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Abstract
The perturbed GUE corners ensemble is the joint distribution of eigenvalues of all principal
submatrices of amatrixG+diag(a), whereG is the randommatrix from theGaussianUnitary
Ensemble (GUE), and diag(a) is a fixed diagonal matrix. We introduce Markov transitions
based on exponential jumps of eigenvalues, and show that their successive application is
equivalent in distribution to a deterministic shift of the matrix. This result also leads to a new
distributional symmetry for a family of reflected Brownian motions with drifts coming from
an arithmetic progression. The construction we present may be viewed as a random matrix
analogue of the recent results of the first author and Axel Saenz [17].

Keywords Random matrices · Perturbed GUE corner process · Reflected Brownian motions

1 Introduction

1.1 Couplings for Perturbed GUE Corners Process

The Gaussian Unitary Ensemble (GUE) is the most well-known random matrix model [2,6,
14]. This paper presents a new symmetry of the distribution of the perturbed GUE ensemble.
By this we mean the randommatrix ensemble of the form H = G+diag(a1, . . . , aN ), where
G is an N × N GUE random matrix, to which we add a fixed diagonal matrix. This model is
often also called GUE with external source. We refer to [3–5] and references therein for the
history of the perturbed ensemble and various asymptotic results. (In fact, below we consider
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Fig. 1 Interlacing array of eigenvalues of all principal corners of a 4 × 4 matrix

a slightly more general version of the matrix model involving a time-dependent rescaling;
this version is suitable for the application to reflected Brownian motions).

The unperturbed GUE random matrix, corresponding to ai ≡ 0, is unitary invariant in

the sense that there is equality in distribution G
d= UGU∗ for any fixed N × N unitary

matrix U . This implies that the distribution of the eigenvalues of H is symmetric in the
perturbation parameters a1, . . . , aN . The overall goal of the paper is to explore probabilistic
consequences of this symmetry property.

Together with the eigenvalues λN = (λN
N ≤ . . . ≤ λN

1 ), λN
i ∈ R, of the full matrix

H = [hi j ]Ni, j=1, one can also consider its corners process,
1 that is, the interlacing collection of

eigenvalues of the principal corners [hi j ]ki, j=1 of H for all k = 1, 2, . . . , N . (See Fig. 1 for an
illustration.) The distribution of the corners process of H isnot symmetric in the parametersai .
Moreover, assuming that theai ’s are all distinct, there are N !different probability distributions
on interlacing collections of eigenvalues at N levels.

In this paper we present explicit couplings between these N ! distributions, by showing
that each nearest neighbour transposition ak ↔ ak+1, k = 1, . . . , N − 1, of the parameters
is equivalent in distribution to a rather simple Markov swap operator Sak−ak+1

k . This swap
operator randomly changes the entries λki on the k-th level of the array given the two adjacent

levels λk−1, λk+1, while leaving all other entries intact. If ak > ak+1, Sak−ak+1
k is realized as

an independent collection of instantaneous exponential type jumps of each λki to the left:2

λki �→ νki := λk+1
i+1 ∨ λk−1

i + E iak−ak+1
∧ (

λki − λk+1
i+1 ∨ λk−1

i

)
, i = 1, . . . , k,

where E iak−ak+1
’s are independent exponential random variables with parameter ak − ak+1

(and mean 1/(ak − ak+1)). Here by agreement, λk−1
k = −∞. In particular, these left jumps

are constrained by the interlacing. For ak < ak+1, the same jumps are performed to the right
in a symmetric way:

λki �→ μk
i := λk+1

i ∧ λk−1
i−1 − E iak+1−ak ∧ (

λk+1
i ∧ λk−1

i−1 − λki
)
, i = 1, . . . , k,

where, by agreement, λk−1
0 = +∞. Finally, if ak = ak+1, then Sak−ak+1

k is the identity
operation.

Theorem 1.1 (Follows from Theorem 4.4 below) Assume that ak �= ak+1. Then the action of
the Markov operator Sak−ak+1

k (with left jumps for ak > ak+1, and right jumps otherwise)
turns the corners distribution of G + diag(a1, . . . , ak, ak+1, . . . , aN ) into the one of G +
diag(a1, . . . , ak+1, ak, . . . , aN ), where G is the N × N GUE random matrix.

1 Also called minors process in the literature, cf. [11].
2 Here and below we use the standard notation A ∨ B = max(A, B), A ∧ B = min(A, B) for A, B ∈ R.
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We establish this theorem by relying on a perturbed Gibbs structure of the corners distri-
bution of the matrix H . Namely, it is well-known that in the unperturbed case, the conditional
distribution of the eigenvalues λki , 1 ≤ i ≤ k ≤ N − 1, given λN , is uniform on the polytope
defined by all the interlacing inequalities (known as the Gelfand-Tsetlin polytope). In the
perturbed case, the Gibbs structure should be deformed in a certain way by means of the
parameters ai (see Sect. 3.1). The coupling follows by considering the conditional distri-
bution of λk given two adjacent levels λk±1, which reduces to a collection of independent
exponential random variables confined to the corresponding intervals. Producing a suitable
Markov swap operator for a single such variable (see Proposition 4.1 below), we arrive at
the result of Theorem 1.1.

Remark 1.2 Applied twice to G + diag(a1, . . . , aN ), the Markov swap operator from Theo-
rem 1.1 returns to the same distribution. That it, the composition of Sak−ak+1

k and Sak+1−ak
k

does not change the distribution of G + diag(a1, . . . , aN ). However, this composition is not
an identity transformation: two random jumps return a particle to the original location with
probability 0.

1.2 Perturbation by an Arithmetic Progression

The perturbed GUE corners distributions are compatible for various N , and so one can
define the corresponding perturbed GUE corners distribution on infinite interlacing arrays.
It depends on an infinite parameter sequence a = {ai }i∈Z≥1 . One particular interesting case
is when the perturbation parameters form an arithmetic progression ai = −(i − 1)α, where
α > 0. Swapping a1 with a2, then a1 with a3, and so on all the way to infinity leads to an
additive shift in the perturbation parameters, which is equivalent in distribution to a global
shift:

Theorem 1.3 (Theorem 5.2 below) The action of a sequence of left exponential jumps (where
the parameter at level k is taken to be kα), from level 1 up to infinity, is equivalent in
distribution3 to shifting all the elements of the interlacing array by α to the left.

1.3 Shifting of Reflected BrownianMotions

Let α > 0, and let let Xk(t), k = 1, 2, . . ., be reflected Brownian motions constructed as
follows. First, X1(t) is the standard driftless Brownian motion started from 0. Inductively,
let Xk(t), k = 2, 3, . . ., be a new independent Brownian motion with drift −(k − 1)α, and
reflected down off of Xk−1(t) by means of subtracting local time when Xk = Xk−1. For
example,

X2(t) = X◦
2(t) − L1,2(t),

where X◦
2(t) is the standard Brownian motion, and L1,2(t) = ∫ t

0 1X1(s)=X2(s) dL1,2(s) is the
continuous non-decreasing process which increases only at times when X1(s) = X2(s) (in
other words, it is twice the semimartingale local time of X1 − X2 at zero. We refer to [5,19]
for further details on the reflection mechanism, and for an explanation on how to start all
these reflected processes from zero (which formally results in infinitely many collisions in
finite time). Almost surely we have X1(t) ≥ X2(t) ≥ X3(t) . . . for all t .

3 Here and below by saying that two operations are “equivalent in distribution” we mean that the random
elements resulting from both these operations, applied to the same initial random element, have the same
distribution.
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Fix t and define

X ′
k(t) := Xk+1(t) + Ekα ∧ (Xk(t) − Xk+1(t)), k = 1, 2, . . . , (1.1)

where Ekα , k = 1, 2, . . ., are independent exponential random variables with parameters kα
(and mean 1/(kα)).

Theorem 1.4 For each fixed t, we have equality of joint distributions

{X ′
k(t)}k∈Z≥1

d= {Xk(t) − αt}k∈Z≥1 .

In particular, X ′
1(t) = X2(t) + Eα ∧ (X1(t) − X2(t)) is a normal random variable with

mean (−αt) and variance t . To the best of our knowledge, even this result for two processes
(one a usual Brownian motion, and one reflected off it) is new.

Theorem 1.4 follows from Theorem 1.3 combined with the connection between the
reflected drifted Brownian motions and the perturbed GUE corners process due to [5]. We
recall this connection in detail in Sect. 2.3 below, and prove Theorem 1.4 in the end of Sect. 5.

As stated, Theorem 1.4 assumes that the time t is fixed. Indeed, naively taking independent
exponential shifts at different times t would make the functions t �→ X ′

k(t) discontinuous. It
is interesting to see whether a stochastic process version of Theorem 1.4 holds:

Open problem 1.5 Is it possible to construct a Markov operator on whole trajectories t �→
{Xk(t)}k∈Z≥1 which is equivalent in distribution to a shift of reflected Brownian motions as
stochastic processes?

Presumably, if such a Markov operator on processes exists, then its construction could be
accomplished using the sticky Brownian motion,4 as exponential random variables arise in
the study of this process, e.g., see Theorem 1 in [18]. It seems plausible that the difference
process t �→ X1(t)− X ′

1(t) ≥ 0 itself could be distributed as the sticky Brownian motion, as
the single-time distributions coincide thanks to the results of [18] and [10, Proposition 14].
However, it is less clear how to extend this idea to all differences t �→ Xk(t) − X ′

k(t) ≥ 0.

1.4 Related Discrete Model

The results of this paper might be viewed as a randommatrix limit of the ones from the recent
work [17]. There, similar Markov swap operators were considered on discrete interlacing
arrays as in Fig. 1. A combination of these swap operators together with a certain Poisson-
type limit (cf. Sect. 1.5 below) has lead to a Markov chain on distributions of TASEP (totally
asymmetric simple exclusion process)which decreases the time parameter. The shifting result
for reflected drifted Brownian motions (Theorem 1.4) may be viewed as a certain analogue
of the TASEP reversal property. In the Brownian case, instead of decreasing the time, the
exponential jumps lead to a deterministic shift.

It should be pointed out that even though the discrete stochastic systems in [17] converge
to the reflected Brownian motions [8] (and [5] in the drifted case), here we do not rely on this
convergence or the results of [17]. Instead we obtain the results independently using basic
mechanisms related to the (perturbed) Gibbs property.

4 We are grateful to Jon Warren (personal communication) for suggesting this connection.
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1.5 Unperturbed Case

In the arithmetic progression setting ai = −(i −1)α with α > 0, when α ↘ 0, the perturbed
GUE corners process of H = G + diag(0,−α,−2α, . . .) becomes the usual GUE corners
process, and the system of reflected Brownian motions {Xk(t)}k∈Z≥1 becomes driftless. It
would be very interesting to see whether the Markov operators considered in the present
paper have meaningful limits as α ↘ 0. However, this limit presents certain immediate
issues which we discuss now.

For simplicity, consider the Brownianmotion setup. Fix t > 0 and suppress this parameter
in the notation. As α → 0, theMarkov operator Xk �→ X ′

k (1.1) turns into the (deterministic)
identity operator Xk �→ Xk . Indeed, this is because Prob(Ekα > x) = e−kαx ∼ 1 − αkx for
all k and x , and so the minimum in (1.1) is equal to Xk − Xk+1 with probability of order
1 − O(α). Arguing similarly to the discrete case considered in [17, Sect. 6], one can apply
the map (1.1) a large number �τ/α� of times, where τ ∈ R>0 is the scaled time.

Taking a Poisson-type limit should lead to a continuous time Markov process (with τ as
the new time parameter) under which Xk has an exponential clock of rate k(Xk − Xk+1), and
when the clock rings, Xk instantaneously jumps into X ′

k selected uniformly from [Xk+1, Xk].
This jumping mechanism is known as theHammersley process [1,9]. However, applying this
continuous time jumping process to the whole system {Xk}k∈Z≥1 is problematic, as it leads to
infinitely many jumps in finite time due to the growing jump rates k(Xk − Xk+1) as k → ∞.
Moreover, under this hypothetical process Xk would depend on all X j for j > k, and so one
cannot simply restrict the dynamics to finitely many particles where it would make sense.

On the other hand, by Theorem 1.4, the hypothetical continuous time dynamics should be
equivalent in distribution to a deterministic shift of the (driftless) reflected Brownian motions
by −αt�τ/α� ∼ −tτ . It is reasonable to expect that such a deterministic shift of infinitely
many Xk’s cannot be achieved only by finitely many jumps in finite time. To summarize,

Open problem 1.6 Do there exist well-defined α ↘ 0 limits of the Markov operators acting
on the GUE corners process perturbed by an arithmetic progression ai = −(i − 1)α or on
the reflected drifted Brownian motions? These hypothetical limits should act on (much more
studied) unperturbed GUE corners process and driftless reflected Brownian motions.

2 Perturbed GUE Corners Process

This section is preliminary. We recall the perturbed GUE corners process [5] (also called
the GUE corners process with external source [3]), and its connection to reflected Brownian
motions with drifts. The original, unperturbed GUE corners process is due to [11,12], and it
was linked to driftless reflected Brownian motions in [19].

2.1 Matrix Model

Take a time parameter t > 0 and an infinite sequence of parameters

a = (a1, a2, . . .), ai ∈ R.
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Unless otherwise indicated, we assume that the parameters ai are pairwise distinct. Con-
sider a random matrix H = t1/2 · G + t · diag (a) of infinite size with entries:

Hkl =

⎧
⎪⎨

⎪⎩

t1/2gkk + tμk, k = l;
t1/2gkl , k < l;
t1/2glk, k > l.

Here gkk are independent real standard normal random variables, and gkl are independent
complex standard normal random variables (that is, their real and imaginary parts are inde-
pendent real normal random variables each with mean 0 and variance 1

2 ). The matrix H is
Hermitian.

For eachm ∈ Z≥1, take them×m principal corner [Hkl ]1≤k,l≤m of the infinite matrix H .
Let λm = (λm1 ≥ . . . ≥ λmm), λmi ∈ R, be its eigenvalues. At adjacent levels, the eigenvalues
interlace (notation λm ≺ λm+1):

λm+1
m+1 ≤ λmm ≤ λm+1

m ≤ λmm−1 ≤ · · · ≤ λm+1
2 ≤ λm1 ≤ λm+1

1 . (2.1)

We call the joint distribution of all {λkj }1≤ j≤k<∞ the perturbed GUE corners process.

2.2 Joint Eigenvalue Density

A standard application of the Harish–Chandra–Itsykson–Zuber integral shows that the joint
eigenvalue density of {λN

i }Ni=1 at a fixed level N is given by

Density(λN ) = const × det

[

exp

{

− (λN
i − ta j )

2

2t

}]N

i, j=1

V(λN
1 , . . . , λN

N )

V(a1, . . . , aN )
, (2.2)

where the normalizing constant does not depend on a1, . . . , aN . Here and throughout the
paper we use the notation

V(b1, . . . , bN ) =
∏

1≤i< j≤N

(bi − b j )

for the Vandermonde determinant.
Observe from (2.2) that the distribution of {λN

j }Ni=1 depends on the parameters ai in a
symmetric way. This should indeed be the case, since the distribution of the eigenvalues
of the N × N matrix t1/2 GN×N + t diag(a1, . . . , aN ) does not depend on the order of the
ai ’s due to the unitary invariance of GN×N . The main goal of this paper is to explore this
distributional symmetry from a Markov operator point of view. For this, we will need the
joint distribution of eigenvalues of all corners:

Proposition 2.1 ([5, Proposition 2.3]) The joint density of the eigenvalues {λkj }1≤ j≤k≤N at
the first N levels, where N ∈ Z≥1 is arbitrary, has the following form:

const × V
(
λN
1 , . . . , λN

N

) N∏

i=1

e−ta2i /2−(λN
i )2/(2t) exp

{

|λN | aN +
N−1∑

k=1

|λk | (ak − ak+1)

}

(2.3)
where we use the notation |λk | := λk1 + λk2 + · · · + λkk , and the normalizing constant does
not depend on a1, . . . , aN .
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2.3 Reflected BrownianMotions

Fix a perturbation sequence a = {ai }i∈Z≥1 . Consider a family of interacting Brownian
motions Bk

j , 1 ≤ j ≤ k < ∞, such that:

• All processes start from zero.
• The processes Bk

j , j = 1, . . . , k have the same drift ak .

• The evolution of each Bk
j does not depend on any of the Bl

i ’s with l > i .
• The processes interact only through their local times. That is, when the processes are

sufficiently far apart, each Bk
j behaves as an independent Brownian motion with drift ak .

• Each Bk
j belongs to the segment [Bk−1

j , Bk−1
j−1]5 and reflects off both Bk−1

j and Bk−1
j−1 .

Therefore, at each time t , the random variables {Bk
j (t)}1≤ j≤k<∞ almost surely form an

interlacing array as in Fig. 1.

We refer to [5, Sect. 4] (and [19] in the driftless case) for details on the reflection mecha-
nism.

Proposition 2.2 ([5, Theorem 2]) At each fixed time moment t ∈ R≥0, we have equality of
joint distributions of two infinite interlacing arrays:

{Bk
j (t)}1≤ j≤k<∞

d= {λkj }1≤ j≤k<∞,

where the right-hand side is the perturbedGUEcorners processwith the same time parameter
t and perturbation sequence a.

3 Gibbs Measures

In this section we place the perturbed GUE corners process into a wider family of Gibbs
measures on interlacing arrays.

3.1 Gibbs Property and Harmonic Functions

A measure on infinite interlacing arrays {λkj }1≤ j≤k<∞ (satisfying inequalities (2.1) between

any two consecutive levels) is called a-Gibbs if for each N and any fixed configuration λN

at level N , the density of the conditional distribution of all the lower entries of the array has
the form

Density(λ1, . . . , λN−1 | λN ) = V(a1, . . . , aN )

det[exp{aiλNj }]Ni, j=1

× exp

⎧
⎨

⎩
|λN | aN+

N−1∑

k=1

|λk | (ak−ak+1)

⎫
⎬

⎭
1
λ1≺λ2≺...≺λN−1≺λN

(3.1)

(if some of the λN
i ’s are equal, the density would have delta components and formula (3.1)

should be understood in a limiting sense). Here and below 1B stands for the indicator of an
event B. Proposition 2.1 implies that the perturbed GUE corners process is an example of an
a-Gibbs measure.

5 If one or both ends of the segment are not defined, they should be replaced with infinity of appropriate sign.

123



Parameter Symmetry in Perturbed GUE Corners… 2003

Remark 3.1 The fact that the density (3.1) integrates to 1 in λ1, . . . , λN−1 can be checked by
induction on N .

Remark 3.2 When ai ≡ a are all equal to each other, the a-Gibbs property becomes the
usual Gibbs property, with (3.1) replaced by the uniform conditioning provided that the
configurations λ1, . . . , λN−1, λN interlace. A classification of uniform Gibbs measures on
interlacing arrays is due to [16]. In fact, performing a suitable exponential change of variables,
one can see that when a is an arithmetic progression, the space of a-Gibbs measures is
essentially the same as in the uniform case. This is somewhat parallel to how the two-sided
q-Gelfand-Tsetlin graph degenerates to the “graph of spectra” [7,15].

To each a-Gibbs measure we can associate a family of a-harmonic functions as follows:

ϕN (λN ) := V(a1, . . . , aN )

det[exp{aiλN
j }]Ni, j=1

Density(λN ), N = 1, 2, . . . , (3.2)

whereDensity(λN ) is the marginal density of λN . The term “harmonic function” comes from
the Vershik–Kerov theory of boundaries of branching graphs, cf. [13]. Harmonicity means
that the functions satisfy a version of a mean value theorem associated to a directed graph
Laplacian. In the context of random matrices the discrete graph is replaced by a suitable
continuous analogue, and the graph Laplacian becomes an integral operator. In other words,
since the a-harmonic functions ϕN for different N ’s come from the same Gibbs measure,
they must be consistent in the following sense:

Lemma 3.3 For all N ≥ 2 we have

ϕN−1(λ
N−1) =

∫

λN : λN�λN−1
ϕN (λN ) eaN (|λN |−|λN−1|)dλN . (3.3)

Identity (3.3) should be viewed as a version of the mean value theorem, as discussed before
Lemma 3.3.

Proof of Lemma 3.3 The claim follows by writing down the joint distribution of λ1, . . . , λN

through ϕN and the conditional distribution (3.1), and then integrating out λ1, . . . , λN−2 (this
produces the factor V(a1, . . . , aN−1)/ det[exp{aiλN−1

j }]N−1
i, j=1) and λN to get the marginal

density of λN−1. The resulting marginal density is expressed through ϕN−1 via (3.2), which
yields the result. ��
Lemma 3.4 For an a-Gibbs measure, let each ϕk depend on a1, . . . , ak in a symmetric way.
Then the distribution of λk , where k ∈ Z≥1 is fixed, depends on the parameters a1, . . . , ak
in a symmetric way, too.

Proof An immediate consequence of (3.2). ��
Proposition 3.5 Any a-Gibbs measure is uniquely determined by the corresponding family
of a-harmonic functions {ϕN }N∈Z≥1

.

Proof Follows from the Kolmogorov extension theorem. ��
Let us emphasize that the results of this subsection (Lemmas 3.3 and 3.4 and Proposi-

tion 3.5) are valid not only for the perturbed GUE corners process (which, as we see next, is
an example of an a-Gibbs measure), but hold in the full generality for any a-Gibbs measure.
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3.2 Perturbed GUE Corners as a Gibbs Measure

One readily sees that for the perturbed GUE corners process we have the following harmonic
functions:

ϕ
pertGUE(a;t)
N (λN ) = const × V(λN

1 , . . . , λN
N )

N∏

i=1

e−ta2i /2−(λN
i )2/(2t), N = 1, 2, . . . ,

(3.4)
where the constant is the same as in (2.3) and does not depend on the a j ’s. One readily checks
that the a-Gibbs property (Lemma 3.3) for the perturbed GUE corners process is equivalent
to the well-known integral identity for the Vandermonde determinants:

V(λN−1
1 , . . . , λN−1

N−1)

N−1∏

i=1

e−(λN−1
i −aN t)2/(2t)

= const ×
∫

λN : λN�λN−1
V(λN

1 , . . . , λN
N )

N∏

i=1

e−(λN
i −aN t)2/(2t)dλN .

(3.5)

where the constant does not depend on the a j ’s. The shift by aN t in the exponents in both
sides by changing the variables in the integral and renaming the λN−1

i ’s, can also be removed
(or replaced with any other shift bt) since the Vandermonde is translation invariant.

In particular, (2.3) together with Lemma 3.4 implies the symmetry (as in this lemma) of
the perturbed GUE corners distribution with respect to the parameters ai .

4 Swap Operators Via Exponential Jumps

In this section we explore the Gibbs property and prove Theorem 1.1 on Markov swap
operators.

4.1 Confined Exponential Distribution

Let c < d and α be real numbers. Let us call a random variable on (c, d) with probability
density

α

edα − ecα
eαx , x ∈ (c, d),

an exponential random variable confined to the segment (c, d), notation Eα(c, d). Note that
this definition makes sense regardless of the sign of α (in contrast with the case when the
interval (c, d) is half-infinite). If α = 0, then E0(c, d) is simply the uniform random variable
on (c, d).

4.2 Elementary Markov Swap Operator

The next observation plays a key role:

Proposition 4.1 Take real numbers c < d and α > 0. Let X be distributed as Eα(c, d), and
Eα ∈ (0,+∞) be an independent usual exponential random variable with parameter α (i.e.,
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with density αe−αy , y > 0). Then the random variable

Y := c + Eα ∧ (X − c) (4.1)

is distributed as E−α(c, d).

Proof We have for the conditional distribution of Y given X = x :

Prob (Y ∈ [y, y + dy] | X = x) = 1x=ye
−α(y−c) + αe−α(y−c)dy, 0 ≤ y ≤ x . (4.2)

The distribution of Y has an atom at y = x (coming from the event Eα > X − c in (4.1)) and
an absolutely continuous part on (0, x). The overall density of Y in the variable y is obtained
from the following integral:

∫ d

y

α

edα − ecα
eαx Prob (Y ∈ [y, y + dy] | X = x)dx

= α

edα − ecα
eαye−α(y−c) + α

edα − ecα
αe−α(y−c)

∫ d

y
eαxdx

= −α

e−dα − e−cα
e−αy,

which completes the proof. ��
We will view the operation of passing from X to Y as in (4.1) as a one-step Markov

transition operator. One can think that the “particle” X ∈ (c, d) jumps left into the new
location Y , by means of the new exponential random variable Eα . Note that the new location
Y depends only on X and not on the right endpoint d of the interval. We call this Markov
transition operator the elementary swap operator and denote it by Sα . This operator acts on
distributions (in our case, densities) as DensityY = DensityX Sα .

The swap operator Sα is analogous to the jump operator Lα in the discrete situation
considered in [17, Sect. 4]. Let us make a number of remarks.

Remark 4.2 (1) When α = 0, the swap operator Sα should be understood as the identity
map, which is evident from (4.2).

(2) For α = −β < 0, algebraic manipulations in the proof of Proposition 4.1 make sense,
but the new random variable Y obtained by applying S−β to X ∼ E−β(c, d) does not
admit a probabilistic interpretation as in (4.1).

(3) Instead of applying S−β to E−β(c, d), let us consider the operator which moves X
to the right symmetrically to how Sα moves the “particle” X to the left. That is, this
new operator acts as Y ′ = d − Eβ ∧ (d − X), where Eβ is an independent exponential
random variable. One can show similarly to Proposition 4.1 that if X ∼ E−β(c, d), then
Y ′ ∼ Eβ(c, d). All our results for Markov operators built from the left jumps Sα have
straightforward analogues for these right jumping operators, and so we will only focus
on the left jumps in the paper.

4.3 Swap Operator for Gibbs Measures

Let us fix a perturbation sequence a, and let {λmj }1≤ j≤m<∞ be a random interlacing array
distributed according to some a-Gibbs measure (for example, the perturbed GUE corners
process with an arbitrary time parameter t ≥ 0).
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Next, fix a level k ∈ Z≥1, and consider the conditional distribution of λk given the two
adjacent levels λk−1, λk+1 (if k = 1, the conditioning is only on λ2). From (3.1) one readily
sees that this conditional distribution takes the form

Density(λk | λk−1, λk+1) = const × exp
{
α(λk1 + . . . + λkk)

}
1λk−1≺λk≺λk+1 , (4.3)

where we have denoted α := ak − ak+1. Equivalently, we can describe distribution (4.3) as
follows.

Proposition 4.3 The conditional distribution of λk given λk−1 and λk+1 is such that each λki ,
i = 1, . . . , k, is an independent random variable distributed as

Eα

(
λk+1
i+1 ∨ λk−1

i , λk+1
i ∧ λk−1

i−1

)
, (4.4)

where α = ak − ak+1. (For i = k we set λk−1
k = −∞, and for i = 1 we set λk−1

0 = +∞,
but both ends of the interval in (4.4) are always finite.)

Proof Readily follows from (4.3). ��
Assume that α = ak − ak+1 > 0, and take an array {λmj }1≤ j≤m<∞ as above. Let us

define a new random interlacing array {νmj }1≤ j≤m<+∞ for which νmj = λmj for all m �= k,
j = 1, . . . ,m, and such that

νki := λk+1
i+1 ∨ λk−1

i + E iα ∧ (
λki − λk+1

i+1 ∨ λk−1
i

)
, i = 1, . . . , k, (4.5)

where E1
α, . . . , Ek

α are independent usual exponential random variables with parameter α.
Note that almost surely we have νki ≤ λki , i = 1, . . . , k.

In other words, in (4.5) we independently apply the elementary swap operator Sα to
each λki which is confined to the corresponding interval as in Proposition 4.3. Denote this
combination of the swap operators applied at level k by Sα

k . As in Remark 4.2, the Markov
operator Sα

k makes sense only for α > 0.
Let τk denote the elementary transposition (k, k + 1). For a perturbation sequence a, let

τka = (a1, . . . , ak−1, ak+1, ak, . . .) be the permuted sequence.

Theorem 4.4 (Theorem 1.1 in Introduction) Take an a-Gibbs measure for which each har-
monic function ϕN depends on the parameters a1, . . . , aN in a symmetric way. If ak > ak+1,
then the action of the Markov operator Sα

k (with α = ak − ak+1) on this a-Gibbs measure
results in a τka-Gibbsmeasure which corresponds to harmonic functions modified as follows:

ϕ′
j = ϕ j , j �= k;

ϕ′
k(λ

k) =
∫

λk+1 : λk+1�λk
ϕk+1(λ

k+1) eak (|λk+1|−|λk |)dλk+1.
(4.6)

Proof Since the action of Sα
k does not change levels j �= k (and hence distributions of these

levels), we clearly have ϕ′
j = ϕ j for j �= k.

Thus, it remains to show that under Sα
k the a-Gibbs property becomes τka-Gibbs. This

can be seen by representing the conditional distributions as

Prob(λ1, . . . , λk | λk+1) = Prob(λ1, . . . , λk−1 | λk+1) · Prob(λk | λk−1, λk−1). (4.7)

The left-hand side depends on a1, . . . , ak+1 in a symmetric way. One can readily check that
Prob(λ1, . . . , λk−1 | λk+1) depends on the parameters ak, ak+1 in a symmetric way, too.
Indeed, this conditional distribution corresponds to integrating (3.1) (with N = k + 1) over
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λk . The non-exponential prefactor in (3.1) is already symmetric, and for the exponential part
we have

eak+1|λk+1|+∑k−1
j=1 |λ j |(a j−a j+1)

∫
e|λk |(ak−ak+1)dλk

= eak+1|λk+1|+∑k−1
j=1 |λ j |(a j−a j+1)

k∏

i=1

eα(λk+1
i+1∨λk−1

i ) − eα(λk+1
i ∧λk−1

i−1 )

α
,

(4.8)

where we used the normalizing constant for the confined exponential distribution, and α =
ak − ak+1. Swapping the parameters as ak ↔ ak+1 brings exp

{−α(|λk+1| + |λk−1|)} from
the exponential factor in front of the product in (4.8). This factor compensates the product

of the expressions exp
{
α
(
λk+1
i+1 ∨ λk−1

i + λk+1
i ∧ λk−1

i−1

)}
over i = 1, . . . , k, coming out of

the product in (4.8) after the same swap. Thus, (4.8) is symmetric under ak ↔ ak+1.
The action ofSα

k affects only the part Prob(λk | λk−1, λk−1) in the right-hand side of (4.7).
Before the action of Sα

k , each λki was distributed as Eα on the corresponding interval (see
Proposition 4.3). By Proposition 4.1, after the action of Sα

k , these random variables turn into
the E−α’s, which corresponds to a τka-Gibbs structure. Combining this with the symmetries
in (4.7) described above and using Lemma 3.4 and Proposition 3.5, we arrive at the claim. ��

In particular, for ak > ak+1, the perturbed GUE corners process coming from the random
matrix H = t1/2 · G + t · diag(a) (cf. Sect. 2.1), after the application of Sak−ak+1

k , turns into
the corners process for the random matrix Tk HTk = t1/2 · G + t · diag(τka):

H ���S
ak−ak+1
k Tk HTk, (4.9)

whereTk is the permutationmatrix of τk = (k, k+1). In otherwords, applying the exponential
jumps Sak−ak+1

k on the level of eigenvalues is equivalent in distribution to the change of basis
ek ↔ ek+1 in the space corresponding to the random matrix.

5 Global Shift and Reflected BrownianMotions

In this section we consider a special case when the perturbation sequence is an arithmetic
progression, and prove Theorems 1.3 and 1.4.

Set
a j = −( j − 1)α, j = 1, 2, . . . , (5.1)

where α > 0 is fixed. Denote the corresponding random matrix by

Hα = t1/2 · G + t · diag(0,−α,−2α, . . .), (5.2)

and its corners distribution on infinite interlacing arrays by Mα . To Mα we will apply the
sequence of swap operators Skα

k , first with k = 1, then with k = 2, and so on. Denote the
resulting Markov operator which acts on the infinite interlacing array by Sα .

Lemma 5.1 The Markov transition operator Sα is well-defined.

Proof Let {λmj }1≤ j≤m<∞ be the random interlacing array towhichwe applySα . The resulting
random interlacing array {νmj }1≤ j≤m<∞ is defined inductively: for each k, the k-th level

configuration νk is the result of the action of Skα
k on λk given νk−1 and λk+1. For this action,

the configuration νk−1 was defined on the previous step of the induction. This implies that
S

α is well-defined. ��
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Acting on a-Gibbs measures with a = (0,−α,−2α, . . .) (5.1), Sα
1 interchanges 0 with

−α, then S2α
2 interchanges 0 (which is now the new a2) with −2α, and so on. After infinitely

many swaps, the parameter 0 disappears, and one expects that the resulting distribution
would be a-Gibbs with a = (−α,−2α,−3α, . . .). For the special choice of the perturbed
GUE corners process (5.2), the action of Sα is, moreover, equivalent in distribution to a global
shift. We establish the following result:

Theorem 5.2 (Theorem 1.3 in Introduction) The action of Sα on Mα is equivalent in distri-
bution to a deterministic shift of the whole infinite interlacing array to the left by αt . In terms
of random matrices, we have

Hα ���Sα

Hα − αt I, (5.3)

where I is the infinite identity matrix.

Proof Informally, one can think that (5.3) follows by a sequential application of the change
of basis (4.9) under a single-level action Skα

k . The shift by αt is precisely the difference
between t ·diag(a) before and after the modification of a. We will now prove this claim more
formally, using Theorem 4.4 on how Gibbs measures change under swap operators.

Take the harmonic functions ϕN = ϕ
pertGUE(a;t)
N as in (3.4) with a = (0,−α,−2α, . . .).

The action of each Skα
k changes only the k-th function ϕk as in (4.6) and leaves all other

functions intact. Therefore, the action of the whole Sα replaces {ϕk} by the family

ϕ′
k(λ

k) =
∫

λk+1 : λk+1�λk
ϕk+1(λ

k+1) dλk+1. (5.4)

Here we took ak = 0 because this is precisely the perturbation parameter that is being
swapped with ak+1 = −kα under the action of Skα

k . The integral in the right-hand side of
(5.4) can be computed using (3.5) (with aN = 0 in that formula), and we obtain

ϕ′
k(λ

k) = const × V(λk1, . . . , λ
k
k)

k∏

i=1

e−(λki )
2/(2t)

k+1∏

j=1

e−t(( j−1)α)2/2 = C0ϕk(λ
k) e−tk2α2/2.

Here both const andC0 are some constantswhich are independent ofα. Sequentially applying
Theorem 4.4, we see that the new the harmonic functions {ϕ′

k} satisfy Gibbs property with the
sequence a = (−α,−2α,−3α, . . .), and hence (by Proposition 3.5) correspond to a Gibbs
measure with shifted parameters. Let us now identify this particular Gibbs measure.

The modified density of λk after the application of Sα reads, by (3.2),

Density′(λk) = det[exp{(−iα)λkj }]ki, j=1

V(−α,−2α, . . . ,−kα)
ϕ′
k(λ

k)

= C0
det[exp{−iαλkj }]ki, j=1

V(−α,−2α, . . . ,−kα)
ϕk(λ

k) e−tk2α2/2

= C0
det[exp{−iαλkj }]ki, j=1

V(−α,−2α, . . . ,−kα)

V(0,−α,−2α, . . . ,−(k − 1)α)

det[exp{−(i − 1)αλkj }]ki, j=1

Density(λk) e−tk2α2/2

= C0 e
−α|λk |−tk2α2/2Density(λk),

where Density(·) is the original density before applying Sα . In the last step, the two Vander-
mondes are equal by their translation invariance, and the ratio of the determinants is e−α|λk |

123



Parameter Symmetry in Perturbed GUE Corners… 2009

(indeed, factor out e−λkj from each j-th column of the determinant in the numerator). Now,
using (2.2) we have

C0 e
−α|λk |−tk2α2/2 Density(λk) = C0const × e−α|λk |−tk2α2/2 det

[

exp

{

− (λki + t( j − 1)α)2

2t

}]k

i, j=1

V(λk1, . . . , λ
k
k)

V(0,−α, . . . ,−(k − 1)α)
.

Here const is the normalizing constant in (2.2) which is independent of α. Observe that in
the exponents inside the determinant we have

− 1

2t

(
λki + t( j − 1)α

)2 = − 1

2t

(
λki + αt + t( j − 1)α

)2 + αλki + tα2

2
(2 j − 1).

Factoring out the last two terms from each j-th column, we get a factor which precisely
cancels with e−α|λk |−tk2α2/2. Therefore, we see that

Density′(λk) = C0Density(λk + αt).

Normalizing, this implies that C0 = 1. Thus, we see that applying Sα is indeed equivalent to
the global shift by αt to the left, as desired. ��

We can now establish the shifting property for the reflected Brownian motions:

Proof of Theorem 1.4 Fix t , and use the identification {λkj } d= {Bk
j (t)} of the GUE corners

distributionwith that of the reflectedBrownianmotions fromProposition2.2Denote Xk(t) :=
Bk
k (t), then these are exactly the reflected Brownian motions from Theorem 1.4. Observe

that the action of the operator Skα
k (4.5) on these λkk

d= Xk depends only on λkk and λk+1
k+1 and

is the same as the Markov operator (1.1) in Theorem 1.4. Combining this observation with
the shifting property from Theorem 5.2 we obtain the desired claim. ��
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