuous-time dynamics outlined in Sects. 8.2
and 8.3.
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8.7 Branching graph perspective

Recall that bySc we denote the set of all interlacing arrays of infinite depth which have
many zeroes along the left border (Definition 8.4). Let us explain how the Markov
maps Lτ can be utilized to equip Sc × R with a structure of an R-graded projective
system in the sense of [23]. Projective systems generalize branching graphs such as
the Young graph, and the latter play a fundamental role in Asymptotic Representation
Theory [24,84]. The definitions and questions in this subsection are motivated by the
connection to branching graphs.

Remark 8.10 The set Sc × R is “larger” than the more well-studied branching graphs.
Namely, in the Young and Gelfand–Tsetlin graphs the vertices are indexed by Young
diagrams and signatures, respectively (a signature is a tuple (ν1 ≥ · · · ≥ νN ), νi ∈ Z),
while in Sc × R the vertices are whole infinite collections of interlacing diagrams
λ(1) ≺ λ(2) ≺ · · · . This makes it hard to predict which properties of the Young and
Gelfand–Tsetlin graphs could translate to Sc × R.

LetMs , s ∈ R, be probability measures onS supported bySc (examples include the
one-sided Schur measures as in Theorem 8.5). We call the family {Ms}s∈R coherent
if for any τ ≥ 0 and s ∈ R we have

Ms Lτ = Ms−τ .

Coherent families are sometimes known as entrance laws, cf. [38]. Clearly, coherent
families form a convex set. Its extreme elements are, by definition, those which cannot
be represented as nontrivial convex combinations of other coherent families.

Question 6 How to characterize extreme coherent families?Can every coherent family
be represented in a unique way as a (continual) convex combination of the extremes?

Let us present an example of a coherent family based on Schur processes. Take
MSchur

s = P[
1 | ρ(s)], where ρ(s) is a specialization with α±
i (s) = β−

i (s) = 0 for all
i , γ −(s) = 0, and other parameters given by

β+
i (s) = β+

i e
s

1 − β+
i + β+

i e
s
, γ +(s) = esγ +,

where β+
i and γ + are fixed and satisfy (8.1). The fact that the family {MSchur

s } is
indeed coherent follows from Theorem 8.5.

Let us discuss two particular examples.

– When γ + = 1 and all other parameters are zero, MSchur
s is the family of single-

time distributions of the push-block dynamics under the logarithmic time change
s = log t .

– When β+
1 = β ∈ (0, 1) and all other parameters are zero, the random inter-

lacing array corresponding to MSchur
s has the form λ(N ) = (1XN 0N−XN ), where

(X1, X2, . . .) is the trajectory of the simple randomwalk with steps 0, 1 taken with
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probabilities 1−β+
1 (s) and β+

1 (s), respectively. The parameter β+
1 (s) interpolates

between 0 and 1 at s = −∞ and s = +∞, respectively. The mapLτ thus provides
a coupling between these simple random walk trajectories with varying probabil-
ity of up step. The concrete action of Lτ in this example leads to Proposition 2
formulated in the Introduction.

Question 7 Are the coherent families {MSchur
s } extreme? Are there other interesting

(extreme or non-extreme) coherent families?

Let us focus on the case {MSchur
s } with γ + = 1 and all other parameters zero. The

structure of a projective family allows to define for each s ∈ R the up-down Markov
process on Sc which preserves each MSchur

s (see [21]). In more detail, the forward
Markov generator is defined as

L
up
s,s+ds(μ → λ) = MSchur

s+ds (λ)

MSchur
s (μ)

Lds(λ → μ), λ,μ ∈ Sc.

One can check that this is not the same forward evolution as the push-block generator
(under any time change). In particular, L

up
s,s+ds is time-inhomogeneous. Therefore,

the up-down Markov process arising from the branching graphs formalism does not
reduce (in restriction to the leftmost particles λ

(N )
N ) to the stationary dynamics from

Sect. 7.

Question 8 The up-down Markov chains associated with distinguished non-extreme
coherent families on well-studied branching graphs converge to infinite-dimensional
diffusions on the boundary (e.g., [21,68]). Is there such a limit procedure for the
up-down processes associated with {MSchur

s } or other coherent families on Sc × R?

Viewing C as a subset of Sc, one can similarly define the projective system structure
on C × R associated with the Markov maps Lτ (Definition 6.2). The restrictions of
{MSchur

s } form coherent families on C × R, and all the problems formulated in this
subsection alsomake sense for the smaller object C×R. Note that the up-downMarkov
chain on each floor C× {s} with γ + = 1 (and all other parameters zero) preserves the
TASEP distribution μes , but is it not the same as the stationary dynamics discussed in
Sect. 7.

8.8 Lifting to additional parameters

The definition of the local Markov maps L( j)
α and R( j)

α which randomly change a
single level of an interlacing array is inspired by the bijectivization of a degenerate
case of the Yang–Baxter equation. Beyond this degenerate case associated with the
Schur symmetric polynomials, the bijectivization can be developed to include models
associatedwith spinHall-Littlewood or spinq-Whittaker symmetric functions [29,30].
A scheme of symmetric functions is given in Fig. 12.

Let us consider three setups. First, in the spin Hall-Littlewood case, the maps L( j)
α

and R( j)
α can be obtained by considering sequences of local transitions given in Fig-

ures 4 and 5 in [30] (see Sect. 4.2 for more details). Therefore, one can potentially
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Schur
Whittaker

Hall-Littlewood (t)

spin Hall-Littlewood (t, s)

Jack (β)

Macdonald (q, t)

spin q-Whittaker (q, s)

q-Whittaker (q)

t = qβ/2

→ 1

β = 2

s = 0

t = 0

q = 0
t = 0

s = 0

q = 0 q ↗ 1

Fig. 12 An hierarchy of symmetric functions

defineMarkov maps preserving the class of probability measures on interlacing arrays
satisfying a version of the Gibbs property associated with the spin Hall-Littlewood
functions. These Gibbs measures include the subclass of spin Hall-Littlewood pro-
cesses. The Markov maps on the spin Hall-Littlewood processes could project (in a
way similar to how Lτ leads to Lτ ) into maps acting nicely on distributions of the
stochastic six-vertex model and the ASEP with step initial data.

Second, on the spin q-Whittaker side the TASEP is generalized to the q-TASEP
[14,77] and further to the q-Hahn TASEP [34,71]. A continuous-time version of the
q-Hahn TASEP can be found in [6,82].

Question 9 Do there exist Markov maps on (spin) q-Whittaker processes mapping the
time parameter in the q-TASEP or the (continuous-time) q-Hahn TASEP backwards?

Finally, let us discuss a setting which does not immediately fit into the scheme
of Fig. 12 but is also of interest. Configurations of the (not necessarily stochastic)
six-vertex model with the domain wall boundary conditions (e.g., see [74]) can be
encoded as finite depth interlacing arrays of strict partitions with fixed top row. The
Yang–Baxter equation swapping spectral parameters in this model can potentially be
bijectivised in the same way as in [30], which should lead to Markov maps acting
nicely on the distribution of the six-vertex model. (In the Schur case this is described
in Sect. 8.4.)

Question 10 Can these Markov maps be taken to the continuous-time limit similarly
to the q → 1 limit described in Sect. 6? If this is possible, this would lead to a
new non-local sampling algorithm for the distribution of the homogeneous (i.e., with
equal spectral parameters) six-vertex model with domain wall boundary conditions.
The bulk limit of this latter algorithm should presumably coincide with the Markov
process from [13] preserving the distribution of the six-vertex model on a torus.
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