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Abstract: Spin q-Whittaker symmetric polynomials labeled by partitions λ were
recently introduced by Borodin and Wheeler (Spin q-Whittaker Polynomials, 2017.
arXiv preprint arXiv:1701.06292 [math.CO]) in the context of integrable sl2 vertex
models. They are a one-parameter deformation of the t = 0 Macdonald polynomials.
We present a new more convenient modification of spin q-Whittaker polynomials and
find two Macdonald type q-difference operators acting diagonally in these polynomi-
als with eigenvalues, respectively, q−λ1 and qλN (where λ is the polynomial’s label).
We study probability measures on interlacing arrays based on spin q-Whittaker poly-
nomials, and match their observables with known stochastic particle systems such as
the q-Hahn TASEP. In a scaling limit as q ↗ 1, spin q-Whittaker polynomials turn
into a new one-parameter deformation of the gln Whittaker functions. The rescaled Pieri
type rule gives rise to a one-parameter deformation of the quantum Toda Hamiltonian.
The deformed Hamiltonian acts diagonally on our new spin Whittaker functions. On
the stochastic side, as q ↗ 1 we discover a multilevel extension of the beta polymer
model of Barraquand and Corwin (Probab Theory Relat Fields 167(3–4):1057–1116,
2016. arXiv:1503.04117 [math.PR]), and relate it to spin Whittaker functions.
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1. Introduction

1.1. Overview. This paper deals with new classes of symmetric functions inspired by
the Uq(̂sl2) Yang–Baxter equation and applications to integrable stochastic interacting
particle systems and random polymer models.

Symmetric functions have been very useful in studying integrable stochastic systems
in the past two decades, starting from the works on asymptotic fluctuations in longest
increasing subsequences of randompermutations [BDJ99] and the TASEP (totally asym-
metric simple exclusion process) [Joh00], and continuing through the frameworks of
Schur processes [Oko01], [OR03] and Macdonald processes [BC14]. Here and below
by a process associated with a family of symmetric functions (like Schur or Macdon-
ald) we mean a probability measure on sequences of partitions with probability weights
expressed through these functions in a certain way (cf. Definition 4.3 in the text). See
the scheme of symmetric functions in Fig. 1.

More recently, quantum integrability (in the form of the Yang–Baxter equation /
Bethe ansatz [Bax07]) has brought new structures allowing to extend the range of exactly
solvable stochastic systems to theASEP (partially asymmetric simple exclusion process)
[TW08], [TW09] and stochastic vertex models [BCG16], [CP16], [CT15], [Lin20], and
discover new asymptotic phenomena around the Kardar–Parisi–Zhang universality class
[Cor16]. In the process of exploring quantum integrability from these perspectives, two
new families of symmetric functions were discovered:

• Spin Hall–Littlewood symmetric functions [Bor17]. They are a one-parameter gen-
eralization of the classical Hall–Littlewood polynomials [Mac95, Ch. III], and are
Bethe Ansatz eigenfunctions of a number of integrable stochastic systems, including
ASEP (under a certain choice of parameters). These functions retain many properties
of Hall–Littlewood polynomials including Cauchy type summation identities, Pieri
type rules, torus scalar product orthogonality, and the presence of difference operators
acting on them diagonally [BCPS15], [BP18], [BMP21, Section 8].

• Spin q-Whittaker polynomials [BW17]. They form a one-parameter generalization
of the q-deformed gln Whittaker functions [GLO10], and also possess Cauchy type

Schur
Directed last / first
passage percolation

Whittaker
Log-gamma polymer;
O’Connell-Yor polymer

Hall-Littlewood (t)
Stochastic six ver-
tex model; ASEP

Spin Hall-Littlewood (t, s)
Dynamic stochastic six ver-
tex model; stochastic higher
spin six vertex model

Macdonald (q, t)
Spin q-Whittaker (q, s)
Stochastic higher spin six vertex
model; q-Hahn TASEP; 4φ3 model
and q-Hahn PushTASEP

q-Whittaker (q)
q-TASEPs; q-PushTASEPs

Spin Whittaker (S)
Beta polymer models

s = 0

t = 0

q = 0 t = 0
s = 0 q → 1

q = 0 q → 1 S → +∞

Fig. 1. A scheme of various families of symmetric functions together with stochastic systems based on them.
Arrows indicate degenerations or scaling limits. The two families which are our main focus are indicated in
bold
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summation identities, Pieri type rules, and certain first-order difference operators
acting on them diagonally [BMP21, Section 8]. Notably, torus orthogonality relation
for spin q-Whittaker polynomials is not known.

Marginals of spin Hall–Littlewood and spin q-Whittaker processes are matched in
distribution to various Uq(̂sl2) stochastic vertex models, including the stochastic six
vertex model [GS92], [BCG16] (with its “dynamic” extension [BP19]); the stochastic
higher spin six vertex model [CP16], [BP18]; and the more recent 4φ3 stochastic vertex
model [BMP21] (which is close to the q-Hahn PushTASEP of [CMP19]).

The (undeformed)q-Whittaker polynomials admit a nontrivial scaling limit asq → 1.
In this limit [GLO12b], [BC14, Theorem 4.1.7], the q-Whittaker polynomials become
the glN Whittaker functions. The latter play an important role in representation theory
and integrable systems [Kos80], [Giv97], [Eti99]. In particular, the Whittaker functions
ψλ(uN ), λ = (λ1, . . . , λN ) ∈ C

N , uN = (u1, . . . , uN ) ∈ R
N , are eigenfunctions of the

quantum glN Toda lattice Hamiltonian

HToda
2 = −1

2

N
∑

i=1

∂2

∂u2i
+

N−1
∑

i=1

eui+1−ui , HToda
2 ψλ(uN ) =

(

−1

2

N
∑

i=1

λ2i

)

ψλ(uN ).

(1.1)

Probability measures based on Whittaker functions describe distributions of inte-
grable models of directed random polymers: the semi-discrete Brownian polymer
[O’C12], and fully discrete polymers in random environments with independent log-
gamma distributed weights [COSZ14], [OSZ14], [OO15], [CSS15].

The contribution of this paper is two-fold. First, we present a new version of spin
q-Whittaker polynomials which generalizes the ones from [BW17] and strengthen their
properties. Second, in aq → 1 limit,we discover a nontrivial one-parameter deformation
of the glN Whittaker functions. The new spin Whittaker functions are eigenfunctions of
a deformed quantum Toda Hamiltonian, and are also related to random polymers with
beta distributed weights. Let us briefly describe our main results.

1.2. A new version of spin q-Whittaker polynomials. First, we introduce modified ver-
sions of the spin q-Whittaker symmetric polynomials Fλ(x1, . . . , xn), where λ = (λ1 ≥
. . . ≥ λn ≥ 0), λi ∈ Z, are (nonnegative) signatures. Our polynomials are more general
than the Borodin–Wheeler’s version F

BW
λ [BW17]. More precisely, we have

Fλ(x1, x2, . . . , xn)
∣

∣

x1=0 = F
BW
λ (x2, . . . , xn).

Under the degeneration s = 0, both families Fλ and F
BW
λ coincide and turn into the

usual q-Whittaker polynomials.
The new spin q-Whittaker polynomials Fλ share all the properties known for the

F
BW
λ ’s, including symmetry, Cauchy summation identities, and Pieri type rules. More-

over, we strengthen other known properties of the spin q-Whittaker polynomials:

• (Sect. 3.2) We present q-difference operators D1, D1 which act on our new spin
q-Whittaker polynomials diagonally as D1Fλ = qλN Fλ and D1Fλ = q−λ1Fλ. The
operator D1 reduces, as x1 → 0, to the known eigenoperator E [BMP21] acting on
F
BW
λ with the same eigenvalue q−λ1 . The operator D1, and the fact that the other

eigenvalue qλN can be extracted from spin q-Whittaker polynomials, are new.
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• (Sect. 3.3)We observe that the operatorsD1,D1 can be represented as conjugations
of the first q-Whittaker q-difference operators (these are t = 0 degenerations of the
Macdonald operators from [Mac95]). From higher q-Whittaker operators we thus
get higher order q-difference operators commuting with eitherD1 orD1 (the conju-
gations leading to D1 and D1 are different, even though these operators commute).
The higher order operators coming from the q-Whittaker operators are not diagonal
in the spin q-Whittaker polynomials.

• (Sect. 6) For spin q-Whittaker processes on interlacing arrays of signatures, we
construct sampling algorithms (“Yang–Baxter fields”) based on bijectivizations of
the Yang–Baxter equation, using ideas of the previous works [BP19], [BMP21].
We consider several Yang–Baxter fields, and by the very construction each of them
possesses amarginallyMarkovian projection to a one-dimensional system: stochastic
higher spin six vertex model; 4φ3 stochastic vertex model / q-Hahn PushTASEP; or
the q-Hahn TASEP from [Pov13], [Cor14]. The former two connections already
appeared in [BMP21] (for processes based on F

BW
λ ), while the matchings to the

q-Hahn TASEP or the q-Hahn PushTASEP are new.
• (Sect. 5) Setting q = s = 0, we see how the Yang–Baxter equation reduces to
the classical Robinson–Schensted–Knuth row insertion algorithm [Knu70], [Ful97],
[Sta01].

• (Sect. 6.6) In a simplified “Plancherel” (or “Poisson-type”) continuous time limit
we construct a Markov dynamics on interlacing arrays under which the last rows
marginally evolve as a continuous time version of the q-Hahn TASEP (appeared in
[BC16b]). Our new two-dimensional continuous time dynamics is a one-parameter
deformation of the q-Whittaker 2d-growth model introduced in [BC14, Definition
3.3.3]. The latter growthmodel has continuous time q-TASEP as the last rowmarginal
dynamics.

Our modification of the spin q-Whittaker polynomials originates from computer
experiments informed by the existing definition from [BW17] combined with the desire
to have q-difference eigenoperators (a particular case of one of the eigenoperators
appeared earlier in [BMP21]). The new spin q-Whittaker polynomials can be formulated
as partition functions of up-right path ensembles (cf. Fig. 3, left), where paths must stay
above the diagonal, and the vertex weights at the diagonal are special. These special
corner vertex weights turn out to satisfy a version of the Yang–Baxter equation (given
in Proposition B.2 in Appendix). Combined with the Yang–Baxter equation for the spin
q-Whittaker bulk vertex weights written down in [BW17] (which is a fusion of the most
basic Yang–Baxter equation for the six vertex model), this brings most of the desired
properties of the new polynomials, including their symmetry and Cauchy summation
identities. We also note that for s = 0, corner and bulk vertex weights coincide, so the
effect of the new corner weights is present only at the s �= 0 level.

It would be very interesting to connect our corner vertex weights and the correspond-
ing Yang–Baxter equation with known integrable vertex model constructions.

1.3. Spin Whittaker functions, random polymers, and deformed quantum Toda. Our
second series of results deals with the q → 1 scaling limit of the spin q-Whittaker
polynomials. Stochastic systems which we have associated with the spin q-Whittaker
polynomials already known to possess such limits:



Spin q-Whittaker Polynomials 1335

• The q-Hahn TASEP becomes the strict-weak directed polymer model in an envi-
ronment built from independent random variables with beta distribution [BC16a].
We recall it in Definition 8.4.

• The q-Hahn PushTASEP scales [CMP19] to another beta polymer type model—a
rather complicated system determined by a random recursionwith negative beta bino-
mial random weights. We recall (a slight generalization of) this model in Definition
8.9.

Introduce the scaling

q → 1, xi = qXi , s = −qS, q−λi = Li ,

where S > 0, |Xi | < S, and 1 ≤ LN ≤ . . . ≤ L1 are fixed real numbers. We show
(Theorem 7.14) that under this scaling, the spin q-Whittaker polynomialFλ(x1, . . . , xN )

converges to a new object — the spin Whittaker function fX1,...,XN (L1, . . . , LN ) (which
also depends on S).

The functions fX1,...,XN (L1, . . . , LN ) may be defined via a recursive Givental-type
integral representation. Let L ′

N−1 = (L ′
N−1, . . . , L

′
1) and LN = (LN , . . . , L1) be

interlacing sequences:

1 ≤ LN ≤ L ′
N−1 ≤ LN−1 ≤ . . . ≤ L ′

1 ≤ L1

(notation: L ′
N−1 ≺ LN ). Define

fX (L ′
N−1; LN ) := 1

(B(S + X, S − X))N−1

(

LN · · · L1

L ′
N−1 · · · L ′

1

)−X

×
N−1
∏

j=1

(

1 − L ′
j

L j

)S−X−1(

1 − L j+1

L ′
j

)S+X−1(

1 − L j+1

L j

)1−2S

,

where B(S + X, S − X) is the Beta function. Set fX1(L1) := L−X1
1 , and, inductively,

fX1,...,XN (LN ) :=
∫

L ′
N−1 : L ′

N−1≺LN

fX1,...,XN−1(L
′
N−1) fXN (L ′

N−1; LN )
dLN−1

L ′
N−1

.

(1.2)

Example 1.1. In the simplest nontrivial case N = 2 we have

fX,Y (u, z) = (z/u)Su−X−Y
2F1

(

S + X , S + Y
2S

∣

∣

∣ 1 − z

u

)

, 1 ≤ u ≤ z,

where 2F1 is the Gauss hypergeometric function (A.10).

Remark 1.2. Observe that in contrast with the usual Whittaker functions, the spin defor-
mations depend on ordered tuples LN . This also corresponds to the fact that the inte-
gration in (1.2) is over sequences L ′

N−1 interlacing with LN .
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The spin Whittaker functions fX1,...,XN (LN ) defined by the recursion (1.2) are sym-
metric in the Xi ’s. This fact is far from being obvious from this recursive representation,
and follows from the symmetry of the spin q-Whittaker polynomials (which ultimately
is a consequence of the Yang–Baxter equation).

We show (Theorem 9.3) that the functions fX1,...,XN (LN ) are eigenfunctions of a
deformation of the glN quantum Toda Hamiltonian

H2 := − 1

2

N
∑

i=1

∂2ui +
∑

1≤i< j≤N

S−2( j−i)eu j−ui (S − ∂ui )(S + ∂u j ). (1.3)

Introduce a change of variables L j = SN+1−2 j eu j . Then in these variables we have

H2fX1,...,XN =
⎛

⎝−1

2

N
∑

j=1

X2
j

⎞

⎠ fX1,...,XN .

The functions fX1,...,XN (LN ) satisfy a version of the Cauchy type identity with inte-
gration over 1 ≤ LN ≤ . . . ≤ L1:

∫

fX1,...,XN (LN ) gY1,...,YM (LN )
dLN

LN
=

M
∏

j=1

�(X1 + Y j )

�(S + X1)

( N
∏

i=2

�(Xi + Y j )�(2S)

�(S + Xi )�(S + Y j )

)

.

(1.4)

Here gY1,...,YM (LN ) are certain dual spin Whittaker functions, see Sect. 7.4. For the
usual Whittaker functions, first Cauchy type identity with M = N is due to Bump
and Stade [Bum89], [Sta02], [GLO08], and was later generalized in [COSZ14, (1.2)],
[BC14, Section 4.2.1].

We also define spin Whittaker processes. These are probability measures on interlac-
ing sequences of reals L1 ≺ L2 ≺ . . . ≺ LN , Lk = (Lk,k ≤ Lk,k−1 ≤ . . . ≤ Lk,1),
with probability weights expressed through the spin Whittaker functions. Cauchy type
identity (1.4) provides an explicit normalizing constant for the spin Whittaker process.
We match the distribution of the marginal process L−1

k,k to the strict-weak beta polymer
model of [BC16a] (Theorem 8.6), and the distribution of the other marginal process Lk,1
to the other beta polymer like model which appeared in [CMP19] (Theorem 8.11).

As S → +∞ andunder the scaling L j = SN+1−2 j eu j , X j = −iλ j , the spinWhittaker
functions fX1,...,XN (LN ) formally reduce to the usual Whittaker functions ψλ(uN ). A
similar reduction brings spinWhittaker processes toWhittaker processes from [O’C12],
[COSZ14], [BC14]. We do not fully justify these limit transitions, as this requires a
much finer analysis and justification of the interchange of the S → +∞ limit with
Givental-type representations, which is outside the scope of this paper. However, we
note that at the level of marginals, the strict-weak beta polymer becomes the strict-weak
log-gamma polymer [BC16a, Remark 1.5]. We also show (Proposition 8.13) that the
other beta polymer type model turns into the log-gamma polymer from [Sep12].

Finally, we note that at the level of quantumTodaHamiltonians the limit lim
S→+∞H2 =

HToda
2 is quite straightforward. Indeed, the only terms surviving this limit have j = i +1,

and then S−2(S − ∂ui )(S + ∂ui+1) → 1 leads to (1.1)
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Remark 1.3. In representation theory, the term “Whittaker functions” refers to special
matrix elements of certain (infinite-dimensional) representations. The name “spinWhit-
taker” functions for our new objects fX1,...,XN (LN ), gY1,...,YM (LN ) is naturally suggested
by their place in the hierarchy of symmetric functions in Fig. 1. At this point we do not
claim the existence of amatrix element interpretation of these functions (thatwouldmake
them “Whittaker” in a representation-theoretic sense). Finding such an interpretation is
an interesting challenge which falls out of the scope of the present paper.

1.4. Outline. The paper has two main parts. The discrete part, Sects. 2–5, discusses
spin Hall–Littlewood functions and our new variant of q-Whittaker functions, Cauchy
type summation identities via Yang–Baxter equations, difference operators diagonal-
ized by these functions, and related integrable stochastic models. The continuous part,
Sects. 7–9, deals with continuously labeled spin Whittaker functions and their proper-
ties. These include Givental-type integral representations for spin Whittaker functions,
Cauchy type identities, connections to random polymer models with beta weights, and
a new deformation of the quantum Toda Hamiltonian.

In Sect. 10we discuss a number of further directions, and formulate conjectures about
torus scalar product orthogonality of spin q-Whittaker and spin Whittaker functions.

Appendix 10.5 collects notation relevant to special functions used in the paper. In
Appendix 10.5 we list Yang–Baxter equations used throughout the discrete part. Appen-
dices 10.5 and 10.5 contain certain technical proofs used in the main text (in Sects. 7
and 9, respectively).

1.5. Notation. We use the q-Pochhammer symbol notation

(a; q)k := (1 − a)(1 − aq) . . . (1 − aqk−1), (a; q)0 := 1. (1.5)

Occasionally we will need multiple q-Pochhammer symbols (a1, . . . , am; q)k :=
(a1; q)k . . . (am; q)k . Certain special functions such as q-hypergeometric and hypergeo-
metric functions, as well as useful probability distributions based on them are described
in Appendix 10.5.

Throughout the paper, 1A denotes the indicator of an event A.

2. Spin q-Whittaker and Spin Hall–Littlewood Functions

Here we introduce symmetric functions we use throughout the paper which are variants
of the spin Hall–Littlewood and spin q-Whittaker functions of [Bor17], [BW17].

2.1. Signatures. Our symmetric functions are indexed by nonnegative signatures (i.e.,
partitions with a specified number of parts N ). We will drop the word “nonnegative”,
and refer to them simply as “signatures”. Signatures form a set

SignN := {λ = (λ1 ≥ · · · ≥ λN ≥ 0) : λi ∈ Z≥0}, N ∈ Z≥0.

By agreement, Sign0 = {∅}. The number of positive parts of a signature λ is denoted
by

�(λ) = #{i : λi > 0}.
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M

N

Fig. 2. An example of a signature λ = (5, 4, 1, 1) ∈ Sign≤7
4 . Its transposed signature is λ′ =

(4, 2, 2, 2, 1, 0, 0) ∈ Sign≤4
7

When λ is a partition (and not a signature), the quantity �(λ) takes the name of length.We
will not use such terminology as it creates confusion with the number N of coordinates
of the signature λ.

For notational convenience, we will also label certain symmetric functions with the
transpose of a signature. To define the transposition in the context of signatures, introduce
the set of boxed signatures

Sign≤N
M := {λ = (λ1 ≥ · · · ≥ λM ≥ 0) : 0 ≤ λi ≤ N } ⊂ SignM .

Clearly, these signatures can be represented as belonging to the box Box(N , M), where

Box(N , M) = {1, . . . , N } × {1, . . . , M}.
Let λ ∈ Sign≤N

M . By the transposed signature λ′ we mean

λ′
i := #{ j : λ j ≥ i}, i = 1, . . . , N .

Clearly, λ′ ∈ Sign≤M
N . See Fig. 2 for an illustration.

We will also use multiplicative notation for signatures:

λ = 1m1(λ)2m2(λ) . . . , where mi (λ) = #{ j : λ j = i}.
Given two signatures μ ∈ Signk and λ ∈ Signk+1 we say that they interlace if

λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · ≥ μk ≥ λk+1. (2.1)

We will use notation μ ≺ λ for interlacing. Interlacing also extends to the case when λ

and μ have the same number of elements by dropping the last inequality in (2.1). We
will use the same notation μ ≺ λ in this case. When λ and μ are such that μ′ ≺ λ′, we
say that they are transposed interlacing, and use the notation μ ≺′ λ.

2.2. Directed path vertex models. Symmetric functions introduced in this section are
constructed through a vertex model formalism. That is, we define symmetric functions
as partition functions (= sum ofweights of allowed configurations) of ensembles of paths
flowing through a planar lattice, where the global weight of each path configuration is
the product of Boltzmann weights of local configurations around each vertex. We need
two separate classes of ensembles: up-right and down-right.
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Definition 2.1 (Up-right paths). We consider up-right directed paths living in the half-
quadrant {(i, j) ∈ Z≥0 × Z≥1 : j ≥ i}. We divide its vertices into three categories:

• left boundary vertices � at (0, j), for j ≥ 1;
• bulk vertices + at (i, j), for 1 ≤ i < j ;
• right corner vertices ��� at (i, i), for i ≥ 1.

Paths we consider emanate from left boundary vertices and proceed in the up-right
direction in the bulk of the lattice. Multiple paths are allowed to go along one horizontal
or vertical edge.When a path meets the diagonal it gets reflected in the upward direction.
The reason why we distinguish the nature of the vertices is that we will use different
weighting systems for each of them. See Fig. 3, left, for an illustration.

For a configurationof up-right paths, define for each k ∈ Z≥1 the signatureλk ∈ Signk
by

λki − λki+1 = #{paths occupying the edge (i, k) → (i, k + 1)},

where i = 1, . . . , k − 1. Let also λkk will be the number of paths reflected at the right
corner (k, k). In this way the up-right path ensemble is bijectively encoded by a sequence

λ1 ⊆ λ2 ⊆ · · · , λk ∈ Signk .

Here the relation λk ⊆ λk+1 means inclusion of the respective Young diagrams. For
example, for the up-right path ensemble in Fig. 3, left, we have λ2 = (1, 0) and λ3 =
(3, 3, 2).

Definition 2.2 (Down-right paths). Down-right paths live inside the finite rectangle
{0, . . . , N }× {1, . . . , M}, where N , M are fixed positive integers. We divide its vertices
into three categories:

• left boundary vertices � at (0, j), for 1 ≤ j ≤ M ;
• bulk vertices + at (i, j), for 1 ≤ i < N , 1 ≤ j ≤ M ;
• right boundary vertices � at (N , j), for 1 ≤ j ≤ M .

Down-right directed paths we consider originate at left boundary vertices and terminate
at the lower base of the rectangle.Once paths hit the right boundary they are automatically
sent all the way down. See Fig. 3, right, for an illustration.

To each configurationof down-right pathswecan also associate a sequenceof growing
signatures

λ1 ⊆ λ2 ⊆ · · · ⊆ λM , λk ∈ SignN ,

where

λki − λki+1 = #{paths occupying the edge (i, M − k + 1) → (i, M − k)},

withλkN+1 = 0, by agreement. For example, for the path ensemble inFig. 3, right,we have
λ1 = (1, 0, 0, 0, 0), λ2 = (2, 0, 0, 0, 0), λ3 = (2, 1, 1, 1, 1), and λ4 = (3, 2, 2, 1, 1).



1340 M. Mucciconi, L. Petrov

i

j

0 1 2 3 4 5
1

2

3

4

i

j

0 1 2 3 4 5
1

2

3

4

Fig. 3. Left: Example of an up-right path ensemble. All pathsmust be above themain diagonal. Right: Example
of a down-right path ensemble with N = 5 and M = 4. All paths must be inside the rectangle

2.3. Spin q-Whittaker polynomials. The spin q-Whittaker polynomials are partition
functions of up-right path ensembles. Assign the following weights to the left bound-
ary, bulk, and right corner vertices (here and below we use the q-Pochhammer notation
(1.5)):

Wx,s( j) := x j (−s/x; q) j

(q; q) j
; (2.2)

Wx,s(i1, j1; i2, j2) := 1i1+ j1=i2+ j2 1i1≥ j2 x
j2

(−s/x; q) j2(−sx; q)i1− j2(q; q)i2

(q; q) j2(q; q)i1− j2(s
2; q)i2

; (2.3)

Wx,s( j) := (q; q) j

(−s/x; q) j
. (2.4)

Here in (2.2) and (2.4), j ∈ Z≥0 denotes the number of paths going through the vertex,
and in (2.3) the numbers i1, j1, i2, j2 ∈ Z≥0 denote, respectively, the numbers of entering
vertical, entering horizontal, exiting vertical, and exiting horizontal paths to/from the
vertex.

The weights (2.2)–(2.4) depend on the main quantization parameter q, on a spectral
parameter x , a spin parameter s. While q, s are assumed fixed, the spectral parameter
will depend on the vertical lattice coordinate.

When speaking of symmetric functions and properties likeCauchy identities or eigen-
relations, the parameters x, s, q are assumed to be generic complex numbers (such that
the denominators of all the expressions involved do not vanish). When dealing with
stochastic objects, the parameters need to satisfy certain inequalities, see Definitions 4.4
and 4.5.

Remark 2.3. One can readily check that the condition i1 ≥ j2 in (2.3) implies that up-
right path configurations with nonzero global weight are those associatedwith sequences
of interlacing signatures λ1 ≺ λ2 ≺ . . .. In particular, the configuration in Fig. 3, left,
has global weight zero.

Remark 2.4. When s = 0, the bulk and the corner weights (2.3)–(2.4) coincide. More
precisely, we have Wx,s( j) = Wx,s(0, j; j, 0) = (q; q) j .
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Definition 2.5 (Spin q-Whittaker polynomials). For given interlacing signatures μ ≺ λ

with μ ∈ Signk and λ ∈ Signk+1, the skew spin q-Whittaker polynomial in one variable
is the weight of the unique path configuration between μ and λ at the k-th slice. It is
given by

Fλ/μ(x) := x |λ|−|μ|
k
∏

i=1

(−s/x; q)λi−μi (−sx; q)μi−λi+1(q; q)λi−λi+1

(q; q)λi−μi (q; q)μi−λi+i (s
2; q)λi−λi+i

. (2.5)

This is clearly a polynomial in x , even though the right corner weight (2.4) is not
polynomial. We will often abbreviate the name “spin q-Whittaker” as sqW.

For μ ∈ Signk and ν ∈ Signk+n , we also define n-variable polynomials in a standard
way via branching:

Fν/μ(x1, . . . , xn) =
∑

κ

Fκ/μ(x1, . . . , xn−1) Fν/κ(xn). (2.6)

The polynomials Fν/μ(x1, . . . , xn) are partition functions of up-right path ensembles as
in Fig. 3, left, in a domain with the bottom and the top boundary conditions determined
by μ ∈ Signk and ν ∈ Signk+n , respectively.

We will use the shorthand notation Fλ(x1, . . . , xn) ≡ Fλ/∅(x1, . . . , xn), where λ ∈
Signn .

Remark 2.6. It is important to notice that the number of variables in a sqW polynomial
Fν/μ is determined by the signatures ν, μ. If ν ∈ Signn+k and μ ∈ Signk , then we can
only evaluate Fν/μ at n variables.

2.4. Comparisonwith Borodin–Wheeler’s spin q-Whittaker polynomials. It is important
to note that our version of the spin q-Whittaker polynomials is different from the original
definition of Borodin andWheeler [BW17]. Namely, the one-variable skew polynomials
in [BW17] have the form

F
BW
λ/μ(x) = x |λ|−|μ| ∏

i≥1

(−s/x; q)λi−μi (−sx; q)μi−λi+1(q; q)λi−λi+1

(q; q)λi−μi (q; q)μi−λi+i (s
2; q)λi−λi+i

, (2.7)

where μ ∈ Signk , λ ∈ Signk+1, and the product over i extends to i = k + 1 with the
agreement that λk+2 = μk+1 = 0. That is, our one-variable functions differ from (2.7)
as

F
BW
λ/μ(x) = (−s/x; q)λk+1

(s2; q)λk+1
Fλ/μ(x). (2.8)

The n-variable polynomialsF
BW
ν/μ(x1, . . . , xn) are defined fromF

BW
λ/μ(x) by branching

as in (2.6). They admit a lattice path construction similarly to Fν/μ, but with the right
corner weights Wx,s replaced by the bulk weights Wx,s .

The Borodin–Wheeler’s spin q-Whittaker polynomials arise from our Fλ as a partic-
ular case:

Proposition 2.7. For all λ ∈ Signn we have

Fλ(0, x2, . . . , xn) = F
BW
λ (x2, . . . , xn). (2.9)
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Proof. It is informative to consult Fig. 3, left, for an illustration related to this proof. The
up-right paths that start at the left boundary at y-coordinate 1must immediately turn up at
the right corner at (1, 1). If there are j such paths, their contribution to the global weight
is Wx1,s( j)Wx1,s( j) = x j

1 . For x1 = 0, this forces no paths to start at y-coordinate 1.
Next, due to the presence of 1i1≥ j2 in the bulk weight Wx,s , we see that paths started
at larger y-coordinates 2, . . . , n cannot reach the diagonal with the special right corner
weights. Therefore, the partition function for Fλ(x1, x2, . . . , xn) with x1 = 0 involves
only left boundary and bulk weights, and is thus the same as the partition function for
F
BW
λ (x2, . . . , xn). ��
Note thatFBW

λ (x2, . . . , xn) is well-defined for any λ, and vanishes if �(λ), the number
of nonzero parts in λ, exceeds n − 1. If �(λ) ≤ n − 1, then we can treat λ as an element
of Signn with λn = 0, and then (2.9) holds. Moreover, one readily sees that both sides
of (2.9) vanish if λn > 0. Therefore, any polynomial F

BW
λ can be obtained from our

polynomial Fλ by specializing one of the variables to zero. (By symmetry, see Sect. 2.5
below, we can specialize to zero any variable, and not necessarily the first one.)

2.5. Properties of the spin q-Whittaker polynomials. The fact that the Borodin–
Wheeler’s sqW polynomials are symmetric in their variables follows from the Yang–
Baxter equation which we reproduce in Appendix 10.5 as Proposition B.1. By looking
at (2.8), it is not immediately clear why our version of the sqW polynomials should also
be symmetric. We prove this next.

Proposition 2.8. For any μ ∈ Signk , ν ∈ Signn+k the polynomial Fν/μ(x1, . . . , xn) is
symmetric with respect to permutations of its variables xi .

Proof. We use the Yang–Baxter equations of Propositions B.1 and B.2 and employ the
standard “cross dragging” / commuting transfer matrices argument, cf. [Bor17, Theorem
3.6]. Using branching, it suffices to consider the two-variable case. The two-variable
polynomialFλ/μ(x, y) is a partition function of up-right paths on two consecutive levels,
with parameters x , y at the bottom and at the top, respectively, and boundary conditions
determined by λ,μ.

First we use the new relation (B.3) that, as shown in Fig. 13b, implies that swapping
the spectral parameters x ↔ y at the right corners makes a cross appear at their left.
Then we sequentially move the cross to the left while swapping the spectral parameters
using the bulk Yang–Baxter equation (B.2), as shown by Fig. 13a. We proceed till the
left boundary of the domain.

At the left boundary, we can swap the last two spectral parameters by noticing that

Wx,s( j) = (s2; q)∞
(−sx; q)∞

Wx,s(∞, l;∞, j), for any l ∈ Z≥0. (2.10)

This means that the left boundary weights W also satisfy the Yang–Baxter equation
(B.2), and so we can take the cross out of the lattice. This completes the proof. ��

Our sqW polynomials also satisfy an index shifting property which is the same as for
the classical homogeneous Macdonald polynomials Pλ(·; q, t) [Mac95, VI(4.17)]:

Proposition 2.9. For any signature λ ∈ SignN with λN > 0, we have

Fλ(x1, . . . , xN ) = x1 · · · xN Fλ−1N (x1, . . . , xN ), λ − 1N = (λ1 − 1, . . . , λN − 1).
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Proof. First, note that (2.5) implies that the one-variable skew polynomials satisfy the
shifting property as

Fν/μ(x) = x F(ν−1k+1)/(μ−1k )(x), (2.11)

for any ν ∈ Signk+1 and μ ∈ Signk with νk+1 > 0 (this also implies μk > 0, since
μk ≥ νk+1). Next, we use the expansion

Fλ(x1, . . . , xN ) =
∑

λ1≺···≺λN−1≺λ

Fλ1(x1) Fλ2/λ1(x2) . . . FλN−1/λN−2 (xN−1) Fλ/λN−1(xN )

(2.12)

coming from iterating the branching rule, and apply the shifting property (2.11) to each
of the terms to get the desired result. ��
Remark 2.10. The polynomials F

BW
λ do not satisfy the index shifting property of Propo-

sition 2.9, which can be seen from (2.8).
On the other hand, the polynomials F

BW
λ satisfy the stability property

F
BW
λ (x1, . . . , xN−1,−s) = F

BW
λ (x1, . . . , xN−1),

whereas the polynomials Fλ do not. More precisely, we have

Fλ(x1, . . . , xN−1,−s) = (−s)λN F
˜λ(x1, . . . , xN−1),

where˜λ = (λ1 ≥ · · · ≥ λN−1) and this is easily proven since the branching coefficient
(2.5) evaluates as Fλ/μ(−s) = (−s)λN

∏N−1
i=1 1λi=μi .

In the following proposition we use the coefficient

cλ =
N−1
∏

i=1

(s2; q)λi−λi+1

(q; q)λi−λi+1

, λ ∈ SignN .

Proposition 2.11. Let |sxi | < 1 for i = 1, . . . , N. Then we have

∑

λ∈SignN
λN=0

cλ(−s)|λ|
Fλ(x1, . . . , xN ) = ((−s)N x1 . . . xN ; q)∞(s2; q)N−1∞

(−sx1; q)∞ . . . (−sxN ; q)∞
. (2.13)

Proof. We will use the identity

n
∑

k=0

ak
(b; q)k

(q; q)k

(a; q)n−k

(q; q)n−k
= (ab; q)n

(q; q)n
, (2.14)

that follows from the q-Chu–Vandermonde identity (e.g., see [GR04, (II.6)]). Expand
the left-hand side of (2.13) as:
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∑

λ=λN∈SignN
λN
N=0

∑

λN−1∈SignN−1

(−sxN )λ
N
1 −λN−1

1

(−s/xN ; q)
λN
1 −λN−1

1

(q; q)
λN
1 −λN−1

1

×
N−1
∏

k=2

(

(−sxN )λ
N
k −λN−1

k

(−sxN ; q)
λN−1
k−1 −λN

k

(q; q)
λN−1
k−1 −λN

k

(−s/xN ; q)
λN
k −λN−1

k

(q; q)
λN
k −λN−1

k

)

×
(−sxN ; q)

λN−1
N−1

(q; q)
λN−1
N−1

× (−s)|λN−1|
FλN−1(x1, . . . , xN−1).

Summing over λN
1 by means of the q-binomial theorem gives us the factor (s2; q)∞/

(−sxN ; q)∞. We then sum sequentially over indices λN
2 , . . . , λN

N−1 and using (2.14) we
are left with

(s2; q)∞
(−sxN ; q)∞

∑

λN−1∈SignN−1

(−sxN ; q)
λN−1
N−1

(q; q)
λN−1
N−1

cλN−1(−s)|λN−1|
FλN−1(x1, . . . , xN−1),

where cλN−1 is the result of applying (2.14). Repeating the same procedurewe can reduce
the previous expression to

(s2; q)2∞
(−sxN ; q)∞(−sxN−1; q)∞

×
∑

λN−2∈SignN−2

((−s)2xN−1xN ; q)
λN−2
N−2

(q; q)
λN−2
N−2

cλN−2(−s)|λN−2|
FλN−2(x1, . . . , xN−2).

Here the reason for the appearance of the product (−sxN )(−sxN−1) in the q-
Pochhammer symbol is again (2.14), where we also used that λN−1

N−1 is not necessarily
zero (in contrast with the first summation over λN

N ). Continuing inductively, we exhaust
all the summations down to the bottom one over λ11, from which we recover the factor
((−sx1) · · · (−sxN ); q)∞/(−sx1; q)∞. This completes the proof. ��

2.6. Dual spin Hall–Littlewood rational functions. Alongwith the sqW polynomials Fλ

we will define two families of dual functions, with which the Fλ’s satisfy Cauchy-type
summation identities. The first are the dual spin Hall–Littlewood rational functions. For
them we use down-right path ensembles as in Fig. 3, right, and define the weights by

w∗,
v ( j) := v j ; (2.15)

w∗,
v,s := see Fig. 4; (2.16)

W ∗, (i1, j1; i2) := 1i1= j1+i2 . (2.17)

These weights depend on the main parameters s, q, and on the spectral parameter v. It
is easy to see that with this choice of vertex weights the only allowed configurations of
down-right paths in the rectangular grid {0, . . . , N } × {0, . . . , M} are those associated
with sequences of transposed interlacing signatures λ1 ≺′ · · · ≺′ λM .
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i1

i2

j2j1

g

g

g

g + 1

g

g

g + 1

g

w∗,
v,s (i1, j1; i2, j2)

1−svqg

1−sv
v(1−qg+1)

1−sv
v−sqg

1−sv
1−s2qg

1−sv

Fig. 4. Bulk vertex weights used in the construction of the dual spin Hall–Littlewood functions. Vertex
configurations not listed are assigned weight zero. Note that the weights vanish unless i1 + j2 = j1 + i2

Definition 2.12. For given μ, λ ∈ Sign≤M
N with μ ≺′ λ, the skew dual spin Hall–

Littlewood function in one variable F∗
λ′/μ′(v) is the weight of the unique down-right path

configuration betweenμ and λ (at the top and at the bottom, respectively) at a single row
of vertices, where we take weights (2.15)–(2.17) with the spectral parameter v. More
explicitly, we have

F∗
λ′/μ′(v) :=

∑

j0,..., jN−1∈{0,1}
w∗,

v ( j0)W
∗, (l ′N , jN−1;m′

N )

N−1
∏

r=1

w∗,
v,s (l

′
r , jr−1;m′

r , jr ),

where λ′ = 1l
′
1 · · · Nl ′N and μ′ = 1m

′
1 · · · Nm′

N belong to Sign≤N
M .

Multi-variable extensions F∗
ν/κ

(v1, . . . , vk), where ν, κ ∈ Sign≤N
M and k is arbitrary,

are defined using the branching rule in the same way as in (2.6). The single-index (non-
skew) functions are defined byF∗

ν(v1, . . . , vk) = F∗
ν/0M

(v1, . . . , vk), where ν ∈ Sign≤N
M ,

and 0M is the signature from Sign≤N
M with all parts equal to zero.

Remark 2.13. The sHL functions F∗
ν/κ

(v1, . . . , vk), are defined for any number of vari-
ables k, regardless of the signatures ν and κ. This should be contrasted with the sqW
polynomials, cf. Remark 2.6.

The functions F∗
ν/κ

are stable in the sense that

F∗
ν/κ

(v1, . . . , vk, 0) = F∗
ν/κ

(v1, . . . , vk).

Indeed, this readily follows from the vertex weights (2.15)–(2.17).
The version of the spin Hall–Littlewood functions of Definition 2.12 is essentially

a particular case of the inhomogeneous spin Hall–Littlewood functions from [BP18],
where the N -th spin parameter sN is set to zero. This allows to derive a lot of their
properties by specializing the corresponding results of [BP18]. As the functions F∗

ν/κ

fromDefinition 2.12 are central to our discussion and we do not use other versions in the
present paper, we simply refer to the F∗

ν/κ
’s as (dual) spin Hall–Littlewood functions.

For convenience, we will omit the dependence on N in their notation. We will often
abbreviate the name “spin Hall–Littlewood” as sHL.

The sHL functions F∗
λ admit an explicit symmetrization formula:
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Proposition 2.14. Let λ ∈ Sign≤N
M , then for all k ≥ M we have

F∗
λ(v1, . . . , vk) = C(λ)

∑

σ∈Sk

σ

{

∏

1≤i< j≤k

vi − qv j

vi − v j

�(λ)
∏

i=1

vi

(

vi − s

1 − svi

)λi−1 ( 1

1 − svi

)1λi<N
}

,

(2.18)

where the symmetric group Sk acts on the variables vi but not on elements of the
signature λi , and the constant prefactor has the form

C(λ) = (1 − q)k

(q; q)k−�(λ)

N
∏

i=1

(s2; q)mi (λ)

(q; q)mi (λ)

. (2.19)

Proof. This formula follows from [BP18, Theorem 4.14, part 1] via several specializa-
tions. The latter result is a symmetrization formula for a more general vertex model
partition function Fnon-stab, non-dual

λ which involves inhomogeneity parameters ξ j and s j
depending on the horizontal lattice coordinate j ∈ Z≥0. Let us describe the necessary
specializations. In the first step, we set all the parameters ξ j to 1.

For the second step, we take a stable limit described in, e.g., [BMP21, Section 3.3]
(the second of those limits). Namely, put s0 = 0, then by [BMP21, (3.7)] we have

Fstab, non-dual
λ (v1, . . . , vk) = 1

(q; q)k−�(λ)

Fnon-stab, non-dual
λ∪0k−�(λ) (v1, . . . , vk)

∣

∣

s0=0. (2.20)

Here λ ∪ 0k−�(λ) ∈ Signk is obtained by appending the partition λ = (λ1, . . . , λ�(λ)) by
k − �(λ) zeroes. Then (2.20) is given by the symmetrization formula [BP18, (4.23)]

(1 − q)k

(q; q)k−�(λ)

∑

σ∈Sk

σ

{

∏

1≤i< j≤k

vi − qv j

vi − v j

�(λ)
∏

j=1

v j

1 − sλ j v j

λ j−1
∏

i=1

vi − s j
1 − s jvi

}

,

where we used the fact that s0 = 0 to pass from the product over 1 ≤ j ≤ k to
1 ≤ j ≤ �(λ).

For the third step, we use the fact that the weights w
∗,
v,s we use differ from the wu,s’s

for Fnon-stab, non-dual
λ by a conjugation factor (s2; q)i/(q; q)i [BP18, (2.2)], which brings

the product over i in C(λ) (2.19) involved in our function F∗
λ.

For the fourth step, we add the right boundary at N to our vertex model by setting
sN = 0 (recall that λ1 ≤ N ). This turns the factor 1

1−sλ j v j
into

( 1
1−sλ j v j

)1λ j<N .

Finally, we set s1 = . . . = sN−1 = s to recover the homogeneous parameter s, and
arrive at the desired symmetrization formula. ��

The Yang–Baxter equations of Propositions B.3 and B.4 translate into Cauchy iden-
tities for the functions F and F∗.

Proposition 2.15. Fix M ≥ 1. For N > 0, let μ ∈ Sign≤M
N and λ ∈ Sign≤M

N+1. Then, we
have

∑

ν∈Sign≤M
N+1

Fν/μ(x)F∗
ν′/λ′(v) = 1 + vx

1 − sv

∑

κ∈Sign≤M
N

Fλ/κ(x)F∗
μ′/κ

′(v). (2.21)



Spin q-Whittaker Polynomials 1347

For N = 0, we have
∑

ν∈Sign≤M
1

Fν(x)F∗
ν′/λ′(v) = (1 + vx) Fλ(x). (2.22)

Note that all the sums in this proposition are over finite sets of signatures, so there are
no convergence issues.

Proof of Proposition 2.15. The proof of (2.21) is similar to that of Proposition 2.8 as it
also uses a “cross dragging” argument. The summation in the left-hand side of (2.21) is
the partition function of path configurations across two rows of vertices glued together:

• the lower row has weights Wx,s,Wx,s,W and boundary condition μ at the bottom
and ν at the top;

• the upper one has weightsw
∗,
v,s , w

∗,
v,s ,W ∗, , and boundary condition ν at the bottom

and λ at the top.

Recall that the encoding of arrow configurations by signatures is described in detail in
Sect. 2.2.

The Yang–Baxter equation (B.6) implies that the action of swapping weights at the
rightmost pair of columns, makes a cross weight appear at their left, as shown in Fig. 15b.
We then push the cross to the left one vertical step at a time, each time swapping the
vertex weights and using the Yang–Baxter equation (B.5) as in Fig. 15a. This procedure
sequentially turns the left-hand side of (2.21) into the right-hand side.

At the final step, we push the cross out of the lattice at the leftmost site. Using (2.10)
and

w∗,
v ( j) = (1 − sv)w∗

v,s(∞, l;∞, j), for l = 0, 1,

weobtain the combined contribution of the cross vertexweightsRx,v,s (defined inFig. 14
in the Appendix) corresponding to the two cross configurations and . Their sum
gives the factor (1 + vx)/(1 − sv) in the right-hand side of (2.21), as desired.

The second identity (2.22) can be verified by simply using definition of functions. ��
Combining the skew Cauchy identities of Proposition 2.15, we come to the following

corollary for several variables:

Corollary 2.16. For any positive integers N , M,m we have

∑

λ∈Sign≤N
M

Fλ(x1, . . . , xN )F∗
λ′(v1, . . . , vm) =

m
∏

j=1

(

1

1 − sv j

)N−1 N
∏

i=1

m
∏

j=1

(1 + v j xi ).

(2.23)

Proof. We use the branching expansion of functions Fλ,F∗
λ′ and then apply the single-

variable skew Cauchy identities (2.21) and (2.22). ��
Proposition 2.17. Let 0 < q < 1 and−1 < s < 0. For any λ,μ ∈ Sign≤N

M and k ≥ M,
we have

1

k!
∮

γ

dz1
2π iz1

· · ·
∮

γ

dzk
2π izk

∏

1≤i �= j≤k

zi − z j
zi − qz j

F∗
λ(z1, . . . , zk)F

∗
μ(1/z1, . . . , 1/zk) = C(λ)1λ=μ,

(2.24)

where γ is a positively oriented contour encircling 0, q j s for all j ≥ 0, and the contour
qγ , but not the point s−1.
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Proof. This follows from [BP18, Corollary 7.5] after specializing the inhomogeneous
spin Hall–Littlewood functions Fnon-stab, non-dual

λ as described in the proof of Proposition
2.14. ��

2.7. Dual spin q-Whittaker polynomials. Let us also define the dual versions of the sqW
weights. These dual weights correspond to down-right lattice paths, and are given by
(we use the notation (2.2)–(2.3)):

W ∗,
y,s ( j) :=Wy,s( j); (2.25)

W ∗,
y,s (i1, j1; i2, j2) := (s2; q)i1

(q; q)i1

(q; q)i2

(s2; q)i2
Wy,s(i2, j1; i1, j2). (2.26)

We will also use the right boundary weights W ∗, (i1, j1; i2) as in (2.17).
This choice of vertex weights implies that nonzero global weights are assigned to

configurations of down-right paths in the grid {0, . . . , N }×{0, . . . , k}which are encoded
by sequences of interlacing signatures λ1 ≺ · · · ≺ λk . (Compare this with the transposed
interlacing property for the sHL functions.)

Definition 2.18. For given interlacing signatures λ,μ ∈ SignN , the skew dual spin q-
Whittaker polynomial in one variable F

∗
λ/μ(y) is the weight of the unique down-right

path configuration between μ and λ at a single row of vertices, with the weights (2.26),
(2.25) and (2.17). Recall that the encoding of arrow configurations by signatures is
described in Sect. 2.2.

An explicit expression for the skew dual sqW polynomial is

F
∗
λ/μ(y) := y|λ|−|μ| (−s/y; q)λN−μN

(q; q)λN−μN

N−1
∏

i=1

(−s/y; q)λi−μi (−sy; q)μi−λi+1(q; q)μi−μi+1

(q; q)λi−μi (q; q)μi−λi+i (s
2; q)μi−μi+i

.

(2.27)

Observe that F
∗
λ/μ(y) is a polynomial in y.

Multi-variable extensions F
∗
λ/μ(y1, . . . , yk), where λ,μ ∈ SignN are arbitrary, are

definedvia branching in the same say as in (2.6). Thenon-skew functions areF
∗
ν ≡ F

∗
ν/0N

,

where ν ∈ SignN , and 0N ∈ SignN is the signature with all parts equal to zero.

Remark 2.19. Like the dual sHL functions (cf. Remark 2.13) and unlike the usual sqW
polynomials (cf. Remark 2.6), the dual sqW polynomials F

∗
λ/μ(y1, . . . , yk) make sense

for any number of variables k, regardless of the signatures λ,μ.

Proposition 2.20. The polynomials F
∗
λ/μ(y1, . . . , yk) are symmetric.

Proof. This follows from the Yang–Baxter equation (B.2) and the sum-to-one property
of theR-matrix R given by (B.1). It suffices to consider swapping twovariables.We apply
the usual “cross-dragging” argument to exchange spectral parameters of two consecutive
rows of vertices. Similarly to the proof of Proposition 2.8, identity (B.2) suffices to swap
spectral parameters from the leftmost column up until the rightmost one. Since the right
boundary weightsW ∗, differ from the bulk weightsW ∗, , we have to prove that we can
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drag the cross one more step to the right. We have using the definition of W ∗, that the
partition function near the right wall with the cross vertex is equal to

∑

k1,k2,k3

Rx,y(i1, i2; k1, k2)W ∗, (k3, k2; j3)W ∗, (i3, k1; k3)

=
∑

k

Rx,y(i1, i2; i1 + i2 − j3 − k, k − j3).

(We used the arrow preservation property i1 + i2 + j3 = i3.) The right-hand side is equal
to one. Indeed, this sum-to-one property readily follows from the q-Chu–Vandermonde
identity. On the other hand, without the cross vertex, the partition function near the right
wall is equal to

∑

k W
∗, (i3, i2; k)W ∗, (k, i1; j3). This is also equal to 1, because only

the summand with k = i1 + j3 is nonzero. This completes the proof. ��
We finish this subsection by describing Cauchy identities for our two sqW families

F, F
∗.

Proposition 2.21. For N > 0, let μ ∈ SignN and λ ∈ SignN+1. Then, for |xy| < 1, we
have

∑

ν∈SignN+1

Fν/μ(x) F
∗
ν/λ(y) = (−sx; q)∞(−sy; q)∞

(s2; q)∞(xy; q)∞

∑

κ∈SignN
Fλ/κ(x) F

∗
μ/κ

(y).

(2.28)

For N = 0, we have

∑

ν∈SignN+1

Fν(x) F
∗
ν/λ(y) = (−sx; q)∞

(xy; q)∞
Fλ(x). (2.29)

Proof. For N > 0 this is proven using the same method explained in Proposition 2.15
with the help of identity (B.10) when extracting the cross vertex weight from the right-
most column. For N = 0 the statement is simply the q-binomial theorem. ��
Corollary 2.22. Let |xi y j | < 1 for all i = 1, . . . , N, j = 1, . . . , k. Then, we have

∑

λ∈SignN
Fλ(x1, . . . , xN ) F

∗
λ(y1, . . . , yk) =

k
∏

j=1

(

(−sy j ; q)∞
(s2; q)∞

)N−1 N
∏

i=1

k
∏

j=1

(−sxi ; q)∞
(xi y j ; q)∞

.

(2.30)

2.8. Pieri rules. Pieri type rules for the Borodin–Wheeler spin q-Whittaker polynomi-
als F

BW
λ are given in [BW17]. These are analogs of the classical Pieri type rules for

Macdonald polynomials. The Pieri type rules follow from skew Cauchy identities, and
here we present these rules for our version of the spin q-Whittaker polynomials.

Proposition 2.23. Let |xi y| < 1 for all i = 1, . . . , N. Then we have

∑

λ∈SignN
Fλ(x1, . . . xN ) F

∗
λ/μ(y) =

(

∑

i≥0

yi
(−s/y; q)i

(q; q)i
F(i)(x1, . . . , xN )

)

Fμ(x1, . . . , xN ).
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Proof. By the skew Cauchy identities of Proposition 2.21, we can write

∑

λ∈SignN
Fλ(x1, . . . xN ) F

∗
λ/μ(y) =

(

(−sy; q)∞
(s2; q)∞

)N−1 N
∏

i=1

(−sxi ; q)∞
(xi y; q)∞

Fμ(x1, . . . , xN ),

(2.31)

and the claim follows by expanding
( (−sy;q)∞

(s2;q)∞
)N−1 ∏N

i=1
(−sxi ;q)∞
(xi y;q)∞ using (2.30). ��

Proposition 2.24. We have

∑

λ

Fλ(x1, . . . xN )F∗
λ′/μ′(v) =

( N
∑

i=0

F∗
(i)(v) F1i (x1, . . . xN )

)

Fμ(x1, . . . , xN )

Proof. By the skew Cauchy identities of Proposition 2.15, we have

∑

λ∈SignN
Fλ(x1, . . . xN )F∗

λ/μ(v) =
(

1

1 − sv

)N−1 N
∏

i=i

(1 + xiv) Fμ(x1, . . . , xN ), (2.32)

and the claim follows by expanding
( 1
1−sv

)N−1 ∏N
i=i (1 + xiv) using (2.23). ��

Pieri type rules of Propositions 2.23 and 2.24 are eigenrelations on the spin q-
Whittaker polynomials in the label variable. Indeed, define operators HsqW,HsHL as

(HsqW f )(μ) =
∑

λ

f (λ) F
∗
λ/μ(y), (HsHL f )(μ) =

∑

λ

f (λ)F∗
λ′/μ′(v). (2.33)

Then these operators act diagonally on spin q-Whittaker functions f (λ) = Fλ(x1, . . . ,
xN ), with respective eigenvalues

∑

i≥0

yi
(−s/y; q)i

(q; q)i
F(i)(x1, . . . , xN ) and

N
∑

i=0

F∗
(i)(v) F1i (x1, . . . xN ).

3. Difference Operators

Here we show that the sHL and sqW functions satisfy certain eigenrelations under
operators acting the spectral parameters (as opposed to labels as in Sect. 2.8). These
operators are s-deformations of the (q = 0 or t = 0) Macdonald difference operators.
Half of these eigenrelations essentially appears in [BMP21] (see Theorems 3.2 and 3.10
below), but herewe obtain eigenrelations in a formwhich ismore symmetricwith respect
to q, t .

We will denote the “quantization” parameter by q throughout this section, except for
Sect. 3.1 where it will be denoted by t instead of q. This is done for consistency with
classical literature (e.g., [Mac95]), whereHall–Littlewood functions (obtained from sHL
functions by setting s = 0) are the q = 0 degenerations of the Macdonald polynomials
Pλ(·; q, t).

Throughout the entire section we make use of the shift operator

Tq,zi f (z1, . . . , zM ) = f (z1, . . . , zi−1, qzi , zi+1, . . . , zM ).
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3.1. Eigenrelations for the spin Hall–Littlewood functions. We begin by essentially
repeating the definition of a family of eigenoperators for the spin Hall–Littlewood poly-
nomials from [BMP21].

Definition 3.1. For r ∈ {1, . . . , M}, the r -th Hall–Littlewood operator is given by

D
∗
r :=

∑

I⊂{1,...,M}
|I |=r

∏

i∈I
k∈{1,...,M}\I

vk − tvi
vk − vi

∏

i∈I
T0,vi .

This is the q = 0 specialization of the r -th Macdonald difference operator [Mac95, Ch.
VI.3]. The operatorsD

∗
r act diagonally on the Hall–Littlewood symmetric polynomials.

It was discovered in [BMP21] that the (stable) spin Hall–Littlewood functions (first
introduced in [GdGW17]),much like the classicalHall–Littlewoodpolynomials [Mac95,
Ch. III], are eigenfunctions of the difference operators D

∗
r . The same result holds for

our dual sHL functions F∗
ν , and it is given in the next theorem.

Theorem 3.2. For any λ ∈ SignM, we have

D
∗
rF

∗
λ = er (1, t, . . . , t

M−�(λ)−1)F∗
λ. (3.1)

Here er (x1, . . . , zn) =
∑

1≤i1<···ir≤n

zi1 · · · zir is the r-th elementary symmetric polyno-

mial.

Proof. The proof is analogous to that of [BMP21, Theorem 8.2]: we get (3.1) by directly
evaluating the action of D

∗
r on the symmetrization formula (2.18) (with q replaced by

t). We do not repeat the argument here. ��
The operator we introduce next depends on the number of variables M and on an

additional positive integer N . Moreover, this operator acts only on a certain subspace of
rational functions. Namely, let V(M) be the space of symmetric rational functions in M
variables v1, . . . , vM of degree ≤ 1 in each variable. That is, its elements are functions
f (v1, . . . , vM ) = a(v1, . . . , vM )/b(v1, . . . , vM ), where a and b are polynomials such
that degvi

(a) − degvi
(b) ≤ 1 for all i = 1, . . . , M . One readily sees that V(M) is a

linear space. The dual sHL functions F∗
ν(v1, . . . , vM ) belong to V(M), see (2.18).

Definition 3.3. For positive integers M, N define the dual s-deformedMacdonald oper-
ator by

D∗
1,N :=

M
∑

j=1

M
∏

l=1
l �= j

v j − tvl
v j − vl

C j,N , (3.2)

where

C j,N := v j

(

v j − s

1 − sv j

)N−1

(−s)N−1 lim
ε→0

ε Tε−1,v j
.

The limit limε→0 ε Tε−1,v j
is well-defined on V(M), soD∗

1,N acts in the space V(M).
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Theorem 3.4. For any boxed signature λ ⊆ Box(N , M) (recall that this is Sign≤N
M ), we

have

D∗
1,NF

∗
λ = e1(1, t, . . . , t

λ′
N−1)F∗

λ, (3.3)

where λ′ is the transposed signature. In particular, λ′
N = # {i : λi = N }.

Proof. Wemake use of the symmetrization formula (2.18) (recall that we have replaced
the parameter q by t throughout this subsection). We use the notation

A =
∏

1≤l<r≤M

vl − tvr
vl − vr

and B =
�(λ)
∏

r=1

vr

(

vr − s

1 − svr

)λr−1 ( 1

1 − svr

)1λr<N

,

so that F∗
λ = C(λ)

∑

σ∈SM
σ {AB}. The operator D∗

1,N acts as

D∗
1,NF

∗
λ = C(λ)

M
∑

i=1

M
∏

j=1
j �=i

vi − tv j

vi − v j

∑

σ∈SM

Ci,N (σ {AB}).

The action of Ci,N on the product σ {AB} can be split as

Ci,N (σ {AB}) = lim
ε→0

σ {A}
∣

∣

∣

vi=1/ε
× Ci,N (σ {B}). (3.4)

Assume now that λ′
N = L , that is λ1 = · · · = λL = N and λL+1 < N , for some

L ∈ {0, . . . , M}. We focus on the second factor of (3.4). A simple computation shows
that

Ci,N (σ {B}) =
{

σ {B} if i ∈ σ({1, . . . , L}),
0 else,

(3.5)

that in particular, implies that Ci,Nσ {B} = 0 when L = 0, confirming (3.3) in this
specific case.

For L > 0 and a permutation σ such that i ∈ σ({1, . . . , L}), call k̄ the element such
that σ(k̄) = i . We rewrite A into a product of factors A = A1A2A3, obtained dividing
the triangular product as

A1 =
∏

1≤l<r<k̄

vl − tvr
vl − vr

, A2 =
∏

1≤l<k̄

vl − tvk̄
vl − vk̄

, A3 =
∏

1≤l<M
max(l,k̄)<r≤M

vl − tvr
vl − vr

.

We can evaluate the first factor in the right-hand site of (3.4) as

M
∏

j=1
j �=i

vi − tv j

vi − v j
lim
ε→0

σ {A}
∣

∣

∣

vi=1/ε
= t k̄−1σ {A1˜A2A3},

where

˜A2 :=
∏

1≤l<k̄

vk̄ − tvl
vk̄ − vl

.
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The action of D∗
1,N on the sHL function can be therefore expressed (ignoring C(λ)) as

L
∑

k̄=1

t k̄−1
M
∑

i=1

∑

σ∈SM
σ(k̄)=i

σ {A1˜A2A3B} =
L

∑

k̄=1

t k̄−1
∑

σ∈SM

σ {A1˜A2A3B}. (3.6)

To prove relation (3.3) we show that each term σ {A1˜A2A3B} is equal to one of the
terms τ {A1A2A3B} in the expansion of the original sHL function. For each permutation
τ ∈ SM and each k̄ define the permutation σ as

σ( j) =

⎧

⎪

⎨

⎪

⎩

τ( j + 1) if j = 1, . . . , k̄ − 1,
τ (1) if j = k̄,
τ ( j) if j = k̄ + 1, . . . M.

With this choice we can easily check that σ {A3B} = τ {A3B} and more crucially that
σ {A1˜A2} = τ {A1A2} since the cyclic shift in the first k̄ terms of σ makes up for the
exchange of ˜A2 and A2. This in particular shows that the symmetric sum in the right-
hand side of (3.6) is independent of k̄ and it is equal, up to a factor C(λ) that we omitted,
to F∗

λ(v1, . . . , vM ). The sum
∑L

k̄=1 t
k̄−1 is the desired eigenvalue e1(1, t, . . . , tλ

′
N−1).

This completes the proof. ��
Remark 3.5. (Limit to the Hall–Littlewood case) In the limit s → 0, the new operator
D∗

1,N (3.2) acting on the dual sHL functions should be replaced by

D∗
1,N =

M
∑

j=1

M
∏

l=1
l �= j

v j − tvl
v j − vl

vN
j lim

ε→0
εN Tε−1,v j

, (3.7)

by mimicking the action (3.5). Similarly to Theorem 3.4, one can show that D∗
1,N acts

diagonally on the Hall–Littlewood polynomials Pλ(·; 0, t).
The same operator (3.7) can be also obtained as a q → 0 limit of a certain opera-

tor diagonal in the Macdonald polynomials Pλ(·; q, t). Take the first Macdonald q−1-
difference operator

M1 =
M
∑

j=1

M
∏

i=1
i �= j

t xi − x j
xi − x j

Tq−1,x j . (3.8)

It acts on the Macdonald polynomials Pλ(x1, . . . , xM ; q, t) with eigenvalues
∑M

i=1
q−λi t i−1 (this follows from, e.g., [BC14, Section 2.2.3]). Denote by PN the subspace
of polynomials in x1, . . . , xM which have degree ≤ N in each of the variables xi .
It is spanned by the Macdonald polynomials Pλ(x1, . . . , xM ; q, t) with λ1 ≤ N , i.e.,
λ ⊆ Box(N , M). OnPN consider the operator qN M1. Its limit as q → 0 is well-defined.
By looking at eigenvalues on Hall–Littlewood polynomials Pλ(x1, . . . , xM ; 0, t) with
λ1 ≤ N , one readily sees that this limit coincides with D∗

1,N .
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3.2. Eigenrelations for the spin q-Whittaker polynomials. The duality between sHL
functions and sqW polynomials (Corollary 2.16 and Proposition 2.17) allows to pass
from the eigenoperators for the sHL functions to the ones for the sqW polynomials.

Definition 3.6 (Spin q-Whittaker difference operators). Fix a positive integer N , and
define the s-deformed q-Whittaker operators

D1 :=
N
∑

i=1

N
∏

j=1
j �=i

(1 + sxi )

1 − xi/x j
Tq,xi , (3.9)

and

D1 :=
N
∑

i=1

N
∏

j=1
j �=i

(1 + s/xi )

1 − x j/xi
Tq−1,xi . (3.10)

Let us make two remarks after this definition.

Remark 3.7. The operators D1 and D1 reduce for s = 0 to the t = 0 specializations
of the two Macdonald q-difference operators. The first one is the standard first order
Macdonald operator

∑N
i=1

∏

j �=i
t xi−x j
xi−x j

Tq,xi (denoted by D1
N in [Mac95, Ch. VI]), and

the second one is
∑N

i=1
∏

j �=i
xi−t x j
xi−x j

Tq−1,xi (denoted by D̃1
N in [BC14, Section 2.2.3]).

Remark 3.8. The operator D1 is new. The other operator D1 is only a slightly more
general version of the operator E from [BMP21, Section 8]. The latter is diagonal in the
Borodin–Wheeler’s sqW polynomials F

BW
λ . To recover E from (3.10) one has to take

the limit x1 → 0, which agrees with Proposition 2.7 connecting the F
BW
λ ’s with our

sqW polynomials Fλ.

We establish two eigenrelations for the sqW polynomials in the next two theorems.

Theorem 3.9. For all signatures λ ∈ SignN we have

D1Fλ(x1, . . . , xN ) = qλN Fλ(x1, . . . , xN ). (3.11)

Proof. We will prove the identity
(

1 − (1 − q)D∗
1,N

)

�(x; v) = D1�(x; v), (3.12)

where

�(x; v) =
M
∏

j=1

(

1

1 − sv j

)N−1

×
N
∏

i=1

M
∏

j=1

(1 + v j xi ). (3.13)

Indeed, modulo (3.12), the Cauchy Identity (2.23) and the eigenrelations (3.3) imply
∑

λ⊆Box(N ,M)

qλN Fλ(x1, . . . , xN )F∗
λ′(v1, . . . , vM )

=
∑

λ⊆Box(N ,M)

D1Fλ(x1, . . . , xN )F∗
λ′(v1, . . . , vM ),
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and hence (3.11) follows by orthogonality of the sHL functions (Proposition 2.17).
It thus suffices to establish (3.12). Define

h(z) :=
M
∏

j=1

(1 + v j z).

We have

D1�(x; v)

�(x; v)
= D1h(x1) · · · h(xN )

h(x1) · · · h(xN )
= −

∮

x1,...,xN

N
∏

i=1

xi (1 + sz)

xi − z

h(qz)

h(z)

dz

z(1 + sz)
,

where in the second equality we used the residue expansion of the complex integral and
the contour encircles only the poles x1, . . . , xN . By subtracting 1 from both sides, we
can enlarge the complex contour to also include the pole at z = 0 (note that h(z) is
nonsingular at z = 0). After a change of variable z = −1/w, we get

(−1 +D1)�(x; v)

�(x; v)
= −

∮

v1,...,vM

M
∏

k=1

w − qvk

w − vk
(w − s)N−1

N
∏

j=1

x j
1 + x jw

dw.

(3.14)

In the right-hand side of (3.14), after the change of variable, we switched the contour to
a positively oriented curve around v1, . . . , vM , which yielded the negative sign in front.
Using

lim
ε→0

ε

⎛

⎝

1

(1 − s/ε)N−1

N
∏

j=1

(1 + x j/ε)

⎞

⎠ = x1 · · · xN
(−s)N−1

and expanding the right-hand side of (3.14) as a sum of residues, we can rewrite it as

− (1 − q)D∗
1,N�(x; v)

�(x; v)
.

This proves (3.12), and hence the desired eigenrelation (3.11). ��
Theorem 3.10. For all signatures λ ∈ SignN we have

D1Fλ = q−λ1Fλ. (3.15)

Proof. The proof of this eigenrelation is identical to that given in [BMP21] and similar
to that of Theorem 3.9. It uses the fact that

q−M
(

1 − (1 − q)D
∗
1

)

�(x; v) = D1�(x; v),

where �(x; v) is given by (3.13). We will not repeat the detailed argument here. ��
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3.3. Commutation and conjugation. The q-difference operatorsD1 (3.9) andD1 (3.10)
commute. For this statement we cannot appeal to the eigenrelations of Theorems 3.9
and 3.10 since we did not prove that the sqW polynomials form a basis for the ring of
symmetric polynomials in N variables. Nevertheless, the commutation can be checked
independently:

Proposition 3.11. We have D1D1F = D1D1F for all symmetric polynomials F in N
variables.

Proof. By polarization, it suffices to check the action on product form functions
F(x1, . . . , xN ) = f (x1) . . . f (xN ), where f (x) is an arbitrary polynomial.

The action of each operator can we written as a contour integral:

D1F = − 1

2π i

∮ N
∏

i=1

(

f (xi )
xi (1 + sz)

xi − z

)

f (qz)

f (z)

dz

z(1 + sz)
,

D1F = 1

2π i

∮ N
∏

i=1

(

f (xi )
w + s

w − xi

)

f (q−1w)

f (w)

dw

w + s
,

where both integrals are over a contour containing x1, . . . , xN and no other poles of the
integrand. Throughout the proof we assume that all contours exist, which might impose
some restrictions on the xi ’s. After checking the commutation under the restrictions, we
can lift these restrictions by an analytic continuation.

We have

D1D1F = − 1

(2π i)2

∮

γ 1
z

∮

γ 1
w

N
∏

i=1

(

f (xi )
w + s

w − xi

xi (1 + sz)

xi − z

)

w − z

w − qz

f (qz) f (q−1w)

f (z) f (w)

dw

w + s

dz

z(1 + sz)
,

where γ 1
z contains both γ 1

w and q−1γ 1
w, while γ 1

w is around x1, . . . , xN and no other
poles. In the other order, we have

D1D1F = − 1

(2π i)2

∮

γ 2
w

∮

γ 2
z

N
∏

i=1

(

f (xi )
xi (1 + sz)

xi − z

w + s

w − xi

)

q−1(w − z)

q−1w − z

f (q−1w) f (qz)

f (w) f (z)

dz

z(1 + sz)

dw

w + s
,

but now γ 2
w contains both γ 2

z and qγ 2
z , while γ 2

z is around x1, . . . , xN and no other poles.
Note that the integrands in both formulas coincide.

In the first expression, deform the integration contour γ 1
z to coincide with γ 1

w, which
picks up the residue at z = q−1w. In the second expression, deform the contour γ 2

w to
coincide with γ 2

z , which picks up the residue at w = qz. The resulting double contour
integrals are over the same contours and are thus equal. It remains to check the equality
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of the single integrals of the residues. We have

Res
z=q−1w

(integrand in D1D1) = −(−1)N (1 − q)(s + w)N−1(q + sw)N−1

N
∏

i=1

xi f (xi )

(w − xi )(w − qxi )
,

Res
w=qz

(integrand in D1D1) = (−1)N (1 − q)(1 + sz)N−1(s + qz)N−1

N
∏

i=1

xi f (xi )

(z − xi )(qz − xi )

Wemust show that the integral of the first expression over γ 1
w is the same as the integral of

the second expression over γ 2
z . Noting that both expressions have zero residue at infinity

due to quadratic decay, we can compute the first integral as a sum of minus residues at
w = qxi . Then one readily sees that each minus residue at w = qxi is the same as the
residue of the second expression at z = xi . This shows the desired commutation. ��
Remark 3.12. Similarly to [BP18], [OP17], one can define the following inhomogeneous
generalizations of the operators D1 and D1, respectively:

N
∑

i=1

N−1
∏

r=1

(1 + sr xi )
N
∏

j=1
j �=i

1

1 − xi/x j
Tq,xi ,

N
∑

i=1

N−1
∏

r=1

(1 + sr/xi )
N
∏

j=1
j �=i

1

1 − x j/xi
Tq−1,xi .

A straightforward modification of the proof of Proposition 3.11 shows that these oper-
ators commute, too.

The discussion in the rest of this subsection aims in part to demonstrate why the result
of Proposition 3.11 is a rather unexpected one.

Both operators D1 (3.9) and D1 (3.10) are related via conjugation to q-Whittaker
difference operators. The latter are t = 0 degenerations of the Macdonald q-difference
operators from [Mac95]. Denote for r = 1, . . . , N :

Wr
N :=

∑

|I |=r

∏

i∈I, j /∈I

1

1 − xi/x j

∏

i∈I
Tq,xi , W̃r

N :=
∑

|I |=r

∏

i∈I, j /∈I

1

1 − x j/xi

∏

i∈I
Tq−1,xi ,

(3.16)

where the sums are over subsets of {1, . . . , N } of cardinality r . These operators are diag-
onal in the usual q-Whittaker polynomials (which are t = 0 versions of the Macdonald
polynomials). In particular, W 1

N and W̃ 1
N have eigenvalues qλN and q−λ1 , respectively,

on q-Whittaker polynomials. All the operators Wr
N , W̃ r

N , r = 1, . . . , N , commute. We
refer to Sections 2.2.2 and 3.1.3 in [BC14] for details. Let

UN :=
N
∏

i=1

1

(−sxi ; q)N−1∞
, VN :=

N
∏

i=1

1

(−s/xi ; q)N−1∞
.

A straightforward computation shows:
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Proposition 3.13. The spin q-Whittaker operators (3.9), (3.10) are conjugates of the
first q-Whittaker operators (3.16):

D1 = U
−1
N W 1

NUN , D1 = V
−1
N W̃ 1

NVN ,

where UN , etc., mean multiplication operators.

Because the q-Whittaker operators (3.16) commute, we get many operators commut-
ing with either D1 or D1. That is, for r = 1, . . . , N we have:

[

D1, U
−1
N Wr

NUN
] = 0,

[

D1, V
−1
N W̃r

NVN
] = 0. (3.17)

For example,

U
−1
N W 2

NUN =
∑

i,k : i �=k

(1 + sxi )
N−1(1 + sxk)

N−1
∏

j : j �=i,k

1

(1 − xi/x j )(1 − xk/x j )
Tq,xi Tq,xk .

(3.18)

However, one can directly check that the operator U
−1
N W 2

NUN does not commute with
D1. This suggests that the operators U

−1
N Wr

NUN or V
−1
N W̃r

NVN , r ≥ 2, should not be
diagonal in the spin q-Whittaker polynomials Fλ. The following example shows that
this is indeed the case:

Example 3.14. Take N = 2, then (1− s2)F(1,0)(x1, x2) = s + x1 + x2 + sx1x2. Applying
(3.18) to this function, we obtain (1 + sx1)(1 + sx2)(s + qx1 + qx2 + sq2x1x2), which is
not proportional to F(1,0)(x1, x2) unless s = 0. Note that for s = 0 both UN and VN are
the same (and are equal to the identity), andD1,D1 are the usual q-Whittaker difference
operators.

We also observe that by (3.17), polynomials of the form U
−1
N Wr

NUNFλ, r =
2, . . . , N , are eigenfunctions of the operator D1 with eigenvalues qλN . Similarly,
V

−1
N W̃r

NVNFλ are eigenfunctions ofD1 with eigenvalues q−λ1 . However, one can check
that D1 does not act diagonally on, say, the polynomial U

−1
N W 2

NUNF(1,0).
It remains unclear how to construct higher order q-difference operators which would

be diagonal in the sqW polynomials (and whether such operators exist at all).

4. Integrable Stochastic Dynamics on Interlacing Arrays

In this section we implement the general scheme of passing from symmetric functions
satisfying Cauchy type summation identities to probability measures. This approach
closely follows the ideas of Schur / Macdonald processes [OR03], [BC14]. We use the
framework of skew Cauchy structures which is explained in detail in [BMP21, Section
2].
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4.1. Skew Cauchy structures and random fields. We say that two families of functions
F,G form a skew Cauchy structure if they satisfy the following properties:

1. Fλ/μ,Gλ/μ are symmetric rational functions in their respective variables, parametrized
by pairs of signatures λ/μ (with appropriate numbers of parts). In particular,
Fλ/μ,Gλ/μ are nonzero only if μ ⊆ λ.

2. Branching rules: for all μ, λ we have

Fν/λ(u1, . . . , un) =
∑

μ

Fμ/λ(u1, . . . , un−1)Fν/μ(un)

for any n and any set of variables u1, . . . , un , and analogously for G.
3. There exists a function � and a set Adm ⊆ C

2 such that the skew Cauchy identity

�(u; v)
∑

κ

Fμ/κ(u)Gλ/κ(v) =
∑

ν

Fν/λ(u)Gν/μ(v) (4.1)

holds numerically for all (u, v) ∈ Adm. Note that u, v stand for single variables, as
in Propositions 2.15 and 2.21.

4. There exist two sets P, Ṗ ⊆ C, with P × Ṗ ⊆ Adm, such that for any choice of
u ∈ P and v ∈ Ṗ the functions Fλ/μ(u),Gλ/μ(v) are non negative for all λ,μ. In this
case we say that u, v are positive specializations. (Nonnegativity of single-variable
functions together with branching implies nonnegativity of multi-variable versions
of the functions.)

Consider now two sequences of signaturesλ = (λ1, . . . , λn) andμ = (μ1, . . . , μn−1)

with

λ1 ⊇ μ1 ⊆ λ2 ⊇ μ2 ⊆ · · · μn−1 ⊆ λn,

and sequences of positive specializations u1, . . . , un and v1, . . . , vn respectively of F
and G. The F/G process is the probability measure

Prob(λ,μ) = 1

Z
Fλ1(u1)

(n−1
∏

i=1

Gλi /μi (vi )Fλi+1/μi (ui+1)

)

Gλn (vn), (4.2)

where the normalization constant is Z = ∏

i, j �(ui ; v j ).
For applications to stochastic dynamics, it is of interest to consider random fields

{λ(i, j)} of signatures indexed by Z
2≥0, whose marginal distributions along down-right

paths are given by suitable F/G processes. A down-right path is

� = {�k = (ik , jk) : 0 ≤ k ≤ L}, where i0 = jL = 0 and �k+1 − �k ∈ {e1,−e2}.
Here L is arbitrary and depends on � , and e1, e2 are the standard basis vectors
(1, 0), (0, 1).

Definition 4.1. Consider positive specializations u1, u2, . . . and v1, v2, . . . respectively
of functionsF andG. AnF/G field is a probabilitymeasure on the set {λ(i, j) : i, j ∈ Z≥0}
that associates the probability

1

Z�

∏

k : �k+1=�k+e1

Fλ�k+1/λ�k (uik+1)
∏

k : �k+1=�k−e2

Gλ�k /λ�k+1 (v jk ). (4.3)
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i

j

λ(1,1)

λ(1,2)

λ(1,3)

λ(2,1)

λ(2,2)

λ(2,3)

λ(3,1)

λ(3,2)

λ(3,3)

λ(4,1)

λ(4,2)

λ(4,3)

λ(1,2)

λ(1,3)

λ(2,2)

λ(3,1)

λ(3,2)

u1 u2 u3 u4 u5

v1

v2

v3

v4

G

F

�

Fig. 5. A down-right path (highlighted) in a random field, and edge decorations

to the event of finding signatures λ�1, . . . , λ�L−1 along an down-right path � . Here the
normalization constant is Z� = ∏

(i, j) below � �(ui ; v j ), and at the boundary we fix

λ(0, j) = λ(i,0) = ∅ with probability one.

Remark 4.2. While the F/G process is defined uniquely by (4.2), an F/G is not deter-
mined uniquely by Definition 4.1. Below in this section we outline two different con-
structions of a field in our particular cases. See also the discussion in [BMP21, Section
2.6] for more details and additional references.

To visualize an F/G field, decorate edges (i − 1, j) → (i, j) of the first quadrant
with specializations ui , and edges (i, j −1) → (i, j) with v j . Then for each down-right
path � , the probability of finding the sequence λ�k is computed by climbing down �

and picking up skew functions F(uik ) along horizontal edges, andG(v jk ) along vertical
edges. See Fig. 5 for an illustration.

In this paper, particularly interesting instances of F/G processes will be those arising
when considering paths� of the form (0, T ) → (N , T ) → (N , 0). Taking the marginal
distribution of λ(1,T ), . . . , λ(N ,T ), we arrive at the following definition:

Definition 4.3. The ascending F/G process is the probability measure on the set of
signatures

λ1 ⊆ λ2 ⊆ · · · ⊆ λN ,

assigning to each such sequence the probability weight

1
∏N

i=1
∏T

j=1 �(ui ; v j )
Fλ1(u1)Fλ2/λ1(u2) · · ·FλN /λN−1(uN )GλN (v1, · · · , vT ).

4.2. Fields based on spin q-Whittaker polynomials. Here we specialize skew Cauchy
structures to two cases involving spin q-Whittaker and spin Hall–Littlewood functions.

Definition 4.4. Let s ∈ (−1, 0) and take parameters xi ∈ [−s,−s−1], v j ∈ [0, 1).
The sqW/sHL field is obtained by specializing Fλ/μ(xi ) = Fλ/μ(xi ) and Gλ/μ(v j ) =
F∗

λ′/μ′(v j ).
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The corresponding skew Cauchy identity is Proposition 2.15. One readily verifies
that the sHL and sqW functions specialized like this are nonnegative, which leads to
probability distributions. Joint distributions along down-right paths in this field are given
by sqW/sHL processes which are specializations of (4.2).

Definition 4.5. Let s ∈ (−1, 0) and take parameters xi , y j ∈ [−s,−s−1]. The sqW/sqW
field is obtained by specializing Fλ/μ(xi ) = Fλ/μ(xi ) and Gλ/μ(y j ) = F

∗
λ/μ(y j ).

The corresponding skewCauchy identity is Proposition 2.21. The range of parameters
here also leads to nonnegative functions F, F

∗, thus producing probability measures.
Joint distributions along down-right paths in the sqW/sqW field are given by sqW/sqW
processes which are specializations of (4.2).

Remark 4.6. Both types of fields were already defined in [BMP21], though using slightly
different versions of the sHL and sqW functions.

4.3. Sampling a field via bijectivization. As mentioned in Remark 4.2, a random field
is not determined uniquely. Moreover, its properties (like marginal stochastic dynamics)
heavily rely on a particular choice of the field’s construction. This choice can be encoded
by certain Markov transition operators. Let us return to the general formalism of skew
Cauchy structures.

Suppose that we have Markov transition operators

Ufwd
u,v (κ → ν | λ,μ) and Ubwd

u,v (ν → κ | λ,μ),

that satisfy the reversibility condition

Ufwd
u,v (κ → ν | λ, μ)�(u; v)Fμ/κ(u)Gλ/κ(v) = Ubwd

u,v (ν → κ | λ, μ)Fν/λ(u)Gν/μ(v).

(4.4)

Here Ufwd
u,v (κ → ν | λ,μ) encodes the probability of a transition κ → ν conditioned

on λ,μ, whereas Ubwd
u,v (ν → κ | λ,μ) describes the probability of the opposite move

(specializations u, v are assumed positive). See Fig. 6, left, for an illustration. Summing
(4.4) over both ν and κ and using the Markov property of Ufwd,Ubwd, one recovers the
skew Cauchy Identity (4.1). Condition (4.4) determines Ubwd once Ufwd is given, and
vice versa.

IfUfwd is given,we can construct a randomfield {λ(i, j) : i, j ∈ Z≥0} as in Fig. 6, right.
Namely, fix empty boundary conditions. Inductively for n ≥ 2, assuming we already
sampled signatures λ(i, j) with i + j ≤ n, pick signatures λ(i ′, j ′) for each i ′ + j ′ = n + 1
at random with probabilities

Ufwd
ui ′ ,v j ′ (λ

(i ′−1, j ′−1) → λ(i ′, j ′) | λ(i ′−1, j ′), λ(i ′, j ′−1)),

independently for various pairs (i ′, j ′). We say that the field is generated by Ufwd.

Proposition 4.7. Assume thatUfwd is known. Then the procedure described right above
samples an F/G field.

Proof. One has to show that the distribution of the signatures along any down-right path
is described by the corresponding F/G process. This is readily verified by induction
on adding one box to the area below the down-right path, and using (4.4). We omit the
details. ��



1362 M. Mucciconi, L. Petrov

κ μ

λ ν

Ufwd

Ubwd

∅

∅

∅

∅

∅

∅

∅

λ(1,1) λ(2,1)

λ(1,2)

λ(3,1)

λ(2,2)

λ(1,3)

Fig. 6. Left: forward and backward transition operators. Right: construction of a random field using Ufwd,
where lighter arrows correspond to moves happening later in the update

4.4. Borodin–Ferrari fields. Let us now describe a particular choice of the forward
transition probabilities which guarantees the existence of a field for a skew Cauchy
structure. This construction is based on [BF14] and follows an earlier coupling idea of
[DF90]. Choose

Ufwd
u,v (κ → ν | λ,μ) = Fν/λ(u)Gν/μ(v)

�(u; v)
∑

κ
Fμ/κ(u)Gλ/κ(v)

,

Ubwd
u,v (ν → κ | λ,μ) = �(u; v)Fμ/κ(u)Gλ/κ(v)

∑

ν Fν/λ(u)Gν/μ(v)
.

(4.5)

In general, although transition probabilities (4.5) are explicit, in particular examples
their concrete meaning may be far from transparent.

A helpful simplification can be made if we assume that G admits expansion

Gν/μ(v) = (v − v∗)d(ν/μ)(gν/μ +O(v − v∗)), (4.6)

for some fixed value v∗ independent of ν, μ, coefficients gν/μ, and a “nice” degree
function d such that d(ν/ν) = 0. Then one can consider a Poisson-type scaling limit of
the field (4.5) as v j → v∗ for all j . Under this scaling, the discrete vertical axis becomes
continuous, and the field turns into a Markov dynamics {λ(i,t) : i ∈ Z≥0, t ∈ R≥0},
where t is the continuous time variable. The dynamics lives on sequences of signatures.

When F,G are Schur functions, such continuous processes is the push–block dynam-
ics introduced in [BF14].

4.5. Bijectivization of the Yang–Baxter equation. Inmany cases, skewCauchy Identities
descend directly from theYang–Baxter equation (cf. Sects. 2.6 and 2.7). This observation
was used in [BP19], [BMP21] to provide an explicit construction of random fields for
sHL and sqW functions, which we briefly recall here. In general, this approach produces
fields which differ from the Borodin–Ferrari ones. On the other hand, Yang–Baxter fields
by design possess Markovian marginals.
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For any given identity with positive terms
∑

a∈A

w(a) =
∑

b∈B
w(b), (4.7)

we say that two stochastic matrices pfwd(a, b) and pbwd(b, a) (with indices a ∈ A,
b ∈ B) form a (stochastic) bijectivization of identity (4.7) if they satisfy the reversibility
condition

pfwd(a → b)w(a) = pbwd(b → a)w(b) for all a ∈ A, b ∈ B.

Abijectivization always exists since we can take pfwd(a → b) ∝ w(b). A bijectivization
is unique only when A or B has a single element. Another simple case is given when
both A and B have only two elements.

Example 4.8. When A = {a1, a2} and B = {b1, b2}, identity (4.7) becomes

w(a1) + w(a2) = w(b1) + w(b2).

In this case all stochastic bijectivizations pfwd are expressed as

pfwd(a1 → b1) = γ, pfwd(a2 → b1) = w(a2) − w(b2) + (1 − γ )w(a1)

w(a2)
,

pfwd(a1 → b2) = 1 − γ, pfwd(a2 → b2) = 1 − pfwd(a2 → b1),

for a parameter γ ∈ [0, 1]. We do not explicitly need the backward probabilities, but
they are expressed as pbwd(b → a) = pfwd(a → b)w(b)/w(a).

Let now (4.7) be one of the Yang–Baxter equations (B.5), (B.6), (B.7), (B.8) from
Appendix 10.5, corresponding to Fig. 15. Let us rewrite them in a unified notation as

∑

K

wl(K | I, J ) =
∑

K ′
wr(K ′ | I, J ), (4.8)

where I = {i1, i2, i3}, J = { j1, j2, j3}, K = {k1, k2, k3} and K ′ = {k′
1, k

′
2, k

′
3}, and

weight functionswl,wr denote the terms in the left and right-hand sides of each of (B.5)–
(B.8). Equations (B.6) and (B.8) with the right boundary, by agreement, correspond to
j1 = ∅.

Denote by pfwdI,J (K → K ′) and pbwdI,J (K ′ → K ) a stochastic bijectivization of (4.8).

Then pfwdI,J is the probability of moving the cross from left to right (in the local configura-
tion in Fig. 15), while transforming the occupation numbers K into K ′. The probabilities
pbwdI,J (K ′ → K ) similarly correspond to moving the cross from right to left. By the con-
servation of paths at each vertex, once I, J are fixed, the configuration K is completely
determined specifying only one of the numbers k1, k2, or k3 (and similarly for K ′).

Bijectivizations of the Yang–Baxter equation are building blocks of operators
Ufwd,Ubwd. Given κ, μ ∈ SignN , λ, ν ∈ SignN+1 we identify path configurations
through two rows of vertices as in Fig. 7 (in the same way as in Sect. 2.2). Vertices
crossed by blue paths are assigned non dual weightsW (2.2)–(2.4) whereas those in red
have dual weights w∗ or W ∗. We assume that at the leftmost column an infinite number
of paths flows in the vertical direction. The transition probabilityUfwd(κ → ν | λ,μ) is
the product of probabilities of sequential local moves pfwd obtained dragging the cross
vertex from the leftmost column to the right. The operatorUbwd is constructed using the
opposite local moves with probabilities pbwd, starting from the N + 1-th column. See
Fig. 7 for an illustration.
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νc−1−νc

λc−1−λc

μc−1−μc

κc−κc+1

λc−λc+1
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λc+1 −λc+2
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νc−1−νc

λc−1−λc

μc−1−μc
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λc−λc+1
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κc+1−κc+2

λc+1 −λc+2

μc+1 −μc+2

pfwd

pbwd

Fig. 7. A local randommove in a Yang–Baxter field. Moving the cross through the column c updates the value
of κc − κc+1 to νc − νc+1

Proposition 4.9. Let pfwd and pbwd be a stochastic bijectivization of Yang–Baxter equa-
tions (B.5), (B.6) for the weights W, w∗, and Ufwd be constructed from sequential local
moves pfwd. Then the random field generated by Ufwd is a sqW/sHL field.

Proof. This is analogous to [BMP21, Section 6.3]. See also [BP19, Theorem 6.3]. ��
Proposition 4.10. Letpfwd andpbwd bea stochastic bijectivizationof Yang–Baxter equa-
tions (B.7), (B.8) for the weights W,W ∗, and Ufwd be constructed from sequential local
moves pfwd. Then the random field generated by Ufwd is a sqW/sqW field.

Proof. This is again analogous to [BMP21, Section 6.3]. ��
By the very construction, we see that for any fixed c ≥ 1, the update (κ1, . . . , κc) →

(ν1, . . . , νc) is independent of κi , μi , λi for all i ≥ c + 1. Therefore, we have:

Proposition 4.11. Let {λ(i, j) : i, j ∈ Z≥0} be a Yang–Baxter random field as above. For

any c ∈ Z≥1, the marginal process {(λ(i, j)
1 ≥ · · · ≥ λ

(i, j)
c ) : i, j ∈ Z≥0} is a Markov

process.

Proof. This is [BP19, Proposition 6.2]. ��
In the simplest case c = 1, transition probabilities of the one-dimensional marginal

field can be written down explicitly:

Proposition 4.12. Let {λ(i, j) : i, j ∈ Z≥0} be a random field generated by Ufwd con-

structed from bijectivization of the Yang–Baxter equation. Let {λ(i, j)
1 : i, j ∈ Z≥0} be

the first row marginal process. Then for all i, j ≥ 1 we have

Prob{λ(i, j)
1 = n | λ

(i, j−1)
1 = m, λ

(i−1, j)
1 = �, λ

(i−1, j−1)
1 = k}

= Lui ,vi (m − k, � − k; n − �, n − m), (4.9)

for all n,m, k, n ≥ 0, where L is the stochastic vertex weight

Lu,v( j2, j1; k′
1, k

′
2) = wr({k′

1, k
′
2,∞} | {0, 0,∞}, { j1, j2,∞})

∑

k1,k2 wl({k1, k2,∞} | {0, 0,∞}, { j1, j2,∞}) . (4.10)

Note that interlacing implies that k ≤ m ≤ n, k ≤ � ≤ n, so the arguments of Lui ,vi in
(4.9) are all nonnegative.

Proof of Proposition 4.12. This is proven in [BMP21, Section 6.4] and we briefly repro-
duce the argument here. The update λ

(i−1, j−1)
1 → λ

(i, j)
1 , once λ

(i−1, j)
1 , λ

(i, j−1)
1 are fixed,

is determined only by a single random move at the leftmost column of vertices. By con-
struction, the vertical direction at the leftmost column has infinitely many paths. The
corresponding Yang–Baxter equation is

∑

k1,k2

wl({k1, k2,∞} | {0, 0,∞}, { j1, j2,∞})
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=
∑

k′
1,k

′
2

wr({k′
1, k

′
2,∞} | {0, 0,∞}, { j1, j2,∞}). (4.11)

This implies that taking

pfwd{0,0,∞},{ j1, j2,∞}
({k1, k2,∞} → {k′

1, k
′
2,∞}) = Lu,v( j2, j1; k′

2, k
′
1)

indeed produces a bijectivization.1 Here u, v denote generic spectral parameters of
weights appearing in the Yang–Baxter equation. Recall that occupation numbers are
related to signatures as

j1 = λ
(i−1, j)
1 − λ

(i−1, j−1)
1 , j2 = λ

(i, j−1)
1 − λ

(i−1, j−1)
1 ,

k′
1 = λ

(i, j)
1 − λ

(i, j−1)
1 , k′

2 = λ
(i, j)
1 − λ

(i−1, j)
1 .

This completes the proof. ��
The fact that the sqW functions are parametrized by signatures with specified number

of rows also allows to access the random dynamics of last rows of a field by writing
down explicit bijectivizations. In particular, the evolution of {λ(i, j)

i : i, j ≥ 0} is related
to the Yang–Baxter equations (B.6), (B.8) corresponding to configurations depicted in
Fig. 15b.

Remark 4.13. The construction of a random field using stochastic bijectivizations does
not guarantee that the evolution of last rows is autonomous. This contrasts with the fact
that the first rows form autonomousMarkovmarginal processes by the very construction
of Yang–Baxter fields (Proposition 4.11). In Theorems 6.7 and 6.13 below we show that
the marginals {λ(i, j)

i : i, j ≥ 0} of sqW/sHL and sqW/sqW fields, respectively, are in
fact autonomous for a particular bijectivization we construct.

5. Schur Case: Robinson–Schensted–Knuth from Yang–Baxter

In this section, as a simpler illustration, we consider the degeneration of the vertex
weights and the Yang–Baxter equation obtained by setting q = s = 0, and show how
this produces (via bijectivization) the classical Robinson–Schensted–Knuth (RSK) row
insertion algorithm [Knu70], [Ful97], [Sta01]. We would obtain a “local” description of
the RSK insertion in terms of “toggle” operations. We refer to, e.g., [Pak01], [KB95],
[Fom95] and also to the recent notes [Hop14] for this description.

We consider the q = s = 0 degeneration of the Yang–Baxter equations (Propositions
B.5 and B.6) proving the sqW/sqW skew Cauchy identity (Proposition 2.21). Note that
for q = s = 0, the spin q-Whittaker polynomials become the Schur polynomials.
The Yang–Baxter equations we need are illustrated in Fig. 15. In fact, in the Schur
degeneration the corner Yang–Baxter equation Proposition B.6 illustrated in Fig. 15b is
the same as the usual one, and so we only need the equation from Proposition B.5.

The weights entering the Yang–Baxter equation degenerate as follows:

Wx,0(i1, j1; i2, j2) = 1i1+ j1=i2+ j2 1i1≥ j2 x
j2 ,

W ∗,
y,0 (i1, j1; i2, j2) = 1i1+ j2=i2+ j1 1i2≥ j2 y

j2 ,

Rx,y,s(i1, j1; i2, j2) = 1i2+ j1=i1+ j2 (xy)min(i2, j2).

(5.1)

1 This bijectivization is in fact unique for our choices of weights (this follows similarly to [BMP21]).
However, we do not need this fact.
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Equation (B.7) thus reads for all fixed i1, i2, i3, j1, j2, j3 ∈ Z≥0:
∑

k1,k2,k3≥0

1arrow preservation 1k3≥max( j1, j2) x
j2 y j1(xy)min(k1,k2)

=
∑

k′
1,k

′
2,k

′
3≥0

1arrow preservation 1i3≥k′
2
1 j3≥k′

1
(xy)min( j1, j2)xk

′
2 yk

′
1 , (5.2)

where by “arrow preservation” wemean the intersection of all the conditions of the form
a1 + b1 = a2 + b2 in (5.1) which the indices k1, k2, k3 and k′

1, k
′
2, k

′
3 must satisfy. In

particular, by arrow preservation we have

k2 = i2 + k1 − i1, k3 = i3 + j1 − k1, k′
2 = j2 + k′

1 − j1, k′
3 = i1 + j3 − k′

1,

and thus the summands in the left- and right-hand sides of (5.2) are indexed only by
k1 or k′

1, respectively. Equation (5.2) admits a bijective proof (or, in terms of Sect. 4, a
bijectivization which is deterministic):

Lemma 5.1. Setting

k′
1 = j1 − min( j1, j2) + min(k1, i2 + k1 − i1) (5.3)

produces a bijection between the terms in both sides of (5.2).

Proof. By (5.3) we see that the powers of y in the corresponding terms match. The
powers of x match, too:

j2 + min(k1, i2 + k1 − i1) = min( j1, j2) + j2 + k′
1 − j1,

where k′
1 is given by (5.3). It remains to check that if k1 is such that the product of

indicators in the left-hand side of (5.2) is nonzero, then the same holds for k′
1 in the

right-hand side. This check is straightforward. ��
Let us now interpret a sequence of bijective Yang–Baxter transformations as a row

RSK insertion. Fix signatures λ,μ and use Lemma 5.1 to construct a bijection between
the sets

{κ : κ ≺ λ, κ ≺ μ} × Z≥0 ←→ {ν : ν � λ, ν � μ} . (5.4)

This bijection is equivalent to a local move in the Fomin growth diagram [Fom95]
interpretation of the RSK.

Interpret μ, κ, λ as a path configuration as in Fig. 7. The numbers of paths through
vertical edges are then equal toμc −μc+1, κc −κc+1, and λc −λc+1. One can also check
that the horizontal edges carry μc − κc and λc − κc paths.

Attach a cross at the leftmost boundary of the path configuration. This cross is not
uniquely determined since at the leftmost boundary (with i3 = j3 = ∞, i1 = i2 = 0)
the Yang–Baxter equation (5.2) takes the form

x j2 y j1
∞
∑

k=0

(xy)k = (xy)min( j1, j2)x j2− j1
∑

k′
1≥0

1arrow preservation x
k′
1 yk

′
1 .

Arrow preservation in the right-hand side here means that there exists an arrow config-
uration with the given k′

1.
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Selecting an arbitrary k in the left-hand side is equivalent to selecting an element of
Z≥0 in the left-hand side of (5.4). Then we set based on the Yang–Baxter equation (see
Lemma 5.1):

k′
1 = j1 − min( j1, j2) + k.

In terms of signatures, k′
1 corresponds to the new number of paths on the horizontal

edge, and so the above equation means that

ν1 − μ1 = λ1 − κ1 − min(λ1 − κ1, μ1 − κ1) + k,

that is,

ν1 = k + max(λ1, μ1). (5.5)

After dealing with the leftmost boundary, we move the cross one by one to the right,
updating eachκc−κc+1 to νc−νc+1, where c ≥ 2.At each step the signatures correspond
to the path numbers as

j1 = λc+1 − κc+1, j2=μc+1−κc+1, k1 = λc − κc, k2 = i2 + k1 − i1 = μc − κc,

k′
1 = νc+1 − μc+1, k′

2 = j2 + k′
1 − j1 = νc+1 − λc+1.

The local bijection of Lemma 5.1 then leads to

k′
1 = j1 − min( j1, j2) + min(k1, k2)

= λc+1 − κc+1 − min(λc+1 − κc+1, μc+1 − κc+1) + min(λc − κc, μc − κc)

= λc+1 − min(λc+1, μc+1) − κc + min(λc, μc),

which leads to

νc+1 = max (λc+1, μc+1) + min(λc, μc) − κc. (5.6)

Formulas (5.5)–(5.6) for ν in terms of κ provide the local RSK bijection between the
two sets (5.4). Moreover, these formulas have the “toggle” form, e.g., see [Hop14].

Therefore, we see that in the Schur degeneration the Yang–Baxter equation of Propo-
sition B.5 produces a bijection, and this bijection coincides with the “toggle” bijection
in the local description of the classical Robinson–Schensted–Knuth row insertion.

6. Marginals of Spin q-Whittaker Fields

In this section we study two random fields of signatures defined in Sect. 4.2 based
on sqW functions. We identify their Markov marginals corresponding to the first and
last coordinates λ

(i, j)
1 and λ

(i, j)
i . These are matched with stochastic vertex models or

particle dynamics introduced in [Pov13], [CP16], [CMP19]. These results extend the
characterization of marginals of the q-Whittaker processes given in [MP17] by adding
the spin parameter s into the picture. The matchings are summarized in the table in
Fig. 8.
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first row λ
(i,j)
1 last row λ

(i,j)
i

sqW/sHL field [6.3] Stochastic higher spin six
vertex model [CP16], [BP18]

[6.2] Stochastic higher spin six vertex
model [CP16], [BP18]

sqW/sqW field [6.5] 4φ3 vertex model and q-Hahn
PushTASEP [CMP19], [BMP21]

[6.4, 6.6] q-Hahn TASEP / Boson par-
ticle systems [Pov13], [Cor14]

Fig. 8. A summary of matchings of Sect. 6, with numbers of relevant subsections

6.1. Stochastic vertexmodels. Weworkwith two typologies of stochastic vertexmodels:
up-right or up-left. These are probability measures on directed path ensembles (of the
corresponding direction) in the integer quadrant, constructed from families of stochastic
vertex weights L(i, j). By “stochastic” we mean that the weights must satisfy the sum to
one condition

∑

α2,β2≥0

L(i, j)(α1, β1;α2, β2) = 1 (6.1)

for all α1, β1, where α1, α2, β1, β2 ∈ Z≥0 are the occupation numbers of edges at a
vertex (i, j).

For the first type of stochastic vertex models, equip the lattice with up-right vertex
weights Lur

(i, j) subject to the arrow preservation condition

Lur
(i, j)(α1, β1;α2, β2) = 0 if α1 + β1 �= α2 + β2.

Definition 6.1 (Up-right stochastic vertex model). The up-right stochastic vertex model
with weights Lur

(i, j) and boundary conditions Bh = {bh1, bh2, . . . }, Bv = {bv1, bv2, . . . },
with bhi , b

v
j ≥ 0, is the unique probability measure on the set of up-right directed paths

on Z≥1 × Z≥0, such that:

• each vertex (1, j) emanates bvj paths initially directed to the right;

• each vertex (i, 0) emanates bhi paths initially directed upwards;
• the probability of observing a configuration (α1, β1;α2, β2) at vertex (i, j), con-
ditioned on the configuration at all vertices (i ′, j ′) with i ′ + j ′ < i + j , is given by
Lur

(i, j)(α1, β1;α2, β2). Moreover, this event is independent of choosing arrow config-
urations at other vertices . . . , (i − 1, j + 1), (i + 1, j − 1), . . . on the same diagonal.

Up-right directed lattice path configurations can be encoded by the height function:

Hur(i, j) = #{occupations at horizontal edges} − #{occupations at vertical edges},
(6.2)

where occupations are counted along the path ( 12 ,
1
2 ) → (i + 1

2 ,
1
2 ) → (i + 1

2 , j +
1
2 )

(equivalently, along any up-right directed path from ( 12 ,
1
2 ) to (i + 1

2 , j +
1
2 )). See Fig. 9,

right, for an illustration of the vertex model and the corresponding height function.

Remark 6.2 (Up-right model and TASEPs). Path configurations can be interpreted as
trajectories of particles performing totally asymmetric randomwalks, with time running
in the upward direction. In particular, one can define a process

{X(t) = (x1(t) > x2(t) > · · · )}t∈Z≥0
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Fig. 9. Realizations of the up-left and the up-right stochastic vertex models (left and right panels, respectively)

by setting xn(t) := Hur(n, t) − n. Then X is a discrete time totally asymmetric simple
exclusion process, in which the random jump xn(t − 1) → xn(t) of the n-th particle at
time t is governed by

Lur
(n,t)

(

xn−1(t − 1) − xn(t − 1) − 1, xn−1(t)

−xn−1(t − 1); xn−1(t) − xn(t) − 1, xn(t) − xn(t − 1)
)

.

Let us now turn to up-left path ensembles. The up-left weights Lul
(i, j) satisfy the

following arrow preservation property:

Lul
(i, j)(α1, β1;α2, β2) = 0 if α1 + β2 �= β1 + α2.

Definition 6.3 (Up-left stochastic vertex model). The up-left stochastic vertex model
with weights Lul

(i, j) and boundary conditions Bh = {bh1, bh2, . . . }, Bv = {bv1, bv2, . . . },
with bhi , b

v
j ≥ 0, is the unique probability measure on the set of up-left directed path on

Z≥1 × Z≥0, such that:

• each vertex (1, j) has bvj paths entering from its left;

• each vertex (i, 0) emanates bhi paths initially directed upwards;
• the probability of observing a configuration (α1, β1;α2, β2) at a vertex (i, j), con-
ditioned on the path configuration at vertices (i ′, j ′) with i ′ + j ′ < i + j , is given by
Lul

(i, j)(α1, β1;α2, β2). Moreover, this event is independent of choosing arrow config-
urations at other vertices . . . , (i − 1, j + 1), (i + 1, j − 1), . . . on the same diagonal.

Up-left directed lattice path configurations can be encoded by the height function:

Hul(i, j) = #{occupations at horizontal edges} + #{occupations at vertical edges},
(6.3)

where occupations are counted along the path ( 12 ,
1
2 ) → (i + 1

2 ,
1
2 ) → (i + 1

2 , j +
1
2 )

(equivalently, along any up-right directed path from ( 12 ,
1
2 ) to (i + 1

2 , j +
1
2 )). Notice the

difference in sign with the definition of Hur (6.2). See Fig. 9, left, for an illustration of
the up-left vertex model and the corresponding height function.

Remark 6.4 (Up-left model and PushTASEPs). Define a process

{Y(t) = (y1(t) > y2(t) > · · · )}t∈Z≥0
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β2

α2

β1

α1 g

g g − 1

g g

g + 1

g

g

Lur
x,v(α1, β1;α2, β2) 1+qgxv

1+xv
xv(1−qg)

1+xv
1+qgsx
1+xv

xv−qgsx
1+xv

Fig. 10. The stochastic vertex weights Lurx,v for the up-right stochastic higher spin six vertex model

by setting yn(t) = −Hul(n, t) − n. Then Y is a discrete time totally asymmetric simple
exclusion process under which particles jump to the left, and a pushing mechanism is
present. The random jump yn(t − 1) → yn(t) of the n-th particle at time t is governed
by

Lul
(n,t)

(

yn−1(t − 1) − yn(t − 1) − 1, yn−1(t − 1) − yn−1(t);
yn−1(t) − yn(t) − 1, yn(t − 1) − yn(t)

)

.

In the rest of this section we establish the matching results outlined in Fig. 8.

6.2. Last row in sqW/sHL field. We start by defining the stochastic higher spin six vertex
model:

Definition 6.5 ([CP16], [BP18]). Specialize the up-right stochastic vertex model of
Definition 6.1 by taking Lur

(i, j) = Lurxi ,v j
, where the latter are given in Fig. 10. We refer

to this model as the up-right stochastic higher spin six vertex model. We consider the
step-stationary boundary conditions:

bvj ∼ Ber

(

x1v j

1 + x1v j

)

and bhi = 0,

(6.4)

where Ber(·) are independent Bernoulli random variables with the probability of success
given in the parentheses.2

Remark 6.6. The model in Definition 6.5 is equivalent to that of [BP18] (the latter with
step boundary conditions bvj = 1, bhi = 0), under specializations ξ1s1 → x1, s21 → 0,

sαξα → xα , s2α → −sxα and uβ → −vβ .

Theorem 6.7 (sqW/sHL last row). The last rowmarginal {λ(i, j)
i }i≥1, j≥0 of the sqW/sHL

field has the same distribution as the height function {Hur
HS(i, j)}i≥1, j≥0 of the up-right

higher spin six vertex model with step-stationary boundary conditions.

2 A slightly broader class of boundary conditions than the step-stationary ones, where also bhi are allowed
to be positive numbers, can be considered using the fusion argument introduced in [Agg18]; see also [IMS19],
[BMP21].
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Proof. We use Proposition 4.9. During the update

λ(n−1,t−1) → λ(n,t), for fixed λ(n−1,t), λ(n,t−1),

weighted by the stochastic matrix Ufwd, the law of the rightmost local move is given
by a stochastic bijectivization of the Yang–Baxter equation (B.6). A straightforward
computation shows that one such bijectivization is given by the choice

pfwd{i1,i2,i3},{∅, j2, j3}({k1, k2, k3} → {k′
1, k

′
2, k

′
3})

= Lurx,v( j3 − i2 + i1 − k1, k1; j3 − i2 + i1 − k′
1, k

′
1). (6.5)

This can be readily verified using the parametrization from Example 4.8. For simpler
notation, let us denote

κ = λ(n−1,t−1), λ = λ(n−1,t), μ = λ(n,t−1), ν = λ(n,t).

In terms of elements of these signatures, the integers i1, i2, j3, k1, k′
1 are interpreted as

i1 = νn−1 − μn−1, i2 = νn−1 − λn−1, j3 = μn−1 − μn,

k1 = λn−1 − κn−1, k′
1 = νn − μn .

Remarkably, transition weight (6.5) only depends on j3 − i2 + i1 = λn−1 − μn and
on k1, k′

1, but not on other edge occupation numbers. Observe that these quantities
involve only the last components of the signatures μ, κ, λ, ν. Therefore, the law of
the last component νn = λ

(n,t)
n is fully determined by the last components λn−1 =

λ
(n−1,t)
n−1 , μn = λ

(n,t−1)
n , and κn−1 = λ

(n−1,t−1)
n−1 . This implies that the last row marginal

{λ(i, j)
i }i≥1, j≥0 is an autonomous Markov process. Moreover, this autonomous process

has the same multitime joint distribution as the height function of the up-right higher
spin six vertex model because Lur appears in (6.5). This completes the proof. ��

In [CP16] [BP18], joint q-moments of the up-right stochastic higher spin six vertex
model were expressed in terms of nested contour integrals. These moments completely
determine the joint distribution of the model’s height function Hur

HS(·, j) along any
given horizontal line (because q ∈ (0, 1) and the random variables in question are
nonnegative). Let us reproduce the q-moment formula:

Proposition 6.8 ([BP18]). Consider the up-right stochastic higher spin six vertex model
with step-stationary boundary conditions and assume vα �= qvβ . For any i1 ≥ . . . ≥
i� ≥ 1 we have

E

�
∏

k=1

qHur
HS(ik , j) = q(�

2)
∮

γ [−v|1]
dz1
2π i

· · ·
∮

γ [−v|�]
dz�
2π i

∏

1≤A<B≤�

zA − zB
zA − qzB

×
�
∏

k=1

⎛

⎝

1

zk(1 + szk)

ik
∏

α=1

xα(1 + szk)

xα − zk

j
∏

α=1

1 + qvαzk
1 + vαzk

⎞

⎠ .

(6.6)

Here, integration contours are γ [−v|k] = γ [−v] ∪ rk−1c0, where γ [−v] encircles
−1/v1, . . . ,−1/v j and no other singularity, c0 is a small circle around 0, and r > q−1.
All curves are positively oriented, and rk−1c0 never intersects γ [−v] for k = 1, . . . , �.
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Proof. This follows from Theorem 9.8 in [BP18] by identifying the parameters as in
Remark 6.6 and noting thatHur

HS(i, j) is the same as the height function h(i) at the j-th
horizontal slice. Note also that [BP18, Corollary 10.3] is essentially the same as our
q-moments (6.6), but with contours dragged through infinity, and identification of s21
with x1. The latter follows by comparing (6.4) with [BP18, Remark 6.14]. ��

Eigenrelations for sqWpolynomials given inTheorem3.9 can be employed to provide
an alternative proof of the moment formula (6.6).

Alternative proof of Proposition 6.8. Weexpressq-moments of last rowsof the sqW/sHL
process using the q-difference operators D1 (3.9) at several levels, following the argu-
ment in [BCGS16, Proposition 4.4].

Denote byD(i)
1 the operatorD1 acting on i variables x1, . . . , xi . Then for any � and

any sequence 1 ≤ i1 ≤ · · · ≤ i�, we have

E

�
∏

k=1

q
λ

(ik , j)
ik = D

(i1)
1 · · ·D(i�)

1 �(x1, . . . , xN ; v1, . . . , v j )

�(x1, . . . , xN ; v1, . . . , v j )
, (6.7)

where N ≥ i� is arbitrary, and

�(x1, . . . , xN ; v1, . . . , v j ) =
j

∏

r=1

(

1

1 − svr

)N−1 N
∏

i=1

j
∏

r=1

(1 + vr xi )

is the partition function in the right-hand side of the sqW/sHL Cauchy identity (2.23).
Equality (6.7) is a straightforward consequence of the Cauchy identities (2.21), (2.23),
eigenrelation (3.11), and the branching rules for the sqW functions.

Let us now express the right-hand side of (6.7) in terms of nested contour integrals.
For

h(z) =
j

∏

r=1

(1 + vr z),

we have

r.h.s. (6.7) = D
(i1)
1 · · ·D(i�)

1 h(x1) · · · h(xN )

h(x1) · · · h(xN )
.

Moreover, for any meromorphic function˜h we have

D
(n)
1

(

˜h(x1) · · ·˜h(xn)
) = 1

2π i

∮

γ
˜h

n
∏

α=1

(

˜h(xα)
xα(1 + sz)

xα − z

)

˜h(qz)
˜h(z)

dz

z(1 + sz)
,

where the curve γ
˜h encircles 0 and all poles of˜h(qz)/˜h(z). The latter poles may include

infinity, too. In other words, the integral over γ
˜h is equal to the sum of minus residues

of the integrand at x1, . . . , xn .
By iterating this integral representation, we can evaluate (6.7) andmatch the resulting

expression with the q-moment formula (6.6). The equivalence of processes λ
(i, j)
i and

Hur
HS(i, j) stated in Theorem 6.7 allows us to complete the proof. ��
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Fig. 11. The stochastic vertex weights Lulx,v for the up-left stochastic higher spin six vertex model

6.3. First row in sqW/sHL field. Let us define an up-left version of the stochastic higher
spin six vertex model. Take an up-left model in the sense of Definition 6.3, with the
weights Lul

(i, j) = Lulxi ,v j
, given in Fig. 11. We take this model with the same step-

stationary boundary conditions (6.4). In fact, this model is essentially the same as the
one from Definition 6.5:

Remark 6.9. When at most one path occupies each horizontal edge (as in our case),
swapping the horizontal occupation numbers 0 ↔ 1 is a bijection between up-left and
up-right models. Their height functions are related as Hur

HS(i, j) = j − Hul
HS(i, j).

Moreover, the weights Lulx,v become the weights Lurx,v from Fig. 10 after this swapping
of horizontal occupations, and the inversion of the parameters (x, v) �→ (x−1, v−1).

However, it is convenient to work with the up-right and the up-left models separately,
as in the sqW/sqW case they are genuinely different.

Theorem 6.10 (sqW/sHL first row). The first row marginal {λ(i, j)
1 }i≥1, j≥0 of the

sqW/sHL field has the same distribution as the height function {Hul
HS(i, j)}i≥1, j≥0 of

the up-left stochastic higher spin six vertex model with step-stationary boundary condi-
tions.

Proof. We use Yang–Baxter fields similarly to the approach taken in [BMP21, Section
7.3]. Let us specialize the general notation of Proposition 4.12. We need to match the
stochastic vertex weight L of (4.10) with Lul, and verify boundary conditions.

The random move λ
(i−1, j−1)
1 → λ

(i, j)
1 , conditioned on λ

(i, j−1)
1 , λ

(i−1, j)
1 is deter-

mined by the bijectivization of the Yang–Baxter equation (B.5) for i > 1, j ≥ 1 and by
the bijectivization of (B.6), if i = 1. We start with the first case, where in (4.10) we get
(after canceling common factors)

wl({k1, k2,∞} | {0, 0,∞}, { j1, j2,∞}) = Rx,v,s(0, 0; k1, k2) v j1

1 − sv
x j2

(−s/x; q) j2

(q; q) j2
,

wr({k′
1, k

′
2,∞} | {0, 0,∞}, { j1, j2,∞}) = Rx,v,s(k

′
2, k

′
1; j2, j1)

vk
′
1

1 − sv
xk

′
2

(−s/x; q)k′
2

(q; q)k′
2

.

One readily sees that then (4.10) gives the stochastic weight Lulx,v .

For the boundary signature λ
(1, j)
1 case, configuration weights wl,wr become (after

canceling common factors)

wl({k1, k2,∞} | {0, 0,∞}, {∅, j2,∞}) = Rx,v,s(0, 0; k1, k2) x j2 ,

wr({k′
1, k

′
2,∞} | {0, 0,∞}, {∅, j2,∞}) = vk

′
1

1 − sv
xk

′
2 ,
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which leads to the step-stationary boundary conditions (6.4) since λ(i,0) = ∅ for all i . ��

6.4. Last row in sqW/sqW field. Define the up-right stochastic weight by

L
ur
x,y(α1, β1;α2, β2) := 1α1+β1=α2+β2 ϕq,xy,−sx (β2 | α1), (6.8)

where ϕ is the q-beta-binomial distribution (A.1)–(A.2).

Definition 6.11 ([Pov13]). The q-Hahn vertex model is the up-right stochastic vertex
model, in the sense of Definition 6.1, with weights Lur

i, j = L
ur
xi ,y j . We consider step-

stationary boundary conditions:

bvj ∼ ϕq,x1y j ,−sx1(• | ∞) and bhi = 0, (6.9)

where the random variables for bvj are independent. Denote the corresponding height
function by Hur

q-Hahn.

Remark 6.12. Themodel of Definition 6.11 is equivalent to that of [BP18, Section 6.6.2],
where parameters have been specialized as s2α → −sxα and q Jα → −yα/s.

Theorem 6.13 (sqW/sqW last row). The last row marginal {λ(i, j)
i }i≥1, j≥0 of the

sqW/sqW field has the same distribution as the height function {Hur
q-Hahn(i, j)}i≥1, j≥0 of

the up-right q-Hahn vertex model.

Proof. This follows from Theorem 6.7 which established an analogous result matching
the last row of the sqW/sHL field and the height function of the up-right higher spin six
vertex model. By fusion, the dual sHL functions turn into the dual sqW functions (cf.
[BW17]). Therefore, the sqW/sHL field under fusion turns into the sqW/sqW field.

On the other hand, the same fusion procedure turns the up-right higher spin six vertex
model into the up-right q-Hahn vertex model3. This completes the proof. ��

In [BP18, Corollary 10.4] the multi-point q-moments of the up-right q-Hahn vertex
model were expressed in terms of nested contour integrals:

Proposition 6.14 ([BP18], Corollary 10.4). Assume minα |sxα| > q maxα |sxα|. For
any i1 ≥ . . . ≥ i� ≥ 1 we have

E

�
∏

k=1

qH
ur
q-Hahn(ik , j) = (−1)�q(�

2)
∮

γ +
1 [−sx]

dw1

2π i
· · ·

∮

γ +
� [−sx]

dw�

2π i

∏

1≤A<B≤�

wA − wB

wA − qwB

×
�
∏

k=1

⎛

⎝

1

wk(1 − wk)

ik
∏

α=1

1 − wk

1 + wk/(sxα)

j
∏

α=1

1 + wk yα/s

1 − wk

⎞

⎠ .

(6.10)

Integration contours encircle −sx1,−sx2, . . . , and leave out 0,1 and are q-nested in
the sense that qγ +

k+1[−sx] is inside γ +
k [−sx] for all k = 1, . . . , � − 1.

3 For a practical explanation of fusion in the context of sl2 stochastic vertexmodels see [BW17] and [CP16],
[BP18] and references therein.
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Proposition 6.14 was obtained in [BP18] as a corollary (under fusion) of the multi-
point q-moment formula (6.6) for the up-right higher spin six vertexmodel. Both of these
q-moment formulas have several different proofs: via duality [CP16], manipulations
with symmetric functions using Bethe Ansatz [BP18], or distributional matchings and
difference operators [OP17]. Eigenrelations for the sqWpolynomials provide yet another
independent proof:

Alternative proof of Proposition 6.14. Similarly to the alternative proof of Proposition
6.8 given in Sect. 6.2, we will use eigenrelations of the sqW polynomials to compute
q-moments. To express q-moments of the sqW/sqW field, we use formula (6.7), after
replacing the function � with the right-hand side of (2.30). The action of the difference
operator D1 (3.9) (in n variables) on a meromorphic function˜h can be written as

D1
(

˜h(x1) · · ·˜h(xn)
) = − 1

2π i

∮

x1,...,xn

n
∏

α=1

(

˜h(xα)
xα(1 + sz)

xα − z

)

˜h(qz)
˜h(z)

dz

z(1 + sz)
,

where the integration contour contains x1, . . . , xn , but doesn’t contain 0 or any pole
of ˜h(qz)/˜h(z). Using this formula repeatedly, we can match the q-moments of the
marginal λ

(i, j)
i to expression (6.10). The equivalence of processes between last row of

the sqW/sqW field and height function of the q-Hahn vertex model stated in Theorem
6.13 yields the proof. ��

6.5. First row in sqW/sqW field. For our fourth and final vertex model, define the up-left
stochastic weight by

L
ul
x,y(α1, β1; α2, β2) := 1α1+β2=α2+β1

yα2 sα1 xα2−α1 qβ1β2+
1
2 α1(α1−1) (−s/x; q)α2 (−s/y; q)β2

(−s/x; q)α1 (−s/y; q)β1 (q; q)β2 (−q/(sy); q)β2−α2

× (s2qα1+β2 ; q)∞(xy; q)∞
(−sy; q)∞(−sx; q)∞

4φ3

(

q−β1 ; q−β2 ,−sx,−q/(sy)
−s/y, q1+α1−β1 ,−xq1−β2−α1/s

∣

∣

∣ q, q

)

, (6.11)

where 4φ3 is the regularized q-hypergeometric function (A.4).

Remark 6.15. An expression equivalent to (6.11) for the stochastic weight L
ul
x,y is given

by

L
ul
x,y(g, �; g + L − �, L)

=
min(�,L)
∑

k=0

ϕq−1,qg,−syqg−1(k | �)ψq,−qks/y,−qgs/x,s2qg+k (L − k), (6.12)

where we used the q-beta-binomial and the q-hypergeometric distributions (A.1), (A.6).
This can be proved through simple manipulations of the q-Pochhammer terms. From
(6.12) it is immediate to see that L

ul
x,y possesses the sum to one property (6.1). The

positivity of the weights (under certain restrictions on the parameters) follows from
Proposition B.8.

Definition 6.16. The 4φ3 vertex model is the up-left stochastic vertexmodel, in the sense
of Definition 6.3, with weights Lur

i, j = L
ul
xi ,y j . We consider the same step-stationary

boundary conditions as in (6.9). The height function of this model is denoted byHul
φ .
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Theorem 6.17 (sqW/sqW first row). Let s ∈ (−√
q, 0). The first row marginal

{λ(i, j)
1 }i, j∈Z≥0 of the sqW/sqW field has the same distribution as the height function

{Hul
φ (i, j)}i, j∈Z≥0 of the 4φ3 stochastic vertex model.

Proof. The proof of this matching is similar to that of Theorem 6.10, and follows from
Proposition 4.12.Namely,we specialize formula (4.10) using theYang–Baxter equations
(B.7), (B.8). For updates of “bulk” transition λ

(i−1, j−1)
1 → λ

(i, j)
1 , for i > 1, j ≥ 1,

conditioned on λ
(i, j−1)
1 , λ

(i−1, j)
1 , the stochastic weight (4.10) uses

wl({k1, k2,∞} | {0, 0,∞}, { j1, j2,∞})
= Rx,y,s(0, 0; k1, k2) y j1

(−s/y; q) j1

(q; q) j1
x j2

(−s/x; q) j2

(q; q) j2
,

wr({k′
1, k

′
2,∞} | {0, 0,∞}, { j1, j2,∞})

= Rx,y,s(k
′
2, k

′
1; j2, j1) yk

′
1
(−s/y; q)k′

1

(q; q)k′
1

xk
′
2
(−s/x; q)k′

2

(q; q)k′
2

.

Using the expression of the R-matrix Rx,y,s and summation identity (B.10) one can

match Lx,y with Lx,y . At the boundary λ
(1, j)
1 , we use a stochastic bijectivization of

(B.8) and therefore in this case we have

wl({k1, k2,∞} | {0, 0,∞}, {∅, j2,∞}) = Rx,y,s(0, 0; k1, k2) x j2 ,

wr({k′
1, k

′
2,∞} | {0, 0,∞}, {∅, j2,∞}) = yk

′
1
(−s/y; q)k′

1

(q; q)k′
1

(−sy; q)∞
(s2; q)∞

xk
′
2 ,

that yields boundary conditions (6.9) after using again summation identity (B.10). ��

6.6. Push–block dynamics for sqW/sqW process. Let us now present another, more
explicit matching of last rows of the sqW/sqW field in a “Plancherel” (or “Poisson-
type”) continuous time limit. Here the dynamics of the last rows is matched to the
corresponding continuous time limit of the q-Hahn TASEP. This construction is very
similar to how the continuous time q-TASEP emerges from q-Whittaker processes in
[BC14].

Consider the Borodin–Ferrari forward transition map (cf. Sect. 4.4)

Ufwd
x,y (κ → ν | λ,μ) = Fν/λ(x)F∗

ν/μ(y)

�(x; y)∑
κ

Fμ/κ(x)F∗
λ/κ

(y)
, (6.13)

where �(x; y) = (−sx;q)∞(−sy;q)∞
(xy;q)∞(s2;q)∞ . In the limit as y = −s + ε(1− q), ε → 0, the dual

sqW function at a single variable becomes (we use the notation [r ]q = (1−qr )/(1−q))

F
∗
λ/μ(−s + ε(1 − q))

=
⎧

⎨

⎩

1 +O(ε), λ = μ;
ε

(−s)r−1

[r ]q
(qμi−1−λi+1; q)r

(qμi−1−λi s2; q)r
+O(ε2), λ = μ + rei for some i, r > 0.
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λk
i+1

λk−1
i

λk
i

λk−1
i

rate(λk → ˜λk|λk−1)

˜λk
i

k

k − 1

(a)

λj+1
i

λj
i

˜λj
i

λj+1
i−1

prob(λj+1 → ˜λj+1|λj → ˜λj)

˜λj+1
i

j + 1

j

(b)

Fig. 12. Push–block mechanism in the half-continuous sqW/sqW field. Each λki jumps to˜λki = λki + r at rate

(6.14), which only depends on λk−1; see left panel. When a jump happens at level k and breaks interlacing,
it triggers an instantaneous push at levels above to re-establish interlacing; see right panel

see (2.27). Take y j = −s + ε(1 − q) for all j and rescale M = �t/ε�, t ∈ R≥0,
in the sqW/sqW field. Thus, we get a continuous time dynamics on interlacing arrays
λ1(t) ≺ λ2(t) ≺ · · · , where at time t , each λki jumps to λki + r , r ≥ 1, according to an
exponential clock with rate (see (6.13))

rate(λk → λk + rei | λk−1)

= xrk
(−s)r−1

[r ]q
(−qλki −λk−1

i s/xk , qλki −λki+1+1 , qλk−1
i−1−λki +1−r ; q)r

(qλki −λk−1
i +1 , qλki −λki+1s2 , −qλk−1

i−1−λki −r sxk ; q)r

. (6.14)

When an update occurs at level j bringing λ j → ˜λ j = λ j + rei , the signature λ j+1 is
instantaneously updated to˜λ j+1 in the following way:

• if˜λ j
i ≤ λ

j+1
i , then˜λ j+1 = λ j+1

• if˜λ j
i > λ

j+1
i , then assume˜λ j

i − λ
j+1
i = m and set˜λ j+1 = λ j+1 + (m + �)ei with

probability

prob(λ j+1 →˜λ j+1 | λ j →˜λ j ) = lim
ε→0

F
˜λ j+1/˜λ j (x)F∗̃

λ j+1/λ j+1(y)
∑

η=λ j+1+(m+�′)ei Fη/˜λ j (x)F∗
η/λ j+1(y)

∣

∣

∣

∣

y=−s+ε(1−q)

.

for any � ≥ 0 (for � large enough this probability vanishes). See Fig. 12 for an
illustration.

When s = 0 and q ∈ (0, 1) in our dynamics, we recover the continuous time
q-Whittaker 2d-growth model introduced in [BC14, Definition 3.3.3]. Further setting
q = 0 brings the original Borodin–Ferrari’s push–block process corresponding to Schur
measures [BF14]. Note that in our case, in contrast with the Schur and q-Whittaker
situations, jumps are long range.

Restricting attention to the last rows (leftmost diagonal) of the array and setting
i = k in (6.14), we see that the rate only depends on λkk and λk−1

k−1. Moreover, the
pushingmechanism does not affect the leftmost diagonal of the array. Thus, the marginal
evolution of the particles in the leftmost diagonal is an autonomous Markov process. Its
jump rates are

rate(λkk → λkk + r | λk−1
k−1) = xrk

(−s)r−1

[r ]q
(qλk−1

k−1−λkk+1−r ; q)r

(−qλk−1
k−1−λkk−r sxk; q)r

.
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These rates correspond to an inhomogeneous version of the continuous time q-Hahn
TASEP studied in [BC16b], which is also a continuous time degeneration of the q-Hahn
TASEP of [Cor14]. Thus, we see that the continuous time push–block dynamics in the
sqW case agrees with the last row marginal evolution.

7. Spin Whittaker Functions from q → 1 Limit

In this section we introduce new one-parameter deformations of the gln Whittaker func-
tions [Jac67], [Kos78]. These deformations arise from our version of spin q-Whittaker
polynomials in a scaling limit as q → 1. The deformation parameter is denoted by
S > 0.

7.1. Whittaker functions. Before proceeding with deformations of Whittaker functions,
let us recall the usual glN Whittaker functions. These functions play a central role in
representation theory and integrable systems [Kos80], [Eti99], [Giv97] as well as are
related to several models of random polymers [O’C12], [COSZ14], [OSZ14], [BC14].

The glN Whittaker functions ψλ1,...,λN (uN ) are indexed4 by N -tuples uN =
(uN ,1, . . . , uN ,N ) ∈ R

N , depend on λ = (λ1, . . . , λN ) ∈ C
N , and may be defined

through the recursion (following from the Givental integral representation [Giv97], cf.
[GKLO06]):

ψλ1,...,λN (uN ) =
∫

R
N−1

ψλ1,...,λN−1(uN−1) Q
N→N−1
λN

(uN , uN−1)

N−1
∏

k=1

duN−1,k,

(7.1)

where

QN→N−1
λ (uN , uN−1)

= e
iλ
(

∑N
i=1 uN ,i−∑N−1

i=1 uN−1,i

) N−1
∏

i=1

exp
{−euN−1,i−uN ,i − euN ,i+1−uN−1,i

}

(7.2)

is known as the Baxter Q-operator. The function λ �→ ψλ(uN ) is an entire function
of λ ∈ C

N for all uN ∈ R
N . For N = 1, we have ψλ(u) = eiλu . For N = 2, the

Whittaker functions can be expressed through the (single-variable) Bessel K function
Kv(z) = 1

2

∫ ∞
−∞ exv exp

(− z
2 (e

x + e−x )
)

dx .

For the Whittaker functions, QN→N−1
λN

(uN , uN−1) plays the role of a branching
function like the single-variable sqW function Fν/μ(x) (2.5) (here x plays the same
role as λN , and ν, μ correspond to uN , uN−1). Note that the Whittaker functions are
not indexed by ordered sequences of numbers uN . Rather, in the Baxter Q-operator,
the interlacing condition among arrays uN−1, uN is replaced by the “mild interlacing”.
Namely, QN→N−1 (7.2) decays doubly exponentially whenever uN ,i+1 > uN−1,i or
uN−1,i > uN ,i .

4 To match the historical notation for Whittaker functions, here and in the discussion of the spin Whittaker
functionswe place the “variables” into the subscript of aWhittaker function, and the “index” in the parentheses.
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The Whittaker functions satisfy the following analogue of the Cauchy identity due
to Bump and Stade [Bum89], [Sta02], [GLO08]:

∫

R
N
e−e−uN ,N

ψλN
(uN )ψνN

(uN )

N
∏

j=1

duN , j =
N
∏

j,k=1

�(iν j − iλk). (7.3)

See also [COSZ14, (1.2)], [BC14, Section 4.2.1] for a generalization when one of the
Whittaker functions is replaced by a certain integral coming from the limit of the torus
product representation of Macdonald polynomials:

θY (uN ) :=
∫

R
N

ψν(uN )

T
∏

i=1

N
∏

k=1

�(Yi − iνk) · 1

(2π)N N !
∏

1≤A �=B≤N

1

�(iνA − iνB)
dν,

(7.4)

where Y = (Y1, . . . ,YT ) ∈ R
T . We refer to θY (uN ) as the dual Whittaker function.

Similar integral representations for dual spin Hall–Littlewood functions are found in
[Bor17, Proposition 7.3], [BP18, Section 7.3].

The Whittaker functions are eigenfunctions of the glN quantum Toda Hamiltonian
HToda

2 , see formula (1.1) in the Introduction.
Convention on multiplicative notation. The papers [COSZ14], [OSZ14] use multi-
plicative parameters UN ,i = euN ,i ∈ R>0 instead of the additive ones. In multiplicative
notation, the integration in (7.1) and (7.3) is over the product measures of the form
∏ dUm,i

Um,i
. It is convenient for us to adopt multiplicative notation throughout most of the

discussion of the spinWhittaker functions. We will often denote multiplicative variables
and parameters by capital letters.

7.2. Signatures in continuous space. In contrast with the usual Whittaker functions
indexed by unordered N -tuples of reals, the spin Whittaker functions will be indexed by
nondecreasing sequences of real numbers. Introduce theWeyl chamber of R

N≥1 by

WN := {LN = (LN ,i )1≤i≤N ∈ R
N≥1 : LN ,N ≤ LN ,N−1 ≤ . . . ≤ LN ,1}. (7.5)

By W̊N denote the interior of the Weyl chamber with strict inequalities in (7.5).
Given two sequences LN−1 ∈ WN−1 and LN ∈ WN , we say that they interlace if

LN ,i+1 ≤ LN−1,i ≤ LN ,i , for 1 ≤ i ≤ N − 1. (7.6)

As in discrete setting, we denote interlacing by LN−1 ≺ LN . The interlacing relation
is naturally extended to sequences of the same length by dropping the last inequality in
(2.1).

We endow the Weyl chamber WN with the measure dLN
LN

= ∏N
k=1

dLN ,k
LN ,k

. In most

cases we do not explicitly indicate the integration domain WN when the measure dLN
LN

is used.
Define the continuous Gelfand-Tsetlin cone as

GTN := {L
N

= (Lk,i )1≤i≤k≤N ∈ R
N (N+1)/2
≥1 : Lk+1,i+1 ≤ Lk,i ≤ Lk+1,i }, (7.7)

which is the set of interlacing sequences L1 ≺ · · · ≺ LN . The set GTN is endowed with

the measure
dL

N
L
N

= ∏

1≤i≤ j≤N
dL j,i
L j,i

.
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7.3. Spin Whittaker functions. We begin with a branching function from which we can
recursively build spinWhittaker functions. The branching function is an analogue of the
skew polynomial evaluated at a single variable.

Fix a deformation parameter S > 0 throughout the section. Let us denote

AS,X (u, v, z) := 1

B(S + X, S − X)

(

1 − v

z

)S−X−1 (

1 − u

v

)S+X−1
(

1 − u

z

)1−2S

,

(7.8)

where 1 ≤ u < v < z are real, and |X | < S. Here B(·, ·) is the beta function (A.7).

Definition 7.1. Let |X | < S and k ≥ 1. The spin Whittaker branching functions are
given by

fX (Lk; Lk+1) := 1Lk≺Lk+1

(

Lk+1,k+1 · · · Lk+1,1

Lk,k · · · Lk,1

)−X k
∏

i=1

AS,X (Lk+1,i+1, Lk,i , Lk+1,i ).

We now introduce the main object of the present section.

Definition 7.2 (SpinWhittaker functions). For N ≥ 1, consider parameters X1, . . . , XN
and S such that |Xi | < S for all i . The spin Whittaker functions fX1,...,XN (LN ), LN ∈
WN , are defined recursively by

fX1(L1,1) := L−X1
1,1 (7.9)

for N = 1, and via the branching rule

fX1,...,XN (LN ) :=
∫

LN−1≺LN

fX1,...,XN−1(LN−1) fXN (LN−1; LN )
dLN−1

LN−1
(7.10)

for N ≥ 2.

Example 7.3. (Two-variable spinWhittaker function) Let us compute the integral (7.10)
for N = 2. Denote X2 = (X,Y ), L2 = (u, u + α), where u ≥ 1, α > 0. Then

fX,Y (u, u + α)

= (u(u + α))−Y

B(S + Y, S − Y )

(

1 − u

u + α

)1−2S
∫ u+α

u
vY−X−1

(

1 − v

u + α

)S−Y−1 (

1 − u

v

)S+Y−1
dv

= u−Y (u + α)S

B(S + Y, S − Y )

∫ 1

0
(u + tα)−X−S (1 − t)S−Y−1 t S+Y−1dt,

wherewe changed the variable as v = u+αt , t ∈ [0, 1]. The integral can nowbe evaluated
using Euler’s representation of the Gauss hypergeometric function 2F1 (A.10). Let us
also rename back z = u + α. We have

fX,Y (u, z) = (z/u)Su−X−Y
2F1

(

S + X , S + Y
2S

∣

∣

∣ 1 − z

u

)

. (7.11)

When |1− z/u| ≥ 1, the hypergeometric function in (7.11) should be understood in the
sense of analytic continuation.

We remark that most of the properties of the spin Whittaker functions given below
in this section can be directly derived for N = 2 from known properties of the Gauss
hypergeometric function 2F1.



Spin q-Whittaker Polynomials 1381

Proposition 7.4. For XN = (X1, . . . , XN ) with |Xi | < S, the spin Whittaker function
fXN

(LN ) is well-defined and continuous in LN ∈ WN .

In particular, we can first define fXN
(LN ) for LN ∈ W̊N , and then extend to the whole

Weyl chamber by continuity. (Note that AS,X (u, v, z) (7.8) might have a singularity at
u = z.) The proof of Proposition 7.4 is based on the next two lemmas.

Lemma 7.5. Let �1 > 0 and let f (·) be a left continuous function on R≥1. Then, we
have

lim
�3→�−

1

∫ �1

�3

d�2

�2
AS,X (�3, �2, �1) f (�2) = f (�1). (7.12)

Proof. To compute the limit set �3 = �1 − δ for a small positive δ. After a change of
variable �2 = �1 − δ(1 − �′

2), the integral in (7.12) becomes

1

B(S + X, S − X)

∫ 1

0
d�′

2

(

�1

�1 − δ(1 − �′
2)

)S+X

(1 − �′
2)

S−X−1�′S+X−1
2 f (�1 − δ(1 − �′

2)).

Using the left continuity of f , we see that the integrand converges to (1 −
�′
2)

S−X−1�′S+X−1
2 f (�1) as δ → 0. The limiting integrand integrates to B(S + X, S− X),

and so by the Dominated Convergence Theorem the lemma follows. ��
Lemma 7.6. Let f : WN−1 → C be left continuous in each of LN−1,i . Define F :
W̊N → C as

F(LN ) =
∫

f (LN−1) fX (LN−1; LN )
dLN−1

LN−1
. (7.13)

Then F is continuous and can be extended by continuity to WN .

Proof. For LN ∈ W̊N , the singularities of the integrand in (7.13) come only from the
branching function fX (LN−1, LN ) and they are of the form

(

1 − LN−1,i

LN ,i

)S−X−1

, or

(

1 − LN ,i+1

LN−1,i

)S+X−1

for some i . Because |X | < S these singularities are summable. Therefore F , is contin-
uous inside the interior W̊N of the Weyl chamber.

To prove that F can be extended by continuity to WN we first define, from small
positive increments δ1, . . . , δN−1, the quantities di = δi + · · · + δN−1 for each i =
1, . . . , N − 1. We aim to compute the limit

lim
δ1,...,δN−1→0

F(LN ,N , LN ,N−1 + dN−1, . . . , LN ,1 + d1),

when some of the LN ,i ’s are equal to each other. Before the limit, this function is equal
to

∫ LN ,N−1+δN−1

LN ,N

AS,X (LN ,N , LN−1,N−1, LN ,N−1 + δN−1)
dLN−1,N−1

LN−1,N−1

· · ·
∫ LN ,1+d2+δ1

LN ,2+d2
AS,X (LN ,2 + d2, LN−1,1, LN ,1 + d2 + δ1)

dLN−1,1

LN−1,1
f (LN−1)

(
∏N−1

i=1 LN−1,i
∏N

i=1(LN ,i + di )

)X

.
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For any i such that LN ,i = LN ,i+1, make the change of variables LN−1,i = LN ,i +
di+1 − δi (1− �N−1,i ). As in the proof of Lemma 7.5, this removes all the corresponding
singularities. Therefore, the limit as δ1, . . . , δN−1 → 0 exists, is finite, and can be
computed using (7.12). ��
Proof of Proposition 7.4. For N = 1 the spin Whittaker function (7.9) is clearly con-
tinuous. Therefore, by Lemma 7.6, fX1,X2(L2) is well defined and continuous on W2.
Proceeding by induction on N , we get the result of Proposition 7.4. ��

The next corollary gives a Givental type representation of the spin Whittaker func-
tions, obtained by writing down explicitly the recursive definition (7.10).

Corollary 7.7. We have

fX1,...,XN (LN ) =
∫

∏

1≤k≤N

∏k−1
i=1 LXk

k−1,i
∏k

i=1 L
Xk
k,i

∏

1≤i≤k≤N−1

AS,Xk+1 (Lk+1,i+1, Lk,i , Lk+1,i )
dL

N−1

L
N−1

.

(7.14)

Proof. Because the sequence of integrations as in (7.10) leading to fXN
(LN ) is (abso-

lutely) convergent, so is the integration over the Gelfand-Tsetlin array GTN−1. The two
integration procedures give the same result by the Fubini–Tonelli theorem. ��

7.4. Dual Spin Whittaker functions. In this section we define a dual family of functions.
Given interlacing sequences ˜Lk ≺ Lk of the same length k, introduce the dual spin
Whittaker branching functions

gY (˜Lk; Lk) := 1
˜Lk≺Lk

1

�(S − Y )

(

˜Lk,k · · ·˜Lk,1

Lk,k · · · Lk,1

)Y (

1 − ˜Lk,1

Lk,1

)S−Y−1

×
k
∏

i=2

AS,−Y (˜Lk,i , Lk,i ,˜Lk,i−1).

(7.15)

For pairs of interlacing sequences Lk−1 ≺ Lk , k ≥ 1, of different lengths, set

gY (Lk−1; Lk) := gY ((1, Lk−1); Lk).

Remark 7.8. One can also write gY as

gY (˜Lk; Lk) = L−Y
k,1

�(S − Y )

(

1 − ˜Lk,1

Lk,1

)S−Y−1

f−Y (�k−1;˜Lk), (7.16)

where Lk = (�k−1, Lk,1).

Definition 7.9. Let N ≤ M and consider parameters Y1, . . . ,YM such that |Yi | < S for
all i . The dual spin Whittaker functions are defined recursively by

gY1,...,YM (LN ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∫

gY1,...,YM−1(
˜LN )gYM (˜LN ; LN )

d˜LN
˜LN

if N < M,

∫

gY1,...,YN−1(
˜LN−1)gYN (˜LN−1; LN )

d˜LN−1
˜LN−1

if N = M.

(7.17)
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In particular, for M = N = 1 we have

gY (L) = gY (1; L) = L−Y (1 − L−1)S−Y−1

�(S − Y )
.

The next two propositions explain that gY1,...,YM are well-defined as elements of the
“dual” space of compactly supported continuous functions on the Weyl chamber WN .

Proposition 7.10. Let f (LN ) be a compactly supported continuous function on WN .
Then the function

˜LN �→
∫

gY (˜LN ; LN ) f (LN )
dLN

LN
, (7.18)

is also compactly supported and continuous.

Proof. We evaluate the integral (7.18) using expression (7.16) for gY as

∫

dLN ,1

L1+Y
N ,1

1

�(S − Y )

(

1 − ˜LN ,1

LN ,1

)S−Y−1 ∫

f (�N−1, LN ,1)
d�N−1

�N−1
f−Y (�N−1;˜Lk).

ByLemma 7.6, the integral in the variables �N−1 defines a family of continuous bounded
functions in˜LN , depending on LN ,1. The (improper) integral in LN ,1 is convergent both
at ˜LN ,1 and ∞ (the latter because f vanishes for LN ,1 large enough). This proves the
claim. ��
Proposition 7.11. Let f (LN ) be a compactly supported continuous function. Then the
integral

∫

gY1,...,YM (LN ) f (LN )
dLN

LN

is absolutely convergent.

Proof. This follows from Proposition 7.10 applied recursively after expanding gY1,...,YM
using the branching rules (7.17). ��

7.5. Convergence of the sqW functions as q → 1. Here and in the following subsection
we establish that the spin Whittaker functions fX (LN ) and gY (LN ) are scaling lim-
its, as q → 1, of the spin q-Whittaker functions Fλ(x1, . . . , xN ) and F

∗
μ(y1, . . . , yk),

respectively. Recall that they also depend on two parameters, q ∈ (0, 1) and s ∈ (−1, 0).
First, in this subsection we deal with the non-dual functions. Let us fix a scaling of

all parameters.

Definition 7.12 (Scaling). We consider the following renormalization of parameters:

xi = qXi , s = −qS, λij = ⌊

logq(1/Li, j )
⌋

. (7.19)

We will assume throughout that

S > 0, |Xi | < S, and 1 ≤ Li+1, j+1 ≤ Li, j ≤ Li+1, j

for all i, j . Therefore, the pre-limit quantities in (7.19) satisfy s ∈ (0, 1), xi ∈
(−s,−s−1), and 0 ≤ λi+1j+1 ≤ λij ≤ λi+1j .
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For any triple of real numbers 1 ≤ �3 ≤ �2 ≤ �1, set ni :=
⌊

logq(1/�i )
⌋

(so
0 ≤ n3 ≤ n2 ≤ n1).

Lemma 7.13. With the above notation, for any function f : Z → R we have

n1
∑

n2=n3

f (n2) =
∫ �1

�3

1

�q(�3, �2, �1)
f (
⌊

logq(1/�2)
⌋

)
d�2

�2
, (7.20)

where

�q(�3, �2, �1) :=
∫ min(�1,q−n2−1)

max(�3,q−n2 )

d�′
2

�′
2

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

− log q if n3 < n2 < n1;
log(qn1�1) if n3 < n2 = n1;
− log(qn3+1�3) if n3 = n2 < n1;
log(�1/�3) if n3 = n2 = n1.

(7.21)

When �3 = �1, the integral in (7.20) is understood in the limiting sense.

Proof. This follows by observing that �q is the measure of intervals where the function
�2 �→ ⌊

logq(1/�2)
⌋

is constant, and simultaneously �2 lies in the interval [�3, �1]. ��
The rescaled spin q-Whittaker functions are defined recursively as

f
(q)
XN

(LN−1; LN ) =
N−1
∏

k=1

1

�q(LN ,k+1, LN−1,k, LN ,k)
FλN /λN−1(xN )

∣

∣

∣

∣

scaling (7.19)

;

f
(q)
X1

(L1,1) = x
λ11
1

∣

∣

∣

∣

scaling (7.19)

= qX1
⌊

logq (1/L1,1)
⌋

;

f
(q)
X1,...,XN

(LN ) =
∫

f
(q)
X1,...,XN−1

(LN−1) f
(q)
XN

(LN−1; LN )
dLN−1

LN−1
,

The next theorem is the main result of this subsection:

Theorem 7.14. We have

lim
q→1

f
(q)
X1,...,XN

= fX1,...,XN , (7.22)

uniformly on any compact subset ofWN .

Pointwise convergence in (7.22) is a consequence of a simpler result stated in Lemma
2.2 of [BC16a] (reproduced as Lemma C.1 in Appendix 10.5):

lim
q→1

(�q A; q)∞
(�qB; q)∞

= (1 − �)B−A, (7.23)

for any � ∈ (0, 1) and A, B > 0.
By (7.23) and through a repeated use of the identity

(qa; q)n

(qb; q)n
= 1n=0 + 1n≥1

�q(b)

�q(a)
(1 − q)b−a (qb+n; q)∞

(qa+n; q)∞
, (7.24)

where �q is the q-Gamma function (A.5), one readily gets the pointwise convergence

of the branching function f(q)
X (LN−1; LN ) to fX (LN−1; LN ). Nevertheless, for the finer
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uniform convergence result of Theorem 7.14, a slightly more accurate analysis of ratios
of q-Pochhammer symbols appearing in the sqW functions is required. We postpone
this technical discussion to Appendix 10.5. Let us summarize the main technical result
proven in Appendix 10.5:

Proposition 7.15. Let f (LN−1) be a continuous function onWN−1. Then for any LN ∈
WN we have

lim
q→1

∫

f (LN−1) f
(q)
X (LN−1; LN )

dLN−1

LN−1
=

∫

f (LN−1) fX (LN−1; LN )
dLN−1

LN−1
,

(7.25)

and the convergence is uniform on compact subsets ofWN .

The continuous function f in Proposition 7.15 can also be replaced by a uniformly
converging sequence:

Corollary 7.16. Let f (q)(LN−1) be a sequence uniformly convergent as q → 1 on
compact subsets of WN−1 to a continuous function f (LN−1). Then

lim
q→1

∫

f (q)(LN−1) f
(q)
X (LN−1; LN )

dLN−1

LN−1
=

∫

f (LN−1) fX (LN−1; LN )
dLN−1

LN−1

and the convergence is uniform on compact subsets ofWN .

Proof. This follows fromProposition 7.15 and the fact that for fixed LN ∈ WN , the func-

tions LN−1 �→ f
(q)
X (LN−1; LN ) and LN−1 �→ fX (LN−1; LN ) are compactly supported

on WN−1. ��
Proof of Theorem 7.14. For N = 1 we have

f
(q)
X1

(L) = qX1
⌊

logq (1/L)
⌋

−−−→
q→1

L−X1 = fX1(L),

uniformly with respect to L ≥ 1 varying in any compact domain. Corollary 7.16 then
implies Theorem 7.14 by induction on N . ��

7.6. Convergence of the dual sqW functions as q → 1. We now establish the conver-
gence of functions F

∗ to the dual spin Whittaker functions g. The scaling of parameters
we adopt is that of Definition 7.12. For consistency with the previous sections, dual
functions will depend on y variables for which the scaling is

yi = qYi , |Yi | < S. (7.26)

For two interlacing arrays˜Lk ≺ Lk define the rescaled dual spinWhittaker branching
functions

g
(q)
Yk

(˜Lk; Lk) = (1 − q)S−Yk

⎛

⎝

k
∏

j=1

1

�q (˜Lk, j , Lk, j ,˜Lk, j−1)

⎞

⎠F
∗
λk/˜λk

(yk)

∣

∣

∣

∣

scaling (7.19),(7.26)

,

(7.27)
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where, by agreement, ˜Lk,0 = ∞, and �q is given by (7.21). In particular, the rescaled
one-variable function is (assuming L > 1 and q close enough to 1)

g
(q)
Y (L) = g

(q)
Y (1; L) = (1 − q)S−Y 1

(− log q)

(qS−Y ; q)⌊logq (1/L)
⌋

(q; q)⌊logq (1/L)
⌋

qY
⌊

logq (1/L)
⌋

.

For interlacing arrays of different lengths Lk−1 ≺ Lk , we set g(q)
Y (Lk−1; Lk) =

g
(q)
Y ((1, Lk−1); Lk), as before.Define the rescaled dual spinq-Whittaker functions recur-

sively as

g
(q)
Y1,...,YM

(LN ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∫

g
(q)
Y1,...,YM−1

(˜LN )g
(q)
YM

(˜LN ; LN )
d˜LN
˜LN

if N < M,

∫

g
(q)
Y1,...,YN−1

(˜LN−1)g
(q)
YN

(˜LN−1; LN )
d˜LN−1
˜LN−1

if N = M.

The next result establishes a weak convergence of rescaled branching functions g(q).

Theorem 7.17. Let f (LN ) be a compactly supported continuous function onWN . Then

lim
q→1

∫

g
(q)
Y (˜LN ; LN ) f (LN )

dLN

LN
=

∫

gY (˜LN ; LN ) f (LN )
dLN

LN
, (7.28)

and the convergence is uniform with respect to ˜LN .

Proof. We start by rewriting the branching function g(q)
Y (˜LN ; LN ) as (this follows from

straightforward algebraic manipulations with (7.27))

qYλk1
(qS−Y ; q)λk1−˜λk1

(q; q)λk1−˜λk1

(1 − q)S−Y

�q(˜Lk,1, Lk,1,∞)
f
(q)
−Y (�k−1;˜Lk).

The integral in the left-hand side of (7.28) becomes

∫

dLk,1

L1
k,1

(

qYλk1
(qS−Y ; q)λk1−˜λk1

(q; q)λk1−˜λk1

(1 − q)S−Y

�q(˜Lk,1, Lk,1,∞)

)

∫

d�k−1

�k−1
f
(q)
−Y (�k−1;˜Lk) f (�k−1, Lk,1). (7.29)

The inner integral involving the function f(q)
−Y is uniformly (with respect to˜Lk) convergent

to
∫

d�k−1

�k−1
f−Y (�k−1;˜Lk) f (�k−1, Lk,1)

by virtue of Proposition 7.15. On the other hand, the term inside the parentheses in (7.29)
is uniformly convergent to

L−Y
k,1

�(S − Y )

(

1 − ˜Lk,1/Lk,1
)S−Y−1

,
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when Lk,1 is kept away from˜Lk,1.Moreover, the term inside the parentheses is absolutely
bounded by const×(1−˜Lk,1/Lk,1)

S−Y−1 when Lk,1 approaches˜Lk,1, thanks to Lemma
C.2. Since the resulting term after the q → 1 limit coincides with the expression (7.16)
for the dual branching function gY (˜LN ; LN ), we are done. ��

Similarly to Corollary 7.16, we can let the test function f depend on q:

Corollary 7.18. Let f (q)(LN ) converge, as q → 1, to a compactly supported continuous
function f (LN ), uniformly on WN . Then

lim
q→1

∫

g
(q)
Y (˜LN ; LN ) f (q)(LN )

dLN

LN
=

∫

gY (˜LN ; LN ) f (LN )
dLN

LN

and the convergence is uniform with respect to ˜LN .

7.7. Properties of the spin Whittaker functions. In this subsection we describe the prop-
erties of the spin Whittaker functions which follow in the q → 1 limit from the corre-
sponding properties of the spin q-Whittaker functions.

Proposition 7.19 (Symmetry and shifting). The spin Whittaker function fX1,...,XN (LN )

is symmetric in the Xi ’s for all LN ∈ WN . They also satisfy the shifting property:

fX1,...,XN (aLN ) = a−X1−...−XN fX1,...,XN (LN ), a > 1.

Proof. The symmetry follows from the corresponding symmetry of the sqW polyno-
mial Fλ(x1, . . . , xN ), which ultimately is a consequence of the Yang–Baxter equation.
The shifting property can either be deduced from Proposition 2.9, or obtained in a
similar way by noting that the branching spin Whittaker functions themselves satisfy
fX (aLk; aLk) = a−X fX (Lk; Lk). ��

We now turn to Cauchy type identities for the spin Whittaker functions.

Theorem 7.20 (Skew Cauchy type identity). Assume |X |, |Y | < S and X + Y > 0.
Then, for any LN−1,

˜LN we have
∫

fX (LN−1; LN )gY (˜LN ; LN )
dLN

LN

= �(X + Y )�(2S)

�(S + X)�(S + Y )

∫

fX (˜LN−1;˜LN )gY (˜LN−1; LN−1)
d˜LN−1
˜LN−1

(7.30)

and, when N = 1 we have
∫

fX (L1,1)gY (˜L1,1; L1,1)
dL1,1

L1,1
= �(X + Y )

�(S + X)
fX (˜L1,1). (7.31)

Proof. We first observe that (7.31) is equivalent to the integral representation of B(S −
Y, X + Y ).

In order to prove the general case (7.30) we use Corollaries 7.16 and 7.18. Take a
compactly supported continuous test function φ(LN−1), and set

�f(LN ) :=
∫

φ(LN−1)fX (LN−1; LN )
dLN−1

LN−1
,
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�g(˜LN−1) :=
∫

gY (˜LN−1; LN−1)φ(LN−1)
dLN−1

LN−1
.

Analogously define �
(q)

f and �
(q)
g by substituting respectively fX and gY with f

(q)
X and

g
(q)
Y in the above formulas. It follows from the skew Cauchy Identity for sqW functions

(Proposition 2.21) that
∫

�
(q)

f (LN )g
(q)
Y (˜LN ; LN )

dLN

LN

= �q(X + Y )�q(2S)

�q(S + X)�q(S + Y )

∫

f
(q)
X (˜LN−1;˜LN )�

(q)
g (˜LN−1)

d˜LN−1
˜LN−1

. (7.32)

ByCorollary 7.18wehave�
(q)
g → �g uniformly, and further�g is compactly supported

and continuous by Proposition 7.10. This implies, by Corollary 7.16, that the right-hand
side of (7.32) converges to

�(X + Y )�(2S)

�(S + X)�(S + Y )

∫

fX (˜LN−1;˜LN )�g(˜LN−1)
d˜LN−1
˜LN−1

.

The integral in the left-hand side of (7.32) is absolutely convergent when X + Y > 0.
Since �

(q)

f → �f uniformly by Proposition 7.15, Corollary 7.18 implies that the left-
hand side of (7.32) converges to

∫

�f(LN )gY (˜LN ; LN )
dLN

LN
.

Since the function φ was arbitrary, equality (7.30) follows. ��
Corollary 7.21 (Full Cauchy type identity). Let N ≤ M and |Xi |, |Y j | < S, Xi+Y j > 0
for all i, j . We have

∫

fX1,...,XN (LN ) gY1,...,YM (LN )
dLN

LN

=
M
∏

j=1

�(X1 + Y j )

�(S + X1)

( N
∏

i=2

�(Xi + Y j )�(2S)

�(S + Xi )�(S + Y j )

)

. (7.33)

Proof. Immediately follows fromTheorem7.20 and the branching rules for the functions
f, g. ��

We also have an identity involving a single spin Whittaker function:

Proposition 7.22. Let |Xi | < S. Then we have

∫

LN ,N=1
fX1,...,XN (LN )

N−1
∏

j=1

(

1 − LN , j+1

LN , j

)2S−1 dLN , j

L1+S
N , j

= �(S + X1) · · · �(S + XN )

�(SN + X1 + · · · + XN )
.

Proof. This is a scaling limit of Proposition 2.11. ��
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We now consider the scaling limits of eigenrelations for the sqW functions stated in
Theorems 3.9 and 3.10. This produces two operators acting in the Xi variables which
are diagonal in the spin Whittaker functions. For the next definition we use the shift
operator

TX f (X) := f (X + 1). (7.34)

Definition 7.23. For any N ≥ 1 set

D1 :=
N
∑

i=1

N
∏

j=1
j �=i

Xi + S

Xi − X j
TXi , D1 :=

N
∑

i=1

N
∏

j=1
j �=i

Xi − S

Xi − X j
T −1
Xi

.

The next proposition represents a partial generalization of eigenrelations satisfied by
Whittaker functions (e.g., see [KL01]).

Proposition 7.24 (Eigenrelations for spin Whittaker functions). We have

D1fX1,...,XN (LN ) = L−1
N ,N fX1,...,XN (LN ),

D1fX1,...,XN (LN ) = LN ,1 fX1,...,XN (LN ).

Proof. Weeasily see that operatorsD1,D1 are limiting forms ofD1,D1 (Definition 3.6)
under the scaling (7.19). At the same time we have qλN → L−1

N ,N and q−λ1 → LN ,1
under the same scaling. Therefore, (3.11), (3.15) and convergence (7.22) imply the
claimed eigenrelation. ��

7.8. Formal reduction to the usual Whittaker functions. Just like the sqW polynomials
reduce to the q-Whittaker polynomials setting s = 0, it should be possible to prove
that, under the correct scaling, our spin Whittaker functions converge to the Whittaker
functions. An evidence for this is suggested by the following computation.

Set

Lk,i = Sk+1−2i euk,i , Xk = −iλk, (7.35)

then, in the limit S → ∞ we have

(

Lk,k · · · Lk,1

Lk+1,k+1 · · · Lk+1,1

)Xk+1

−−−−−−−→ exp

{

iλk

(

k+1
∑

i=1

uk+1,i −
k

∑

i=1

uk,i

)}

;
(

1 − Lk,i

Lk+1,i

)S−Xk+1−1

−−−−−−−→ exp
{−euk,i−uk+1,i

} ;
(

1 − Lk+1,i+1

Lk,i

)S+Xk+1−1

−−−−−−−→ exp
{−euk+1,i+1−uk,i

} ;
(

1 − Lk+1,i+1

Lk+1,i

)1−2S

−−−−−−−→ 1;

4S S
1
2 B(S + X, S − X) −−−−−−−→ 2

√
π .

(7.36)
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All the limits in (7.36) are straightforward (note that the last one requires the Stirling
approximation). Thus, the branching function f, rescaled by a factor depending solely
on S, converges locally uniformly to the Baxter Q-operator QN→N−1 (7.2) for the usual
Whittaker functions:

(

4π

S16S

) N−1
2

fXN (LN−1; LN )
scaling (7.35)−−−−−−−−→

S→∞ QN→N−1
λN

(uN , uN−1).

These computations suggest that the same type of convergence should hold for the
full functions. Namely, under (7.35) and as S → +∞, the spin Whittaker functions

fXN
(LN ) rescaled by (4S−1π/16S)

N (N−1)
4 should converge to the usual Whittaker func-

tions ψλN
(uN ). A proof of this convergence would require a finer analysis to justify the

exchange of the S → +∞ limit and integration, and goes beyond the scope of this paper.

8. Spin Whittaker Processes and Beta Polymers

In this section define spin Whittaker processes, and establish their connection with two
beta polymer type models introduced in [BC16a] and [CMP19], respectively.

8.1. Spin Whittaker processes. The definition of spin Whittaker processes is a straight-
forward analogy of the discrete level F/G processes (Definition 4.3). The key role
is played by the Cauchy type identities (established for spin Whittaker functions in
Sect. 7.7).

Definition 8.1. Set X = (X1, . . . , XN ) and Y = (Y1, . . . ,YT ), with |Xi |, |Y j | < S
and Xi + Y j > 0 for all i, j . The (ascending) spin Whittaker process is the probability
measure on interlacing sequences L

N
(T ) = (Lk,i (T ))1≤i≤k≤N (that is, on the Gelfand-

Tsetlin cone GT N (7.7)) with the following density with respect to the measure
dL

N
L
N

=
∏

1≤i≤ j≤N
dL j,i
L j,i

:

PX;Y(L
N
) = fX1(L1)fX2(L1; L2) · · · fXN (LN−1; LN )gY(LN )

�(X; Y)
. (8.1)

The normalizing constant in (8.1) follows from the Cauchy identity of Corollary 7.21:

�(X; Y) =
T
∏

j=1

�(X1 + Y j )

�(S + X1)

( N
∏

i=2

�(Xi + Y j )�(2S)

�(S + Xi )�(S + Y j )

)

.

For the next result we denote the ascending sqW/sqWprocess, subject to the rescaling
(7.19), (7.26), by

P
(q)

X;Y(L
N
) = f

(q)
X1

(L1)f
(q)
X2

(L1; L2) · · · f(q)
XN

(LN−1; LN )g
(q)

Y (LN )

�(q)(X; Y)
,

where the normalization constant is (cf. (7.32))

�(q)(X; Y) =
T
∏

j=1

�q(X1 + Y j )

�q(S + X1)

( N
∏

i=2

�q(Xi + Y j )�q(2S)

�q(S + Xi )�q(S + Y j )

)

.
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Theorem 8.2. Under the scaling (7.19), (7.26), the ascending sqW/sqW process con-
verges weakly to the spin Whittaker process

P
(q)

X;Y −−−→
q→1

PX;Y. (8.2)

Proof. For any continuous bounded test function φ(L
N
) on GT N we have

E
(q)(φ) = 1

�(q)(X; Y)

∫

dLN

LN
g
(q)

Y (LN )

∫ dL
N−1

L
N−1

f
(q)
X1

(L1)f
(q)
X2

(L1; L2) · · · f(q)
XN

(LN−1; LN )φ(L
N
). (8.3)

The integral is absolutely convergent and as a consequence of Corollaries 7.16 and 7.18
it converges to the average E(φ) with respect to the spin Whittaker process. ��
Remark 8.3. Developing the argument sketched in Sect. 7.8 it should be possible to show
that the spin Whittaker process of Definition 8.1 converges to the α-Whittaker process
from [COSZ14], [BC14]. In this case the correct way to rescale the random variables
Lk,i (T ) is

Lk,i (T ) = ST+k+1−2i euk,i (T ). (8.4)

In the limit S → ∞ the process {uk,i (T ) : 1 ≤ i ≤ k ≤ N } should be then described by
the density

Q1→0
iX1

(u1, 0)Q
2→1
iX2

(u2, u1) · · · QN→N−1
iXN

(uN , uN−1)θY(uN )
∏N

i=1
∏T

j=1 �(Xi + Y j )
, (8.5)

where Qk+1→k and θY are given in (7.2) and (7.4), respectively.

8.2. Strict-weak beta polymer model. We will now recall the strict-weak beta polymer
introduced in [BC16a].

Definition 8.4. Let Bi, j ∼ B(Xi + Y j , S − Y j ) be a family of independent beta random
variables. The strict-weak beta polymer model partition function Z(i, j), i ≥ 1, j ≥ 0,
is the random function satisfying the recurrence

⎧

⎨

⎩

Z(i, j) = Z(i, j − 1)Bi, j + Z(i − 1, j − 1)(1 − Bi, j ) for 1 < i ≤ j;
Z(1, j) = Z(1, j − 1)B1, j for j > 0;
Z(i, 0) = 1 for i > 0.

Note that all the partition functions Z(i, j) belong to (0, 1]. In particular, the probabil-
ity distribution of the strict-weak beta polymer is completely determined by the joint
moments.

Proposition 8.5. Recall the q-Hahn vertex model height function Hur
q-Hahn (Sect. 6.4).

Define Z (q)(i, j) = qH
ur
q-Hahn(i, j). Then, under the scaling (7.19), Z (q) converges weakly

to the strict-weak beta polymer partition function:

Z (q)(i, j) −−−→
q→1

Z(i, j).
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Proof. This result is equivalent to Proposition 2.1 of [BC16a] in the homogeneous case
Xi = X , Y j = Y for all i, j . One can easily check that the proof given there also works
in our inhomogeneous setting. ��
Theorem 8.6. The marginal process {Lk,k(T )−1 : k = 1, . . . N , T ≥ N } of the spin
Whittaker process PX,Y is equivalent in distribution to the strict-weak beta polymer
partition functions model {Z(k, T ) : k = 1, . . . , N , T ≥ N }.

Note that since Lk,k(T ) ∈ R≥1, we have Lk,k(T )−1 ∈ (0, 1], which agrees with the
range of the beta polymer partition functions.

Proof of Theorem 8.6. This is a direct consequence of Theorems 6.13 and 8.2 andPropo-
sition 8.5. Indeed, the last rowmarginal of the sqW/sqWprocess ismatched to theq-Hahn
vertex model height function, and in the limit q → 1 this implies that the last coordinate
marginal of the spin Whittaker process is matched to the beta polymer Z(i, j). ��

Let us make two remarks on this result.

Remark 8.7. A weaker version of Theorem 8.6 that matches Lki ,ki (T )−1 and Z(ki , T )

for each single time T can alternatively be proved using moment formulas. Namely, the
eigenoperators of Definition 7.23 may be used to extract multiple integral formulas for
the jointmoments of Lki ,ki (T )−1 under the spinWhittaker processes. These formulas can
then be matched to the ones for the joint moments of the beta polymer. The latter in the
homogeneous case are obtained in [BC16a, Proposition 3.4], and their inhomogeneous
generalization is rather straightforward, cf. [Pet21, Proposition 6.1].

Remark 8.8. It was noticed in [BC16a, Remark 1.5] that under the scaling Z(i, T ) =
ST−i+1z(i, T ) the process z(i, T ) converges, when S → ∞, to the strict-weak gamma
polymermodel introduced by Seppäläinen in an unpublished note and studied in [OO15],
[CSS15]. This scaling of polymers corresponds to the scaling (8.4) for the full spinWhit-
taker process. As S goes to infinity, Theorem 8.6 turns into the matching between strict
weak gamma polymer model and α-Whittaker process that was originally discovered in
[OO15]. This observation is another piece of evidence supporting the formal S → +∞
scaling described in Sect. 7.8.

8.3. Another beta polymer type model. Let us now recall the beta polymer type model
which was introduced in [CMP19]. We employ notation from Appendix 10.5.

Definition 8.9. The random function ˜Z(i, j), for i, j ∈ Z≥0 is defined by the recurrence

˜Z(i, j) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 for j = 0,

˜Z(1, j − 1)˜B1, j for i = 1,

W>
i, j

˜Z(i, j − 1) + (1 − W>
i, j )

˜Z(i − 1, j) if ˜Z(i, j − 1) > ˜Z(i − 1, j),

(1 − W<
i, j )

˜Z(i, j − 1) +W<
i, j

˜Z(i − 1, j) if ˜Z(i, j − 1) < ˜Z(i − 1, j),

(8.6)

where ˜B1, j ∼ B−1(X1 + Y j , S − Y j ) are independent inverse beta random variables,
and

W>
i, j ∼ NBB−1

(

2S − 1,
˜Z(i − 1, j) − ˜Z(i − 1, j − 1)
˜Z(i, j − 1) − ˜Z(i − 1, j − 1)

, Xi + Y j , S − Y j

)

,

W<
i, j ∼ NBB−1

(

2S − 1,
˜Z(i, j − 1) − ˜Z(i − 1, j − 1)
˜Z(i − 1, j) − ˜Z(i − 1, j − 1)

, Xi + Y j , S − Xi

)

.

(8.7)
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For i > 1, j > 0, we have ˜Z(i, j − 1) �= ˜Z(i − 1, j) with probability one.

Proposition 8.10. Recall the 4φ3 vertex model height function Hul
φ (i, j) (Sect. 6.5).

Define ˜Z (q)(i, j) = q−Hul
φ (i, j). Then, under the scaling (7.19), Z (q) converges weakly

to the process ˜Z:

˜Z (q)(i, j) −−−→
q→1

˜Z(i, j).

Proof. In the homogeneous case Xi = 0,Y j = Y for all i, j , thiswas proven in [CMP19].
The same argument also essentially applies to the inhomogeneous case, and we will not
repeat the computations here. The non-trivial part of the proof is to understand how the
Xi parameters appear in the definition of W<

i, j ,W
>
i, j . The interested reader can check

the validity of our statements starting from (6.12) and reproducing the computations of
Section 4.3 of [CMP19]. ��
Theorem 8.11. The marginal process {Lk,1(T ) : k = 1 . . . N , T ≥ N } of the spin
Whittaker process PX,Y is equivalent in distribution to the process {˜Z(k, T ) : k =
1, . . . N , T ≥ N }.
Proof. This is established similarly to Theorem 8.6 by combining the matching of The-
orem 6.17 with the q → 1 scaling limits. ��

8.4. Reduction to log-gamma polymer. Here we show that the model ˜Z(i, j) of Defini-
tion 8.9 reduces, as S → +∞, to the well-known log-gamma polymer model introduced
in [Sep12]. This proof is more involved than the rather straightforward observation for
the strict-weak beta polymer (Remark 8.8).

Definition 8.12 (Log-gamma polymer). Let {gi, j : i, j ∈ Z≥1} be a sequence of indepen-
dent inverse gamma random variables, gi, j ∼ Gamma−1(Xi + Y j ) with density (A.8).
The random function z̃ defined by the recurrence

z̃(i, j) =

⎧

⎪

⎨

⎪

⎩

gi, j (̃z(i − 1, j) + z̃(i, j − 1)) if i, j ≥ 1 and i + j ≥ 3;
g1,1 if i = j = 1;
0 else,

(8.8)

is the point-to-point log-gamma polymer partition function.

The log-gamma polymer model was introduced (with a proof of its exact solvability)
by Seppäläinen in [Sep12]. One can view z̃(i, j) as a partition function of up-right
directed paths from (1, 1) to (i, j), where theweight of each path equals the product of the
quantities gi ′, j ′ along the path. In [COSZ14] the log-gamma polymer model was given
a powerful combinatorial interpretation using Kirillov’s geometric RSK (Robinson–
Schensted–Knuth) algorithm. This showed the distributionalmatching of the log-gamma
polymer with a marginal of the Whittaker process (8.5).

The next statement shows that the log-gamma polymer model can be obtained in a
S → +∞ scaling limit from the beta polymer like model of Definition 8.9. Modulo
Remark 8.3, this together with Theorem 8.11 produces an alternative derivation of the
results of [COSZ14].
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Proposition 8.13. Consider the scaling ˜Z(i, j) = S j+i−1̃z(S)(i, j) of the process from
Definition 8.9. Then the rescaled process z̃(S) converges weakly to the log-gamma poly-
mer:

z̃(S)(i, j) −−−→
S→∞ z̃(i, j).

Proof. We argue by induction. When i = j = 1, then z̃(S)(1, 1) = S−1B−1(X1 +
Y1, S−Y1). In the large S limit this converges to Gamma−1(X1 +Y1), which is precisely
z̃(1, 1).

Fix i, j and assume that for all i ′, j ′ such that i ′ + j ′ < i + j the convergence
z̃(S)(i ′, j ′) → z̃(i ′, j ′) holds. Let us compute the densities of random variables S−1W>

i, j

and S−1W<
i, j , that are rescalings of (8.7), in the large S limit. We show the computations

only forW>
i, j since the other case is very similar. The density of S−1W>

i, j (depending on
the variable x ∈ (0, 1)) is, from (8.7) and (A.9), equal to

( 1
x

)Xi+Y j+1 (1 − 1
Sx

)S−Y j−1

�(Xi + Y j )

�(S + Xi )

SXi+Y j �(S − Y j )

×(1 − pS)
2S−1

2F1

(

2S − 1, S + Xi
S − Y j

∣

∣

∣ pS

(

1 − 1

Sx

))

, (8.9)

where

pS = ˜Z(i − 1, j) − ˜Z(i − 1, j − 1)
˜Z(i, j − 1) − ˜Z(i − 1, j − 1)

= Sz̃(S)(i − 1, j) − z̃(S)(i − 1, j − 1)

Sz̃(S)(i, j − 1) − z̃(S)(i − 1, j − 1)

∼ p := z̃(i − 1, j)

z̃(i, j − 1)

is smaller than 1.
The limit of the first few factors in (8.9) is straightforward:

( 1
x

)Xi+Y j+1 (1 − 1
Sx

)S−Y j−1

�(Xi + Y j )

�(S + Xi )

SXi+Y j �(S − Y j )
−−−−−→

S→∞

( 1
x

)Xi+Y j+1 e− 1
x

�(Xi + Y j )
.

To compute the limit of the Gaussian hypergeometric function, we use the Euler trans-
formation

2F1

(

a , b
c

∣

∣

∣ z

)

= (1 − z)c−a−b
2F1

(

c − a , c − b
c

∣

∣

∣ z

)

,

so that the remaining terms in (8.9) become

(

1 − pS
1 − pS +

pS
Sx

)2S−1
(

1 − pS +
pS
Sx

)−Xi−Y j

2F1

(−S − Y j + 1,−Xi − Y j

S − Y j

∣

∣

∣ pS

(

1 − 1

Sx

))

.

We have
(

1 − pS
1 − pS +

pS
Sx

)2S−1
(

1 − pS +
pS
Sx

)−Xi−Y j −−−−−→
S→∞ e− 2p

(1−p)x (1 − p)−Xi−Y j ,
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whereas

2F1

(−S − Y j + 1,−Xi − Y j

S − Y j

∣

∣

∣ pS

(

1 − 1

Sx

))

−−−−−→
S→∞ 1F0

(−Xi − Y j

−
∣

∣

∣ − p

)

= (1 + p)Xi+Y j .

Our computations imply that

S−1W>
i, j −−−−−→

S→∞
z̃(i − 1, j) + z̃(i, j − 1)

z̃(i, j − 1) − z̃(i − 1, j)
Gamma−1(Xi + Y j ).

Essentially repeating the computations for S−1W<
i, j , we obtain

S−1W<
i, j −−−−−→

S→∞
z̃(i − 1, j) + z̃(i, j − 1)

z̃(i − 1, j) − z̃(i, j − 1)
Gamma−1(Xi + Y j ).

Thus, we see that in the scaling limit as S → +∞, the beta polymer like model recur-
rence relation (8.6) becomes (8.8), the recurrence for the log-gamma polymer partition
functions. This completes the proof. ��

9. Deformed Quantum Toda Hamiltonian

In this section we consider the scaling limit of the Pieri rule (2.32) which states that
the spin q-Whittaker polynomials Fλ(x1, . . . , xN ) are eigenfunctions of an operator
acting on the label λ. This scaling limit leads to an eigenoperator for the spin Whittaker
functions. This operator acts as a second order differential operator in the (additive
versions of the) variables LN . We call is the S-deformed quantum Toda Hamiltonian.
Our scaling of the Pieri rules are inspired by [GLO12b] where the Pieri rule for the q-
Whittaker polynomials was understood as a discretization of the (undeformed) quantum
Toda Hamiltonian.

9.1. Refined Pieri operators. We start by refining the Pieri operator (HsHL f )(μ) =
∑

λ f (λ)F∗
λ′/μ′(v) introduced in (2.33), by considering its expansion in powers of v.

Recall identity (2.32) which states that

(HsHL f )(λ) =
(

(

1

1 − sv

)N−1 N
∏

i=i

(1 + xiv)

)

f (λ), f (λ) = Fλ(x1, . . . , xN ).

Defining Hk by

(1 − vs)N−1HsHL =
N
∑

k=0

vkHk, (9.1)

we see that

HkFλ = ek(x1, . . . , xN )Fλ. (9.2)
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The action of the Hk’s on functions f (λ) can in principle be recovered using the
vertex weights w∗ in Fig. 4 (without the denominator 1 − vs) which compose the sHL
functions (1 − vs)N−1F∗

λ′/μ′ . In the simplest cases k = 0 or N one can verify that

H0 = Id, HN = Tμ1 · · · TμN ,

where T is the shift operator

(Tμi f )(μ) =
{

f (μ + ei ), if μi < μi−1 or i = 1
0, otherwise.

Indeed, H0 requires no vertical arrows to change from μ to λ, and HN corresponds
to adding a full horizontal path starting at zero and ending at N , so that the arrow
configuration corresponding to λ is obtained from the one for μ by adding one vertical
arrow at location N .

When 1 ≤ k ≤ N −1, explicit formulas forHk look significantly more involved. We
need only the one for k = 1, and will not discuss the other operators Hk .5 In the next
statement, by agreement, we set μ0 = +∞, μN+1 = −∞.

Proposition 9.1. We have

H1 = h0,0 Id +
∑

0≤k<�≤N

hk,�Tμk+1 · · · Tμ�
,

with

h0,0 = −s
N−1
∑

j=1

qμ j−μ j+1,

hk,� = (1 − qμk−μk+1)(−s)�−k−1qμk+1−μ�(1 − s2qμ�−μ�+1).

Proof. Express the action of H1 as

H1 f (μ) =
∑

μ≺λ

H(μ; λ) f (λ),

where the term H(μ; λ) corresponds to the weight of a row of vertices having a config-
uration λ at the top and μ at the bottom. Recall that we are using down-right directed
paths as in Fig. 4, and all the individual vertex weights are multiplied by (1 − vs).

Observe that each vertex somewhere in the bulk comes with the weight v(1−
qμi−μi+1). Therefore, terms proportional to v can only come from configurations with no

horizontal arrows or with a single sequence of horizontal arrows

. The first case, corresponding to λ = μ, provides us with the
term h0,0. For the latter case, let k be the column of the leftmost vertex emanating an
horizontal arrow, and let � be the column where the single horizontal path stops. Such
configuration corresponds to a partition λ = μ+ ek+1 + · · ·+ e�. Isolating the coefficient
of v in the expansion of product of vertex weights, we recover hk,�. ��

5 Appropriate scaling limits of the higher operators Hk could potentially lead to higher order differential
operators commuting with the deformed quantum Toda HamiltonianH2 introduced below in this section. We
leave this investigation to a future work.
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9.2. Scaling of the Pieri operators. Introduce the differential operators acting in the
variables u1, . . . , uN :

H1 :=
N
∑

i=1

∂ui ; (9.3)

H2 := − 1

2

N
∑

i=1

∂2ui +
∑

1≤i< j≤N

S−2( j−i)eu j−ui (S − ∂ui )(S + ∂u j ). (9.4)

In the second operator, the product is understood in the usual way as

(S − ∂ui )(S + ∂u j ) = S2 Id + S(∂u j − ∂ui ) − ∂ui ∂u j .

For the next result we define the rescaling

q = e−ε, qλi = e−ui

SN+1−2i , s = −e−εS . (9.5)

Proposition 9.2. Under the scaling (9.5), we have

H1 = lim
ε→0

1

ε
(H1 − N ) ,

H2 = − lim
ε→0

1

ε2

(

H1 − N +
1

2
H2

N − 2HN +
3

2

)

.

We remark that the combinations of the refined Pieri operators leading toH1 andH2
are the same as in the q-Whittaker case [GLO12b, Proposition 2.1], and correspond to
the scaling of eigenvalues in the proof of Theorem 9.3 below. The scaling (9.5) of the
variables, however, is different.

Proof of Proposition 9.2. First, expand the shift operator as ε → 0. From (9.5) we see
that the increment by 1 inμi corresponds to the increment by log(q−1) = ε in the scaled
variable ui . Therefore,

Tμk = Id + ε∂uk +
ε2

2
∂2uk + o(ε2),

and hence

Tμk+1 · · · Tμ�
= Id + ε

�
∑

α=k+1

∂uα +
ε2

2

∑

k+1≤α,β≤�

∂uα,uβ + o(ε2).

This implies that

1

2
H2

N − 2HN +
3

2
= −ε

N
∑

i=1

∂ui + o(ε2). (9.6)
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Next we address the scaling of H1. Set

ak,� =
{

S−2(�−k)eu�−uk if 1 ≤ k ≤ � ≤ N ,

0 else.

Expanding the coefficients hk,�, we have

h0,0 =
(

1 − εS +
ε2

2
S2

) N−1
∑

j=1

a j, j+1 + o(ε2),

and (recall that we assume k < �)

hk,� = (ak+1,� − ak,� − ak+1,�+1 + ak,�+1)

+ εS

{

− (� − k − 1)(ak+1,� − ak,�) + (� − k + 1)(ak+1,�+1 − ak,�+1)

}

+
ε2

2
S2

{

(� − k − 1)2(ak+1,� − ak,�) − (� − k + 1)2(ak+1,�+1 − ak,�+1)

}

+ o(ε2).

Together with the action of the shifts T , we see that hk,�Tk+1 · · · T� expands as

(ak+1,� − ak,� − ak+1,�+1 + ak,�+1) Id

+ ε

{

− S(� − k − 1)(ak+1,� − ak,�) Id + S(� − k + 1)(ak+1,�+1 − ak,�+1) Id

+ (ak+1,� − ak,� − ak+1,�+1 + ak,�+1)
�

∑

α=k+1

∂uα

}

+
ε2

2

{

S2(� − k − 1)2(ak+1,� − ak,�) Id − S2(� − k + 1)2(ak+1,�+1 − ak,�+1) Id

+ (ak+1,� − ak,� − ak+1,�+1 + ak,�+1)
∑

k+1≤α,β≤�

∂2uα,uβ

+ 2S
( − (� − k − 1)(ak+1,� − ak,�) + (� − k + 1)(ak+1,�+1 − ak,�+1)

)

�
∑

α=k+1

∂uα

}

+ o(ε2).

To evaluate the summation
∑

0≤k<�≤N hk,�Tμk+1 · · · Tμ�
, we use the identities in Propo-

sition D.1. We obtain

h0,0 +
∑

0≤k<�≤N

hk,�Tμk+1 · · ·Tμ�

= N + ε

N
∑

i=1

∂ui + ε2

⎧

⎨

⎩

1

2

N
∑

i=1

∂2ui −
∑

1≤i< j≤N

S2(i− j)eu j−ui
(

S − ∂ui
) (

S + ∂u j

)

⎫

⎬

⎭

+ o(ε2).

Together with (9.6) this yields the proof. ��
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For the next result we employ the spinWhittaker functions in the additive parameters
ui , where the multiplicative parameters LN = (LN ,N , . . . , LN ,1) are expressed through
the ui ’s as

LN ,i = SN+1−2i eui . (9.7)

Denote the spin Whittaker function fX (LN ) in the additive parameters by f addX
(u1, . . . , uN ). Here X = (X1, . . . , XN ) are such that |Xi | < S for all i .

Theorem 9.3. The spin Whittaker functions f addX (u1, . . . , uN ) in the additive variables
(9.7) are eigenfunctions of the differential operatorsH1 (9.3) andH2 (9.4). In particular,
we have

H1f
add
X (u1, . . . , uN ) = − (X1 + · · · + XN ) f addX (u1, . . . , uN ),

H2f
add
X (u1, . . . , uN ) = −1

2

(

X2
1 + · · · + X2

N

)

f addX (u1, . . . , uN ).

Proof. This result is a combination of the refined Pieri rules (9.2) viewed as eigenrela-
tions for the spin q-Whittaker functions, and the convergence of the functions (Theorem
7.14) and the operators (Proposition 9.2). More precisely, under the scaling xi = e−εXi

for the eigenvalues ek(x1, . . . , xN ) we have

1

ε

(

e1(x1, . . . , xN ) − N
) −−→

ε→0
−X1 − · · · − XN ,

and

1

ε2

(

e1(x1, . . . , xN ) − N +
1

2
eN (x1, . . . , xN )2 − 2eN (x1, . . . , xN ) +

3

2

)

−−→
ε→0

1

2
(X2

1 + · · · X2
N ).

This leads to the desired results. ��

9.3. Reduction to the quantum Toda Hamiltonian. It is natural to call the second order
differential operator H2 (9.4) the deformed quantum Toda Hamiltonian. Namely, it is
diagonal in the spin Whittaker functions which (formally) reduce, as S → +∞, to the
classical gln Whittaker functions (Sect. 7.8). Further justification to this name comes
from the fact that the operator H2 itself degenerates as S → +∞ to the usual quantum
Toda Hamiltonian

HToda
2 := − 1

2

N
∑

i=1

∂2ui +
N−1
∑

i=1

eui+1−ui . (9.8)

Proposition 9.4. As S → +∞, the operator H2 (9.4) converges to the quantum Toda
Hamiltonian HToda

2 (9.8).

Proof. The factors S−2( j−i), 1 ≤ i ≤ j ≤ N , in the sum in (9.4) decay at least as fast
as S−2 as S → +∞. Therefore, the only surviving contribution in the limit S → +∞
comes from the terms with j = i + 1, for which we have

S−2eui+1−ui (S − ∂ui )(S + ∂ui+1) → eui+1−ui , S → +∞.

This completes the proof. ��
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10. Desired Properties and Conjectures

This paper developed the spin q-Whittaker polynomials and spin Whittaker functions,
and established many of their properties which are one-parameter generalizations of
the corresponding facts about the q-Whittaker polynomials and gln Whittaker func-
tions. In this final section we briefly discuss further desired properties and conjectures
corresponding to our deformed situation.

10.1. Orthogonality and spectral theory for spin q-Whittaker polynomials. The q-
Whittaker polynomials satisfy orthogonality relations coming from (the t = 0 degen-
eration of) the Macdonald torus scalar product [Mac95, Ch. VI.9]. This relation states
that the s = 0 versions of Fλ(z1, . . . , zN ) and Fμ(1/z1, . . . , 1/zN ) are orthogonal to
each other when μ �= λ with respect to a certain weight on the N -dimensional torus
T
N = {|zi | = 1, i = 1, . . . , N }.

Remark 10.1. Under the generalization with a spin parameter, the spin Hall–Littlewood
polynomials also satisfy a version of the torus orthogonality (called spatial orthogonality
in [BCPS15, Corollary 3.10], see also [Bor17], [BMP21, Proposition 8.6]), as well as
another biorthogonality involving the summation of over λ instead of integration over
z. Here we discuss only the former conjectural orthogonality of the spin q-Whittaker
polynomials.

Define

mN
q,s(z1, . . . , zN ) := 1

N !
∏

1≤i �= j≤N

(s2, zi/z j ; q)∞
(−szi ,−s/zi ; q)∞

N
∏

i=1

1

2π izi
, (z1, . . . , zN ) ∈ T

N .

When s = 0, mN
q,s reduces to the orthogonality measure of the q-Whittaker polyno-

mials on T
N , which is a t = 0 degeneration of the Macdonald’s torus scalar product

�(z1, . . . , zN ; q, t), cf. [Mac95, VI.(9.2)].

Lemma 10.2. Both eigenoperators D1, D1 (3.9), (3.10) for the spin q-Whittaker poly-
nomials are self-adjoint with respect to the scalar product

〈 f, g〉q,s :=
∫

T
N
f (z1, . . . , zN ) g(z1, . . . , zN )mN

q,s(z1, . . . , zN ) dz1 . . . dzN ,

where f, g are Laurent polynomials with coefficients in R(q, s).

Proof. A direct verification. ��
Conjecture 10.3. We have for all signatures λ,μ:

∫

T
N

Fλ(z1, . . . , zN ) Fμ(1/z1, . . . , 1/zN )mN
q,s (z1, . . . , zN ) dz1 · · · dzN = cλ1λ=μ,

(10.1)

where

cλ =
N−1
∏

i=1

(s2; q)∞
(q; q)∞

(q; q)λi−λi+1

(s2; q)λi−λi+1

. (10.2)



Spin q-Whittaker Polynomials 1401

Note that for N ≤ 2 the statement (up to the concrete formula for the norm cλ)
follows from Lemma 10.2 and the eigenrelations of Theorems 3.9 and 3.10. However,
for N ≥ 3 the two operators D1, D1 are not sufficient to conclude orthogonality.

Remark 10.4. When s = 0, the constant cλ (10.2) coincides with the t = 0 degeneration
of the torus scalar product norm of aMacdonald polynomial [Mac95, Ch. VI.9, Example
1].

Let us present one further argument in favor of Conjecture 10.3. It was proven in
[IMS19, Proposition 4.10] that the probability mass function of a tagged particle in the
homogeneous q-Hahn Tasep with parameters ν = s2 and μ = −ys is

P(H(N , t) = �) =
(

(q; q)∞
(s2; q)∞

)N−1 ∫

T
N
mN

q,s(z1, . . . , zN )

N
∏

j=1

(

�(z j ; y)
�(−s; y)

)t

×
(

(−s)N

z1 · · · zN
)� (

(−s)N

z1···zN ; q)∞(s2; q)N−1∞
(−sz1, . . . ,−szN ; q)∞

dz1 · · · dzN ,

(10.3)

where �(z; y) = (−sz; q)∞
(−sy; q)∞

. The same probability can be expressed as

∑

λ∈SignN
λN=�

Fλ(−s, . . . ,−s)
F

∗
λ(y, . . . , y)

�(−s; y) ,

Assuming Conjecture 10.3, this sum becomes

∫

T
N
mN

q,s(z1, . . . , zN )

N
∏

j=1

(

�(z j ; y)
�(−s; y)

)t (
(−s)N

z1 · · · zN
)�

∑

λ∈SignN
λN=0

(−s)|λ|

cλ

Fλ(1/z1, . . . , 1/zN ) dz1 · · · dzN .

Here we used the Cauchy Identity and the torus scalar product to express the dual
function F

∗
λ, and the shifting rule of Proposition 2.9 to take out the monomial of degree

�. Evaluating the sum inside the integral as in (2.13), we recover exactly (10.3).

10.2. Accessing spin q-Whittaker polynomials via free field. In this paper we did not
focus on Fredholm determinantal structures formarginals of spin q-Whittaker processes.
These aspects have been covered quite extensively in literature for specific models in the
last few years [Cor14], [CP16], [IS19], [IMS19], [BMP21]. Techniques to access such
Fredholm determinantal formulas usually rely on manipulations with integral represen-
tations of q-moments (as in [BC14], [BCS14]).

In the realm of Macdonald processes there exists an alternative approach to expose
the determinantal nature of specific observables. This is done via a free field realiza-
tion of Macdonald functions and Macdonald operators [FHH+09], [Kos19], see also
[BCGS16] and, e.g., [FW09] for the Hall–Littlewood case. In the yet simpler case of
the Schur processes this reduces to the infinite wedge representation of Schur functions
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[Oko01], [OR03]. It would be of great interest to understand to what extent our spin
q-Whittaker functions, operators, and processes admit a description in terms of Fock
type representations of a hypothetical (q, s)-deformed Heisenberg algebra. It is worth
mentioning that an example where symmetric functions coming from solvable vertex
models have been incorporated in the language of Fock space representation can be
found in [BBBG18].

10.3. Sampling and RSK like constructions. The sqW/sHL and sqW/sqW random fields
of signatures (described in Sect. 4) can be sampled using the bijectivization of the cor-
responding Yang–Baxter equations. While these sampling algorithms are well-adapted
to particle system marginals, there could be other randomized procedures to sample the
whole signatures (and resulting in potentially different random fields).

In particular, there could exist distinguished “least random” (i.e., using the least
possible number of random variables) sampling procedures resembling the classical
Robinson–Schensted–Knuth (RSK) insertion algorithms. At s = 0, such (rather com-
plicated) RSK-like algorithms were developed in [MP17] for sampling q-Whittaker
processes. Further setting q = 0 recovers the classical RSK algorithm related to Schur
processes (which we rederive directly from the Yang–Baxter equation in Sect. 5). We
refer to [BMP21, Section 2.6] for a detailed historical discussion of sampling random
Young diagrams / signatures whose probability weights are expressed through various
families of symmetric functions. It would be very interesting to extend RSK-like sam-
pling algorithms to the spin q-Whittaker level.

In the scaling limit as q → 1, the RSK-like sampling algorithms of [MP17] degen-
erate into the well-known geometric RSK algorithms introduced and studied in [Kir01],
[NY04]. The geometric RSK’s are naturally associated with Brownian and log-gamma
polymer models and gln Whittaker functions [O’C12], [COSZ14]. It would be very
interesting to lift geometric RSK’s to the spin Whittaker processes / beta polymer level
developed in the present paper. This beta polymer version of the RSK could arise in the
corresponding scaling limit of the spin q-Whittaker RSK.

10.4. Higher polymer interpretations and random walks. The strict-weak log-gamma
polymer model is matched in distribution to the last row marginals of the Whittaker
process (cf. Remark 8.8). Moreover, this connection extends (via the geometric RSK)
to the so-called higher polymer partition functions, i.e., partition functions of k-tuples
of noncrossing paths (in the same log-gamma environment), k = 1, 2, . . ., where k = 1
corresponds to the original strict-weak log-gamma polymer [NY04], [COSZ14]. The
higher log-gamma partition functions are matched with joint distributions of several
components of theWhittaker process. It is very interesting to find similar higher polymer
like interpretations of joint distributions of multiple components in the spin Whittaker
process introduced in Sect. 8.

The strict-weak beta polymer partition function admits an alternative description as
a certain probability for the random walk in beta random environment [BC16a]. Could
multiple components in the spin Whittaker process be matched to certain probabilities
of interacting random walks in beta random environment?

10.5. Further properties of spin Whittaker functions. Whittaker functions have a num-
ber of important properties whose generalization to the spin Whittaker level seems
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potentially very interesting. This includes connections to representation theory [Kos80],
Mellin-Barnes integral representation [GKLO06], and orthogonality relations [STS94].
We onlymake a conjecture about the latter which is in effect a scaling limit of Conjecture
10.3.

Conjecture 10.5. For all LN , L ′
N ∈ WN we have

∫

(iR)N
fZ (LN ) f−Z (L ′

N )MN
S (Z) dZ1 . . . dZN =

N−1
∏

i=1

(

1 − LN ,i+1

LN ,i

)1−2S

δLN−L ′
N
,

(10.4)

where MN
S is the S-deformation of the Sklyanin measure

MN
S (Z) = 1

N !(2π i)N
∏

1≤i �= j≤N

�(S + Zi )�(S − Zi )

�(2S)�(Zi − Z j )
,

and δLN−L ′
N
is a delta function.

In support of this conjecture we note that the eigenoperatorsD1 andD1 for the spin
Whittaker functions (Definition 7.23) are self-adjoint with respect to the scalar product
defined by the S-deformed Sklyanin measure MN

S (this can also be checked directly).
This implies the desired statement for N ≤ 2, up to the concrete expression for the norm
in the right-hand side of (10.4).

The theory quantum Toda Hamiltonians and Whittaker functions extends from gln
to other classical Lie groups [Kos80], [GLO12a]. It would be interesting to extend our
deformation (9.4) of the gln quantum Toda Hamiltonian to other symmetry (Killing-
Cartan) types.
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Appendix A. Special Functions and Probability Distributions

We use the q-Pochhammer symbol notation (1.5).

A.1. q-beta binomial distribution Recall the definition of the q-deformed beta-binomial
distribution ϕq,μ,ν from [Pov13], [Cor14].

Definition A.1. For m ∈ Z≥0, consider the following distribution on {0, 1, . . . ,m}:

ϕq,μ,ν( j | m) = μ j (ν/μ; q) j (μ; q)m− j

(ν; q)m

(q; q)m

(q; q) j (q; q)m− j
, 0 ≤ j ≤ m. (A.1)

When m = +∞, extend the definition as

ϕq,μ,ν( j | ∞) = μ j (ν/μ; q) j

(q; q) j

(μ; q)∞
(ν; q)∞

, j ∈ Z≥0. (A.2)

The distribution depends on q and two other parameters μ, ν.
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When 0 ≤ μ ≤ 1 and ν ≤ μ, the weights ϕq,μ,ν( j | m) are nonnegative.6 They also
sum to one:

m
∑

j=0

ϕq,μ,ν( j | m) = 1, m ∈ {0, 1, . . .} ∪ {+∞} .

A.2. q-hypergeometric function and related quantities The unilateral basic hypergeo-
metric series k+1φk is defined via

k+1φk

(

a1 . . . ak+1
b1 . . . bk

; q, z

)

=
∞
∑

n=0

(a1, . . . , ak+1; q)n

(b1, . . . , bk, q; q)n
zn . (A.3)

If one of a j is q−y for a positive integer y, then this series is terminating. Otherwise we
assume |q|, |z| < 1 for the sum to be convergent. In the terminating case, we also define
the regularized version by

k+1φk

(

q−n a1 . . . ak
b1 . . . bk

; q, z

)

:= (b1, . . . , bk; q)n · k+1φk

(

q−n a1 . . . ak+1
b1 b2 . . . bk

; q, z

)

=
n

∑

j=0

z j
(q−n; q) j

(q; q) j
(a1, . . . , ak; q) j (q

jb1, . . . , q
jbk; q)n− j .

(A.4)

The q-gamma and the q-beta functions are

�q(X) = (q; q)∞
(qX ; q)∞

(1 − q)1−X , Bq(X,Y ) = �q(X)�q(Y )

�q(X + Y )
, for X,Y > 0.

(A.5)

The q-hypergeometric distribution is

ψq,a,b,c(n) =
( c

ac

)n (a, b; q)n

(c, q; q)n

(c, c/(ab); q)∞
(c/a, c/b; q)∞

. (A.6)

The fact that the weights (A.6) sum to one over n ∈ Z≥0 follows from the Heine
summation formula [GR04, (II.8)]:

2φ1

(

a b
c ; q, c/(ab)

)

= (c/a, c/b; q)∞
(c, c/(ab); q)∞

.

A.3. Spin Whittaker level quantities It is well-known that �q(X) converges to �(X)

as q → 1 uniformly for X > 0, where � is the usual gamma function �(z) =
∫ ∞
0 e−t t z−1dt , z > 0 (e.g., see [And86]). Hence Bq(X,Y ) → B(X,Y ) uniformly
for X,Y > 0, where B is the beta function

B(x, y) = �(x)�(y)

�(x + y)
=

∫ 1

0
t x−1(1 − t)y−1dt, x, y > 0. (A.7)

6 These conditions do not exhaust the full range of (q, μ, ν) for which the weights are nonnegative. See,
e.g., [BP18, Section 6.6.1] for additional families of parameters leading to nonnegative weights.
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The inverse gamma distribution �−1(α) on (0,+∞) with a parameter α > 0 is

�−1(α)[x] = x−1−αe−1/x

�(α)
. (A.8)

The beta distribution on (0, 1) with (real) parameters m, n > 0 has density

B(m, n)[x] = xm−1(1 − x)n−1

B(n,m)
for x ∈ (0, 1).

We also recall that a random variable with negative binomial distribution has probability
mass function

NB(r, p)[k] = pk(1 − p)r
(

k + r − 1

k

)

, for k ∈ Z≥0

and r > 0, 0 ≤ p ≤ 1. Sampling x in the interval (0, 1)withB(m, n+k) law, where k is a
NB(r, p) independent random variable generates the negative beta binomial distribution
on (0, 1). It has the probability density

NBB(r, p,m, n)[x] = (1 − p)r xm−1(1 − x)n−1

B(n,m)
2F1

(

r, n + m
n

∣

∣

∣ p(1 − x)

)

, (A.9)

where we used the Gauss hypergeometric function

2F1

(

a , b
c

∣

∣

∣ z

)

=
∑

k≥0

(a)k(b)k
(c)k

zk

k! , (A.10)

and (r)k = r(r + 1) · · · (r + k − 1) is the Pochhammer symbol. Note that the inverse
gamma, beta, and the negative beta binomial are continuous distributions, while the
negative binomial is a discrete distribution.

Appendix B. Yang–Baxter equations

In this section we list the Yang–Baxter equations used throughout the paper. We employ
the special function notation from Appendix 10.5.
A.4. sqW/sqW Yang–Baxter equation Let us introduce the cross vertex weight

Rx,y(i1, j1; i2, j2) := 1i1+ j1=i2+ j2 1i1≥ j2 (y/x) j2
(−s/y; q) j2(y/x; q)i1− j2(q; q)i1

(q; q) j2(q; q)i1− j2(−s/x; q)i1
.

(B.1)

This cross vertex weight is involved in the following Yang–Baxter equations:

Proposition B.1. For any i1, i2, i3, j1, j2, j3 ∈ Z≥0, we have
∑

k1,k2,k3≥0

Rx,y(i2, i1; k2, k1)Wy,s(i3, k1; k3, j1)Wx,s(k3, k2; j3, j2)

=
∑

k′
1,k

′
2,k

′
3≥0

Wx,s(i3, i2; k′
3, k

′
2)Wy,s(k

′
3, i1; j3, k′

1)Rx,y(k
′
2, k

′
1; j2, j1),

(B.2)

where W are the bulk weights defined by (2.3). See Fig. 13 a for a graphical interpre-
tation.
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i2

i1

i3

j2

j1

j3

k3

k2

k1

=
i1

i2

i3

j1

j2

j3

k′
3

k′
2

k′
1

(a)

i2

i1

j1j2

k1

k1

k2
j1

=
i1

i2

j1j2

i2

j1

(b)

Fig. 13. Yang–Baxter equations (B.2), (B.3) correspond to local changes in the lattice illustrated by (a) and
(b), respectively

j2

i2j1

i1

g

g

g + 1

g

g − 1

g

g

g

Rx,v,s(i1, j1; i2, j2) 1−qgsv
1−sv

xv+qgsv
1−sv

1−qg

1−sv
qg+vx
1−sv

Fig. 14. The cross vertex weights involved in the Yang–Baxter equations for the sHL and sqW vertex weights.
Note that these weights vanish unless i1 + j2 = j1 + i2

Proof. This is obtained in [BW17, Corollary 4.3] via fusion from the elementary Yang–
Baxter equation for the higher spin sl2 vertex model. Note that the claim of [BW17,
Corollary 4.3] contains a typo: the spectral parameters x, y in the definition of the cross
vertex weight should be swapped. This is corrected here by defining Rx,y in (B.1) with
parameters already swapped. ��

Proposition B.2. For any i1, i2, j1, j2 ∈ Z≥0, we have

∑

k1,k2≥0

Rx,y(i2, i1; k2, k1)Wy,s(k1)Wx,s(k1, k2; j2, j1)Wx,s( j1)

= Wx,s(i2)Wy,s(i2, i1; j2, j1)Wy,s( j1),

(B.3)

where W are the right corner weight defined by (2.4). See Fig. 13b for an illustration.

Proof. Expanding both right and left-hand side of (B.3) and simplifying common factors
we end up with the identity

i2
∑

k= j1

(y/x)k− j1 (y/x; q)i2−k

(q; q)i2−k

(−sx; q)k− j1

(q; q)k− j1
= (−sy; q)i2− j1

(q; q)i2− j1
,

which follows from the q-Chu–Vandermonde identity (e.g., [GR04, (II.6)]). ��

A.5. Yang–Baxter equations with dual weights Our additional Yang–Baxter equations
involve the dual sHL weights w∗

v,s which are given in Fig. 4 in the text and the dual sqW
weights (2.25)–(2.26). We use the cross vertex weights Rx,v,s given in Fig. 14 and the
following cross vertex weights:
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i2

i1

i3

j2

j1

j3

k3

k2

k1

=
i1

i2

i3

j1

j2

j3

k′
3

k′
2

k′
1

(a)

i2

i1

i3

j2j3

k3

j2k2

k1

=
i1

i2

i3

j2j3

k′
3 k′

2

k′
2

k′
1

(b)

Fig. 15. Graphical representation of the Yang–Baxter equation for dual weights

Rx,y,s(i1, j1; i2, j2) := 1i2+ j1=i1+ j2
qi2i1+

1
2 j2( j2−1)(sx) j2(q; q) j1

(s2; q) j1+i2(q; q) j2(q; q)i2(−q/(sx); q)i1− j1

× 4φ3

(

q−i2; q−i1 ,−sy,−q/(sx)
−s/x, q1+ j2−i2 ,−yq1−i1− j2/s

∣

∣

∣ q, q

)

.

(B.4)

Here 4φ3 is the regularized q-hypergeometric function (A.4). We remark that one of
the first 4φ3 type formulas for vertex weights of the fused six vertex model appeared in
[Man14]. See also [CP16], [BP18] for a probabilistic explanation of the fusion procedure
which goes back to [KRS81].
Next we list Yang–Baxter equations involving a usual and a dual family of vertex

weights. There are two instances of these Yang–Baxter equations, one with sqW/sHL
weights, and another with sqW/sqW weights. Moreover, each of these has two different
forms, in the bulk and at the boundary. In total there are four statements. The bulk
statements are available from [BMP21] (and also can be found in [BW18]), and the
statements on the boundary need to be proven.

Proposition B.3. For any i1, j1 ∈ {0, 1} and i2, i3, j2, j3 ∈ Z≥0 we have

∑

k1,k2,k3≥0

Rx,v,s(i2, i1; k2, k1)w∗,
v,s (i3, k1; k3, j1)Wx,s(k3, k2; j3, j2)

=
∑

k′
1,k

′
2,k

′
3≥0

Wx,s(i3, i2; k′
3, k

′
2)w∗,

v,s (k′
3, i1; j3, k′

1)Rx,v,s(k
′
2, k

′
1; j2, j1).

(B.5)

** See Fig. 15a for a graphical interpretation.

Proof. This is [BMP21, (A.11)]. ��
Proposition B.4. For any i1 ∈ {0, 1} and i2, i3, j2, j3 ∈ Z≥0, we have

∑

k1,k2,k3≥0

Rx,v,s(i2, i1; k2, k1)W ∗, (i3, k1; k3)Wx,s(k3, k2; j3, j2)Wx,s( j2)

=
∑

k′
1,k

′
2,k

′
3≥0

Wx,s(i3, i2; k′
3, k

′
2)Wx,s(k

′
2) w∗

v,s(k
′
3, i1; j3, k′

1)W
∗, (k′

2, k
′
1; j2).

(B.6)

See Fig. 15b for a graphical interpretation.
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Proof. Consider separately the cases i1 = 0 and i1 = 1. Start with i1 = 0. We see that
(B.6) is nontrivial only when i2 + i3 = j2 + j3 (say j2 = i2 + i3 − j3) and j3 ≥ i2. Under
these conditions we have

Rx,v,s(i2, 0; i2, 0)Wx,s(i3, i2; j3, i2 + i3 − j3)Wx,s(i2 + i3 − j3)

+Rx,v,s(i2, 0; i2 + 1, 1)Wx,s(i3 − 1, i2 + 1; j3, i2 + i3 − j3)Wx,s(i2 + i3 − j3)

= w∗
v,s( j3, 0; j3, 0)Wx,s(i3, i2; j3, i2 + i3 − j3)Wx,s(i2 + i3 − j3)

+ w∗
v,s( j3 − 1, 0; j3, 1)Wx,s(i3, i2; j3 − 1, i2 + i3 − j3 + 1)Wx,s(i2 + i3 − j3 + 1).

After the required simplifications, the previous relation reduces to

(1 − qi2sv)(1 + sxq j3−i2−1) + (xv + svqi2)(1 − q j3−i2)

= (1 − svq j3)(1 + sxq j3−i2−1) + xv(1 − q j3−i2)(1 − s2q j3−1),

that can be checked directly.
When i1 = 1, as in the i1 = 0 case, (B.6) is an equality between sums of at most two
terms that after simplification reduces to

(1 − qi2)(1 + sxq j3−i2) + (qi2 + xv)(1 − q j3−i2+1)

= (1 − q j3+1)(1 + sxq j3−i2) + x(1 − q j3−i2+1)(v − sq j3),

which is again checked directly. ��
Proposition B.5. For any i1, j1, i2, i3, j2, j3 ∈ Z≥0 we have

∑

k1,k2,k3≥0

Rx,y,s(i2, i1; k2, k1)W ∗,
y,s (i3, k1; k3, j1)Wx,s(k3, k2; j3, j2)

=
∑

k′
1,k

′
2,k

′
3≥0

Wx,s(i3, i2; k′
3, k

′
2)W

∗,
y,s (k′

3, i1; j3, k′
1) Rx,y,s(k

′
2, k

′
1; j2, j1).

(B.7)

See Fig. 15a for a graphical interpretation.

Proof. This is [BMP21, (A.13)]. ��
Proposition B.6. For any i1, i2, i3, j1, j2, j3 ∈ Z≥0, we have

∑

k1,k2,k3≥0

Rx,y,s(i2, i1; k2, k1)W ∗, (i3, k1; k3)Wx,s(k3, k2; j3, j2)Wx,s( j2) (B.8)

= (−sy; q)∞
(s2; q)∞

∑

k′
1,k

′
2,k

′
3≥0

Wx,s(i3, i2; k′
3, k

′
2)Wx,s(k

′
2)W

∗,
y,s (k′

3, i1; j3, k′
1)W

∗, (k′
2, k

′
1; j2).

(B.9)

See Fig. 15b for a graphical interpretation.

Proof. This follows from the analogous relation (B.6). In fact both the R-matrix R and
the vertex weightW ∗, can be constructed respectively fromR andw∗, via fusion with
respect to the spectral parameter v (see [BW17], [BMP21] for details). The coefficient
(−sy;q)∞
(s2;q)∞ arises from fusion of w∗, and does not simplify since in the left hand side of

(B.6) the bulk weightw∗, is missing. One can check that the fusion procedure preserves
identity (B.6) and hence (B.8) holds. ��
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We also need a useful summation identity that was stated in a slightly a more general
form in Proposition A.5 of [BMP21]:

Proposition B.7. For |xy| < 1 and under the usual conditions 0 < q < 1 and −1 <

s < 0, we have

∑

i, j≥0

Rx,y,s(0, 0; i, j) =
∞
∑

j=0

(xy) j
(−s/x; q) j (−s/y; q) j

(s2; q) j (q; q) j
= (−sx; q)∞(−sy; q)∞

(s2; q)∞(xy; q)∞
.

(B.10)

The R-matrix Rx,y,s is positive if we assume its parameters to be in a specific range:

Proposition B.8 ([BMP21, Proposition A.8], see also [CMP19, Proposition 3.1]). Let
us take the parameters q ∈ (0, 1), s ∈ (−√

q, 0) and x, y ∈ [−s,−s−1]. Then
Rx,y,s(i1, j1; i2, j2) ≥ 0 for all i1, i2, j1, j2 ≥ 0.

Appendix C. Proof of Proposition 7.15

Lemma C.1 ([BC16a], Lemma 2.2). Let A, B > 0. Then

lim
q→1

(�q A; q)∞
(�qB; q)∞

= (1 − �)B−A, (C.1)

uniformly in � belonging to any compact subset of (0, 1).

Note that the uniformity in � in (C.1) is not claimed in [BC16a] but easily follows from
the uniformity of all Taylor expansions involved in the proof in the cited paper (which
we do not reproduce).

Lemma C.2. Let A, B > 0. Then, for all n ∈ Z≥1 and all q ∈ ( 12 , 1), we have

(q A+n; q)∞
(qB+n; q)∞

≤ c (1 − qn)B−A, (C.2)

where c is a constant independent of q, n.

Proof. Set q = e−ε. The result of the Lemma is restated, taking the logarithm of both
sides of (C.2), as

∑

k≥0

log
(1 − e−ε(A+n+k))

(1 − e−ε(B+n+k))
− (B − A) log(1 − e−εn) ≤ c′, (C.3)

for all ε ∈ (0,− log 2) and a constant c′ independent of ε, n. Using Lagrange mean
value theorem, we can rewrite the generic term of the infinite sum as

log
(1 − e−ε(A+n+k))

(1 − e−ε(B+n+k))
= (A − B)

ε

eε(̃tk+n+k) − 1
,

where numbers t̃k belong to the interval (min(A, B),max(A, B)). We show that for any
positive bounded sequence {tk}k ⊂ (0, M), with M fixed, the quantity

∑

k≥0

ε

eε(tk+n+k) − 1
+ log(1 − e−εn) (C.4)
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is absolutely bounded uniformly in ε and n and this would prove (C.3) and hence (C.2).
To evaluate the infinite sum over k we fix a positive constant δ and distinguish two cases.
Case 1, k ≥ δ/ε. We use the estimate

ε

eε(tk+n+k) − 1
≤ e−εk ε

1 − e−δ
,

that implies, summing over k,
∑

k≥δ/ε

ε

eε(tk+n+k) − 1
≤ 1

eδ − 1

ε

1 − e−ε
≤ 2 log 2

eδ − 1
. (C.5)

Case 2, k < δ/ε. In this case we use again Lagrange mean value theorem to express the
denominator of the generic term of the summation of (C.4) as

ε

eε(tk+n+k) − 1
= e−εξk,n

tk + n + k
, for some ξk,n ∈ (0, tk + n + k).

This implies the bounds

e−ε(M+n+k)

M + n + k
≤ ε

eε(tk+n+k) − 1
≤ 1

n + k
. (C.6)

We focus first on the lower bound given by the first inequality in (C.6). Summing over
k we find

δ/ε
∑

k=0

e−ε(M+n+k)

M + n + k
≥

∫ δ/ε

0

e−ε(M+n+k)

M + n + k
dk =

∫ δ+ε(M+n)

ε(M+n)

e−k′

k′ dk′ ≥
∫ δ+ε(M+n)

ε(M+n)

(

1

k′ − 1

)

dk′,

which gives

δ/ε
∑

k=0

ε

eε(tk+n+k) − 1
≥ log

(

1 +
δ

ε(M + n)

)

− δ. (C.7)

We turn now our attention to the second inequality in (C.6) and, since

δ/ε
∑

k=0

1

n + k
≤

∫ δ/ε+n

n

dk

k − 1/2
,

we obtain
δ/ε
∑

k=0

ε

eε(tk+n+k) − 1
≤ log

(

1 +
δ

ε(n − 1/2)

)

. (C.8)

Combining results obtained from the analysis of cases k ≥ δ/ε and k < δ/ε in (C.5),
(C.7) (C.8) we can finally write

log

(

(1 +
δ

ε(M + n)
)(1 − e−εn)

)

+O(δ) ≤ (C.4)

≤ log

(

(1 +
δ

ε(n − 1/2)
)(1 − e−εn)

)

+O(δ).

This concludes our proof since the arguments of the logarithms in the left and right-hand
side are bounded functions for ε ∈ (0, log 2) and n ≥ 1. ��
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For the next lemma we define the quantity

A(q)
S,X (�3, �2, �1) = 1

�q(�3, �2, �1)

(qS−X ; q)n1−n2

(q; q)n1−n2

(qS+X ; q)n2−n3

(q; q)n2−n3

(q; q)n1−n3

(q2S; q)n1−n3
,

where we assumed 1 ≤ �3 ≤ �2 ≤ �1 and ni = ⌊

logq(1/�i )
⌋

. Here �q is defined in

(7.21). We think of A(q)
S,X as a q-deformation of AS,X (7.8).

Lemma C.3. For any continuous function f (�2) we have

lim
q→1

∫ �1

�3

f (�2)A(q)
S,X (�3, �2, �1)

d�2

�2
=

∫ �1

�3

f (�2)AS,X (�3, �2, �1)
d�2

�2
, (C.9)

uniformly for any �3 ≤ �1 bounded away from ∞.

Proof. Fix small positive δ. We will prove our claim distinguishing two cases, based on
the distance between �3 and �1.
Case 1, �1 − �3 > δ. The integral in the left-hand side of (C.9) can be decomposed as

∫ �1

�3

=
∫ �1−δ/2

�3+δ/2
+
∫ �3+δ/2

�3

+
∫ �1

�1−δ/2
.

When �3 + δ/2 ≤ �2 ≤ �1 − δ/2 , by virtue of Lemma C.1, we have

∫ �1−δ/2

�3+δ/2
f (�2)A(q)

S,X (�3, �2, �1)
d�2

�2
−−−→
q→1

∫ �1−δ/2

�3+δ/2
f (�2)AS,X (�3, �2, �1)

d�2

�2
,

uniformly.
On the other hand, when �3 ≤ �2 < �3 + δ/2 we use estimates

A(q)
S,X (�3, �2, �1) ≤

⎧

⎪

⎨

⎪

⎩

CAS,X (�3, �2, �1) if n3 < n2,

C

�q(�3, �2, �1)

(

1 − q

1 − �3/�1

)S+X

if n3 = n2.
,

valid for some constant C independent of q of �2 and that can be deduced using Lemma
C.2 and identity (7.24). This implies that

∫ �3+δ/2

�3

f (�2)A(q)
S,X (�3, �2, �1)

d�2

�2
= O(δ) +O

(

1 − q

δ

)S+X

.

In an analogous fashion one can also show that
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∫ �1

�1−δ/2
f (�2)A(q)

S,X (�3, �2, �1)
d�2

�2
= O(δ) +O

(

1 − q

δ

)S−X

.

This concludes the proof of (C.9) when �1 − �3 > δ.
Case 2, �1 − �3 ≤ δ. Assuming δ is very small, for any �2 ∈ [�3, �1], we can write, by
continuity, f (�2) = f (�1) + o(1), where o(1) tends to 0 as δ → 0. Thus, we have

∫ �1

�3

f (�2)A(q)
S,X (�3, �2, �1)

d�2

�2

=
n1
∑

n2=n3

( f (�1) + o(1)) q−(S+X)(n1−n2)ϕq,qS+X ,q2S (n1 − n2|n1 − n3)

= f (�1) + o(1),

and by Lemma 7.12 this concludes the analysis of the case �1 − �3 ≤ δ.
Since all the estimates we provided are controlled as functions of δ, the convergence in
(C.9) is uniform provided that �1 stays bounded. ��
Proof of Proposition 7.15. The integral in the left-hand side of (7.25) is equal to
∫ LN ,N−1

LN ,N

dLN−1,N−1

LN−1,N−1
A(q)

S,X (LN ,N , LN−1,N−1, LN ,N−1) · · ·

· · ·
∫ LN ,1

LN ,2

dLN−1,1

LN−1,1
A(q)

S,X (LN ,2, LN−1,1, LN ,1)

(

LN−1,N−1 · · · LN−1,1

LN ,N · · · LN ,1

)X

f (LN−1)

and we can take the q → 1 limit in each of the N − 1 integrals using Lemma C.3. This
establishes the convergence to the right-hand side of (7.25) as q → 1, uniformly on any
compact subset of WN . ��

Appendix D. Triangular Sums

Here we write down a number of identities of summations of certain symbols ak,�, bα

used in the proof of Proposition 9.2. Fix a positive integer N , and assume that the symbols
bα , α = 1, . . . , N commute with each other. Let ak,� be

ak,� =
⎧

⎨

⎩

0 if 0 = k, or � = N + 1;
1 if 0 ≤ k = � ≤ N ;
∈ R else.

Proposition D.1. For any N ≥ 1, the following identities hold

∑

0≤k<�≤N

ak+1,� − ak,� − ak+1,�+1 + ak,�+1 = N −
N−1
∑

j=1

a j, j+1;

∑

0≤k<�≤N

(� − k + 1)(ak+1,�+1 − ak,�+1) − (� − k − 1)(ak+1,� − ak,�) =
N−1
∑

j=1

a j, j+1;

∑

0≤k<�≤N

(ak+1,� − ak,� − ak+1,�+1 + ak,�+1)
�

∑

α=k+1

bα =
N
∑

α=1

bα;



Spin q-Whittaker Polynomials 1413

∑

0≤k<�≤N

(� − k − 1)2(ak+1,� − ak,�) − (� − k + 1)2(ak+1,�+1 − ak,�+1)

= −
N−1
∑

j=1

a j, j+1 − 2
∑

1≤k<�≤N

ak,�;

∑

0≤k<�≤N

(ak+1,� − ak,� − ak+1,�+1 + ak,�+1)
∑

k+1≤α,β≤l

bαbβ =
N
∑

α=1

b2α + 2
∑

1≤k<�≤N

ak,�bkb�;

∑

0≤k<�≤N

(

(� − k + 1)(ak+1,�+1 − ak,�+1) − (� − k − 1)(ak+1,� − ak,�)
)

�
∑

α=k+1

bα

=
N
∑

1≤k<�≤N

ak,�(bk − b�).

Proof. All these identities are elementary and can be proven by induction in a straight-
forward way. ��
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