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Abstract
We consider a process of noncolliding q-exchangeable random walks on Z
making steps 0 (‘straight’) and −1 (‘down’). A single random walk is called
q-exchangeable if under an elementary transposition of the neighboring steps
(down,straight)→ (straight,down) the probability of the trajectory is multi-
plied by a parameter q ∈ (0,1). Our process of m noncolliding q-exchangeable
random walks is obtained from the independent q-exchangeable walks via
the Doob’s h-transform for a nonnegative eigenfunction h (expressed via the
q-Vandermonde product) with the eigenvalue less than 1. The system of m
walks evolves in the presence of an absorbing wall at 0. The repulsion mechan-
ism is the q-analogue of the Coulomb repulsion of random matrix eigenvalues
undergoing Dyson Brownian motion. However, in our model, the particles
are confined to the positive half-line and do not spread as Brownian motions
or simple random walks. We show that the trajectory of the noncolliding q-
exchangeable walks started from an arbitrary initial configuration forms a
determinantal point process, and express its kernel in a double contour integ-
ral form. This kernel is obtained as a limit from the correlation kernel of
q-distributed random lozenge tilings of sawtooth polygons. In the limit as
m→∞, q= e−γ/m with γ > 0 fixed, and under a suitable scaling of the initial
data, we obtain a limit shape of our noncolliding walks and also show that
their local statistics are governed by the incomplete beta kernel. The latter is
a distinguished translation invariant ergodic extension of the two-dimensional
discrete sine kernel.
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1. Introduction

The main object of the present paper is an ensembleΥm of random point configurations in the
two-dimensional lattice Z2

⩾0 which belongs to two broad classes: noncolliding random walks
and q-distributed random lozenge tilings.

The noncolliding randomwalks onZ is aMarkov chain of a fixed numberm of particles per-
forming independent simple randomwalks. They interact through the condition that they never
collide, which is equivalent to Coulomb repulsion. This model can be traced back to Karlin–
McGregor [KM59], see König–O’Connell–Roch [KOR02] for a detailed exposition. The non-
colliding random walks are a discretization of the celebrated β= 2 Dyson Brownian motion
[Dys62] describing the eigenvalues of the Gaussian Unitary Ensemble. More recently, non-
colliding random walks for other random matrix β values were considered by Huang [Hua21]
and Gorin–Huang [GH22].

We start from a q-deformation of the simple randomwalk, namely, the q-exchangeable walk
introduced by Gnedin–Olshanski [GO09]. Under an elementary transposition of the walks’
increments, the probability of the trajectory is multiplied by q or q−1 (depending on the order
of the increments), where q ∈ (0,1) is a parameter. When q= 1, this property reduces to the
usual exchangeability. We show that the condition for independent q-exchangeable random
walks never to collide is realized through a Doob’s h-transform for an explicit nonnegative

eigenfunction involving the q-Vandermonde product, with eigenvalue q(
m
2). From this perspect-

ive, our process Υm is a q-deformation of the classical model of noncolliding simple random
walks (and reduces to this classical model in a q→ 1 limit). Note that all previously studied
noncolliding randomwalks (including the model of Borodin–Gorin [BG13] where q enters the
particle speeds 1,q−1,q−2, . . . and thus plays a different role) satisfy the usual, undeformed
exchangeability.

The q-exchangeability of the random walks produces strong confinement of the particles,
which beats the noncolliding Coulomb repulsion. This behavior is very different from many
noncolliding models, including the classical Dyson’s Brownian motion model of random mat-
rix eigenvalues, where the particles at large times spread as Brownian motions, or its stationary
version already considered in [Dys62]. In the latter, the individual particles evolve as Ornstein–
Uhlenbeck diffusions, and the whole noncolliding system is stationary. Our model Υm is not
stationary, yet the particles are confined to the positive half-line and approach an absorbing
state instead of spreading.

Our q-dependent process Υm is a part of a wider family of Markov chains with Macdonald
parameters (q, t) defined recently by Petrov [Pet22]. The asymptotics of the latter should be
accessible through the technique of Gorin–Huang [GH22], but here we stay within the t= q
case (corresponding to β= 2 in randommatrices) which allows to show local bulk universality.

Let us add that in continuous time and space, noncolliding Brownian motions weighted by
the area penalty and their scaling limit, the Dyson Ferrari-Spohn diffusion, were considered
by Caputo–Ioffe–Wachtel [CIW19], Ferrari–Shlosman [FS23], in connection with interfaces
in the Ising model in two and three dimensions.
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Let us now turn to random lozenge tilings and briefly overview the relevant models and
typical asymptotic results. Random lozenge tilings (equivalently, random dimer coverings /
perfect matchings on the hexagonal grid) is a well-studied two-dimensional statistical mech-
anical model of random interfaces, most notably, appearing in faceted crystals [FS03].

Mathematically, correlations in random lozenge tiling models are expressible as determ-
inants of the inverse Kasteleyn matrix, as first shown by Kasteleyn [Kas67] and Temperley–
Fisher [TF61]. See also the lecture notes by Kenyon [Ken09] and Gorin [Gor21]. Several types
of asymptotic results about random tilings reveal their large-scale behavior and connections to
physical phenomena at different scales. Here we consider the limit shape and the bulk (lattice)
universality.

The limit shape (law of large numbers) phenomenon states that the normalized height
function of a random tiling tends to a nonrandom limiting height function. The latter has a
variational description as a global entropy-maximizer (Cohn–Kenyon–Propp [CKP01] and
Kenyon–Okounkov [KO07]). In many problems, in particular, for uniformly random lozenge
tilings of the so-called sawtooth polygons considered in Petrov [Pet14] (see figure 1), the vari-
ational problem can be solved in terms of algebraic equations for the gradient of the limiting
height function.

In a neighborhood where the limiting height function is non-flat, one expects to see pure
states (translation invariant ergodic Gibbs measures) with universal (independent of the ini-
tial data) local statistics (correlations). However, analyzing this asymptotic regime requires
either an explicit inverse of the Kasteleyn matrix (which heavily depends on the boundary
conditions) or an effective asymptotic control of this inverse. The pure state is unique for a
given gradient, and its correlations are described by the incomplete beta kernel (an extension
of the discrete sine kernel); see Sheffield [She05], Kenyon–Okounkov–Sheffield [KOS06].
This universal bulk behavior has been proven in full generality for uniformly random tilings
by Aggarwal [Agg19], following the earlier works for the hexagon (Baik–Kriecherbauer–
McLaughlin–Miller [BKMM07], Gorin [Gor08]), sawtooth polygons (Petrov [Pet14]), and
a lozenge tiling model corresponding to the noncolliding Bernoulli simple random walks
(Gorin–Petrov [GP19]). The curve separating the region where the height function is non-
flat is referred to as the frozen boundary (or arctic curve). For uniformly random tilings of
polygons this curve is algebraic.

A q-deformation of uniformly random lozenge tilings is obtained by assigning probability
weights proportional to qvolume, where the volume is measured under the height function. The
introduction of the extra parameter q is very natural from the mathematical point of view.
On the physical level, it introduces a ‘damping potential’ component that allows considering
tilings of infinite domains (also sometimes called plane partitions) if the partition function is
summable for q ∈ (0,1) (we use a different font for q to distinguish from the q-exchangeable
parameter). Cerf–Kenyon [CK01] studied the q-weighted plane partitions and proved a limit
shape result. Okounkov–Reshetikhin [OR03] found asymptotics of local correlations as q↗ 1
and introduced the incomplete beta kernel to describe them. In the subsequent work [OR07],
they looked at random skew plane partitions which may have a back wall. Depending on the
number of back wall turns, the frozen boundary may form several asymptotes extending to
infinity; see [OR07, figures 2, 15, 16] for illustrations.

For q-weighted random tilings of (bounded) sawtooth polygons, the frozen boundary was
computed by di Francesco–Guitter [DFG19] using the tangent method. Gorin–Huang [GH22]
recently obtained it for an even more general ensemble with (q,κ)-weights introduced by
Borodin–Gorin–Rains [BGR10]. The boundaries of [DFG19] turn into the ones of [OR07]
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Figure 1. A sawtooth polygon and frozen boundaries for the q-weighted lozenge tilings
as q= e−γ/N → 1, where N→+∞ is the linear size of the polygon. Here γ> 0
on the left and γ< 0 on the right. These frozen boundaries were obtained by Di
Francesco–Guitter [DFG19].

in a limit when the side of the sawtooth polygon with multiple defects tends to infinity. Then
the ‘cloud’ parts adjacent to this side degenerate into multiple asymptotes.

For sawtooth polygons, bulk universality of the q-weighted lozenge tilings as q→ 1 is still
open except for the hexagon case settled by Borodin–Gorin–Rains [BGR10]. This is despite
the explicit double contour integral expression for the correlation kernel Kloz (a close relative
of the inverse Kasteleyn matrix) given by Petrov [Pet14] which we recall in (4.2) below. The
reason is that the q-hypergeometric function under the integral in Kloz has hindered its direct
asymptotic analysis.

It is known that the q-dependent kernel Kloz (and its subsequent asymptotic analysis) sim-
plifies in several cases. First, setting q= 1, we get a kernel for uniformly random tilings, which
has led tomany asymptotic results; see Petrov [Pet14, Pet15], Toninelli–Laslier [LT15], Gorin–
Petrov [GP19], Aggarwal [Agg19]. In another regime, keeping q< 1 fixed and sending the top
boundary of the polygon (which has several turns) up to infinity, as in figure 1, left, one can
show that the q-weighted random tilings in a bottom part of the picture converge to the random
plane partitions with a back wall studied by Okounkov–Reshetikhin [OR07]. Moreover, in this
limit, the correlation kernel Kloz turns into the simpler kernel [OR07, (25)] obtained originally
via the technique of Schur processes. The latter kernel is amenable to asymptotic analysis by
the standard steepest descent method, which in particular leads to the frozen boundary with
several asymptotes (already visible in figure 1) and bulk universality.

Our model Υm of noncolliding q-exchangeable random walks presents a new case when
the complicated kernel Kloz simplifies. Namely, if instead of q< 1, we keep q> 1, and send
the bottom boundary of the polygon down to infinity as in figure 1, right, then around the
top boundary of the polygon we have the convergence to the noncolliding q-exchangeable
random walks, with q= q−1. The resulting correlation kernel Kwalks has an explicit double
contour integral form for any initial condition in the noncolliding walks. From this kernel,
we obtain the limit shape and bulk universality results as the number m of walks goes to
infinity and q= e−γ/m → 1. The frozen boundary for the noncolliding walks (see figure 3 for
examples) may form several ‘cloud turns’ and always has exactly one asymptote (already seen
forming in figure 1, right). The damping potential coming from the q-deformation is read as
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q-exchangeability of the walks and is responsible for the confinement and eventual absorption
of the particles.

We conclude that limit shape results for ensembles of random lozenge tilings are accessible
by a variety of methods. However, bulk universality requires knowledge or precise control of
the inverse Kasteleyn matrix (or its close relative, the correlation kernel). The qvolume ensemble
of random lozenge tilings of sawtooth polygons is an example of a model where such control
is still out of reach. In the present paper, we explore a new degeneration of this lozenge tiling
model, which is amenable to asymptotic analysis and has a very nice interpretation as noncol-
liding q-exchangeable random walks with arbitrary initial conditions.

Outline

Above in the Introduction, we gave an overview of where our model Υm fits into the classes
of noncolliding walks and random lozenge tilings. Below in section 2 we describe our model
and results in full detail. In particular, we show that our processΥm coincides with the system
of independent q-exchangeable random walks conditioned never to collide. The proofs of the
determinantal kernel and the asymptotic results are given in sections 3–5.

2. Model and main results

In this section, we discuss our model of noncolliding q-exchangeable random walks and for-
mulate our main results on its determinantal structure and asymptotic behavior.

2.1. The q-exchangeable random walk

Consider a discrete-time simple random walk {y(t)}t∈Z⩾0 on Zmaking steps 0 (‘straight’) and
−1 (‘down’) according to independent flips of a given (possibly biased) coin1. It is well-known
that the sequence of steps in this random walk is exchangeable, that is,

Prob(y(t+ 1)− y(t) = ϵ1,y(t+ 2)− y(t+ 1) = ϵ2, . . . ,y(t+ k)− y(t+ k− 1) = ϵk) (2.1)

is symmetric in ϵ1, . . . , ϵk ∈ {0,−1} for any t⩾ 0 and k⩾ 1.
Gnedin–Olshanski [GO09] considered a q-deformation of the concept of exchangeabil-

ity depending on a parameter q ∈ (0,1). For a q-exchangeable random walk {y(t)}t∈Z⩾0 , the
quantity (2.1) is no longer symmetric in ϵ1, . . . , ϵk. Instead, we have the following q-symmetry
under elementary transpositions ϵi ↔ ϵi+1:

Prob(. . . ,y(t+ i)− y(t+ i− 1) = ϵi,y(t+ i+ 1)− y(t+ i) = ϵi+1, . . .)

= qϵi−ϵi+1 Prob(. . . ,y(t+ i)− y(t+ i− 1) = ϵi+1,y(t+ i+ 1)− y(t+ i) = ϵi, . . .) .

In words, under a transposition of the neighboring steps (down,straight)→ (straight,down),
the probability of the trajectory is multiplied by q.

Remark 2.1. By convention, throughout all exact computations in the paper, the parameter
q is a fixed number between 0 and 1. For the asymptotic analysis of the noncolliding
q-exchangeable random walks, we send q↗ 1. These asymptotic results are formulated in
section 2.6 and proven in section 5.

1 It is convenient to have random walks which move down on the one-dimensional integer lattice Z.
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The space of laws (probability distributions) of q-exchangeable random walks is a con-
vex simplex. That is, the convex combination (mixture) of probability laws preserves q-
exchangeability. By a q-analogue of the de Finetti’s theorem proven in [GO09], extreme q-
exchangeable random walks (that is, extreme points of this simplex) are parametrized by
∆ := {0,1,2, . . .}∪ {∞}. In detail, for any q-exchangeable random walk y(t), there exists a
probability measure µ on ∆ such that the law of y(t) is a mixture of the extreme distributions
by means of µ.

Our first observation is that all extreme q-exchangeable random walks parametrized by
points of ∆fin := {0,1,2, . . .} ⊂∆ are one and the same space-inhomogeneous random walk
with varying initial configuration and an absorbing wall at 0.

Definition 2.2 (The q-exchangeable random walk in Z⩾0). LetΥ1 be the following one-step
Markov transition probability, where x,y ∈ Z⩾0:

Υ1(x,y) :=


qx, y= x;

1− qx, y= x− 1;

0, otherwise.

Proposition 2.3. 1. Started from any x ∈ Z⩾0, the random walk with transition probabilities
Υ1 is q-exchangeable.

2. Any extreme q-exchangeable random walk parametrized by a point x ∈∆fin can be iden-
tified with the random walk Υ1 started from x.

Proof. For the first part, we have

Υ1(x,x)Υ1(x,x− 1) = qx(1− qx) = q ·Υ1(x,x− 1)Υ1(x− 1,x− 1),

which immediately implies the q-exchangeability. The second part follows by comparing our
random walk with the one described in [GO09, proposition 4.1].

Remark 2.4. In the scaling limit as q= e−ε → 1 and x= bε−1 log(1/p)c+ x̃, where p ∈ (0,1)
and x̃ ∈ Z, the q-exchangeable random walk on Z⩾0 turns into the usual simple random walk
on Z. The latter corresponds to independent coin flips with the probability of Heads equal to p.

2.2. Noncolliding simple random walks

The central object of the present paper is a model of several interacting q-exchangeable random
walks which never collide. Here we first discuss the well-known model of noncolliding simple
random walks on Z. Thanks to remark 2.4, this well-known model may be viewed as a q→ 1
limit of our model of noncolliding q-exchangeable randomwalks. We define the latter in detail
in section 2.3 below.

The model of noncolliding simple random walks on Z dates back to Karlin–McGregor
[KM59]. Themodel of noncolliding Brownianmotions onR is the celebrated Dyson Brownian
motion for the Gaussian Unitary Ensemble [Dys62]. A systematic treatment of noncolliding
random walks connecting them to determinantal point processes (in particular, orthogonal
polynomial ensembles) is performed by König–O’Connell–Roch [KOR02].

The one-step Markov transition probability of a model of m independent discrete-time
simple randomwalks on Z (making steps 0 and−1 with probabilities p and 1− p) conditioned
never to collide has the form of a Doob’s h-transform [Doo84, 2.VI.13]

6
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Υ(q=1)
m (⃗x, y⃗) =

h(q=1)
m (⃗y)

h(q=1)
m (⃗x)

m∏
i=1

(
p1yi=xi +(1− p)1yi=xi−1

)
︸ ︷︷ ︸

Υ
(q=1)
m,ind (⃗x,⃗y)

, (2.2)

where x⃗= (x1 > .. . > xm), y⃗= (y1 > .. . > ym), xi,yi ∈ Z. Here

h(q=1)
m (⃗x) :=

∏
1⩽i<j⩽m

(xi− xj) (2.3)

is the Vandermonde determinant, and the product over i in (2.2) is simply the one-step Markov
transition probability of a collection ofm independent simple randomwalks, whichwe denoted
by Υ(q=1)

m,ind . In (2.2) and throughout the text, 1A stands for the indicator of an event or a condi-
tion A.

The fact that (2.2) defines a random walk of m particles is not straightforward. The key
property is that the right-hand side sums to 1 over all y⃗. Equivalently, h(q=1)

m (⃗x) is a nonnegative
harmonic function for the collection of m independent simple random walks:∑

y⃗

h(q=1)
m (⃗y)Υ(q=1)

m,ind (⃗x, y⃗) = h(q=1)
m (⃗x). (2.4)

2.3. Noncolliding q-exchangeable random walks

Here we describe our main model Υm, which is a q-deformation of the classical model
of noncolliding simple random walks from section 2.2. For m= 1, the model Υ1 is the q-
exchangeable random walk from section 2.1 above.

Denote by Wm the space of m-particle configurations in Z⩾0:

Wm := {⃗x= (x1 > x2 > .. . > xm ⩾ 0)} ⊂ Zm
⩾0, (2.5)

and set |⃗x| := x1 + . . .+ xm.

Definition 2.5. We consider a Markov chainΥm onWm with the following one-step transition
probabilities, where x⃗, y⃗ ∈Wm:

Υm(⃗x, y⃗) = q−(
m
2)+(m−1)(|⃗x|−|⃗y|)

∏
1⩽i<j⩽m

qyj − qyi

qxj − qxi

m∏
i=1

(
qxi1yi=xi +(1− qxi)1yi=xi−1

)
︸ ︷︷ ︸

Υm,ind (⃗x,⃗y)

. (2.6)

See figure 2, left, for an illustration of the trajectory of the process Υm (with m= 4) started
from x⃗= (7,6,3,1). As time goes to infinity, the dynamics Υm reaches its unique absorbing
state δm := (m− 1,m− 2, . . . ,1,0) ∈Wm. We call the Markov process Υm the noncolliding
q-exchangeable random walks.

The process Υm was introduced recently by Petrov [Pet22]. It is a particular t= q case of
theMacdonald noncolliding randomwalks, and the main goal of the present paper is a detailed
asymptotic investigation of the t= q case. It turns out that the t= q process is determinantal
with an explicit double contour integral kernel. The asymptotic analysis of the general (q, t)
Macdonald case should be performed by different, non-determinantal methods (potentially
based on [GH22]), but we leave this question out of the scope of the present work.
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From the results of [Pet22] it follows that for any x⃗ ∈Wm, the quantities Υm(⃗x, y⃗) are
nonnegative and sum to 1 over all y⃗ ∈Wm. Equivalently, the following q-deformation of the
Vandermonde determinant

hm(⃗x) := q−(m−1)|⃗x|
∏

1⩽i<j⩽m

(qxj − qxi) (2.7)

is a nonnegative eigenfunction for Υm,ind, the collection of m independent q-exchangeable
random walks: ∑

y⃗∈Wm

hm(⃗y)Υm,ind(⃗x, y⃗) = q(
m
2)hm(⃗x). (2.8)

This property is similar to (2.4), but observe that here the function hm is not harmonic with

eigenvalue 1, but instead, its eigenvalue is equal to q(
m
2).

From (2.6)–(2.8) we see that the transition probabilities of the dynamicsΥm have a Doob’s
h-transform like form. Moreover, similarly to the simple random walk case in section 2.2,
our process Υm can be obtained from the independent q-exchangeable walks Υm,ind by condi-
tioning them never to collide. To formulate this result (proposition 2.6 below), we need some
notation. Denote byΥ(T)

1 the T-step transition probability of the single q-exchangeable random
walk. One can readily compute this probability assuming that T⩾ x− y:2

Υ
(T)
1 (x,y) = 10⩽y⩽x(1− qx)(1− qx−1) . . .(1− qy+1)qy(T−x+y) (q;q)T

(q;q)x−y(q;q)T−x+y
. (2.9)

Indeed, (1− qx)(1− qx−1) . . .(1− qy+1)qy(T−x+y) is the probability that the walk first goes all
the way down from x to y and then stays at y, and the q-binomial coefficient (q;q)T

(q;q)x−y(q;q)T−x+y

comes from the q-exchangeability.
By [KM59], the T-step transition probability of an m-particle independent q-exchangeable

randomwalkΥm,ind conditioned on the event that the particles do not collide over these T steps

is equal to det[Υ(T)
1 (xi,yj)]mi, j=1, where x⃗, y⃗ ∈Wm. Therefore, the one-step transition probability

from x⃗ to y⃗ of Υm,ind conditioned to not collide up to time T and to get absorbed at δm has the
form

det
[
Υ

(T−1)
1 (yi,m− j)

]m
i, j=1

det
[
Υ

(T)
1 (xi,m− j)

]m
i, j=1

Υm,ind(⃗x, y⃗)1yi−xi∈{0,−1}for all i.

Proposition 2.6. For any x⃗, y⃗ ∈Wm, we have

lim
T→+∞

det
[
Υ

(T−1)
1 (yi,m− j)

]m
i, j=1

det
[
Υ

(T)
1 (xi,m− j)

]m
i, j=1

= q−(
m
2)+(m−1)(|⃗x|−|⃗y|)

∏
1⩽i<j⩽m

qyj − qyi

qxj − qxi
. (2.10)

Proof. Using (2.9) and factoring out q
∑m

j=1(m−j)(T−1+m−j) and q
∑m

j=1(m−j)(T+m−j), respect-
ively, from the numerator and the denominator in the right-hand side (2.10) yields the factor

2 Here and throughout the paper we use the q-Pochhammer symbols notation

(a;q)k := (1− a)(1− aq) . . .(1− aqk−1), k ∈ Z⩾0,

and (z;q)∞ :=
∏∞

i=0

(
1− zqi

)
is a convergent infinite product because q ∈ (0,1). The last ratio in (2.9) is the q-

binomial coefficient since
(n
k

)
q
=

(q;q)n
(q;q)k(q;q)n−k

.
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q−(
m
2) in the left-hand side. After this, we can pass to the limit as T→∞ in the matrix elements

of each determinant because the resulting matrices stay nondegenerate. Thus, it remains to
compute one such determinant with T=∞, say (after replacing the index j with m+ 1− j):

det

[
10⩽j−1⩽xi

(1− qxi)(1− qxi−1) . . .(1− q j)q−xi( j−1)

(q;q)xi−j+1

]m
i, j=1

= det

[
q−xi( j−1)(qxi−j+2;q)j−1

(q;q)j−1

]m
i, j=1

. (2.11)

Here we rewrote the products in a convenient form, and observed that the indicator 10⩽j−1⩽xi
is automatically enforced in the right-hand side by the q-Pochhammer (qxi−m+j+1;q)j−1.

We see that each (i, j)th entry in the determinant in the right-hand side of (2.11) is a
polynomial in q−xi of degree j− 1. Therefore, the whole determinant is proportional to the
Vandermonde

∏
1⩽i<j⩽m(q

xj − qxi). One readily sees that the coefficient by this Vandermonde

is equal to (−1)m(m−1)/2q−(m−1)|⃗x|

(q;q)1(q;q)2...(q;q)m−1
, which completes the proof.

The limit relation in proposition 2.6 completes the analogy between the well-known model
of noncolliding simple random walks on Z (and the Dyson Brownian motion) and our noncol-
liding q-exchangeable random walksΥm. In both cases, the h-transform structure of the trans-
ition probability is due to the conditioning that the independent random walks never collide.

2.4. Gibbs interpretation as q-weighted lozenge tilings

The m-particle process Υm satisfies a version of the q-exchangeability discussed for a single
randomwalk in section 2.1. Namely, this is the Gibbs property of the walk observed in [Pet22].

Fix m and an initial condition x⃗ ∈Wm for the process Υm. Under a suitable affine trans-
formation of the trajectory of Υm, it can be bijectively identified with a lozenge tiling of the
vertical strip of width x1 + 1, see figure 2, right. The bottom boundary of the vertical strip is
encoded by x⃗ in the following way. Viewing x⃗ as a particle configuration in Z⩾0, each particle
xi corresponds to a straight piece in the boundary of slope (−1/

√
3), and each hole in x⃗ corres-

ponds to cutting a small triangle out of the strip. Due to the eventual absorption of the walkΥm

at δm, the lozenge tiling is ‘frozen’ far at the top, with x1 + 1−m tiles of one type on the left
followed by m tiles of the other type. Thus, each lozenge tiling corresponding to a trajectory
of Υm contains only finitely many horizontal lozenges.

The lozenge tiling corresponding to a trajectory of Υm can be interpreted as a stepped sur-
face in three dimensions such that the solid under this surface is made out of 1× 1× 1 boxes.
Via this interpretation, each trajectory ofΥm has a well-defined volume under the correspond-
ing stepped surface. In other words, the volume of a given tiling is the number of boxes which
must be added to the minimal configuration to get this tiling. For example, the volume of the
tiling in figure 2, right, is equal to 34.

The next statement follows from [Pet22, proposition 10].

Proposition 2.7. Fix m and x⃗ ∈Wm. The probability distribution of the trajectory of the
Markov process Υm (2.6) started from x⃗ is the same as the distribution of the random loz-
enge tiling of the strip as in figure 2, right (depending on x⃗), where the probability weight of a
tiling is proportional to qvolume.

Remark 2.8. Another q-dependent model of noncolliding random walks was introduced and
studied in [BG13]. In that model, the parameter q enters the particle speeds 1,q−1,q−2, . . .,
but the dynamics as a whole satisfies the usual, undeformed exchangeability property. Indeed,

9
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Figure 2. Left: Illustration of the trajectory of the noncolliding q-exchangeable random
walks Υm (with m= 4) started from x⃗= (7,6,3,1). Right: A bijective interpretation of
the trajectory as a lozenge tiling of a strip via an affine transformation.

the single-particle dynamics in [BG13] is the simple random walk (with Poisson, Bernoulli,
or geometric jumps), and our single-particle dynamics is the q-exchangeable random walk.

Let us denote the qvolume-weighted probability measure on tilings described in proposition
2.7 byM(⃗x)

m . The partition function (that is, the probability normalizing constant) ofM(⃗x)
m has

an explicit form:

Proposition 2.9. The sum of the quantities qvolume over all lozenge tilings of the strip as in
figure 2, right (determined by x⃗ ∈Wm), is equal to

Z[M(⃗x)
m ] =

m∏
i=1

1
(q;q)xi

∏
1⩽i<j⩽m

(1− qxi−xj). (2.12)

Note in particular that setting q= 0, we get Z[M(⃗x)
m ] = 1, as it should be.

Proof of proposition 2.9. From proposition 2.7, it suffices to check that 1/Z[M(⃗x)
m ] is the

transition probability (over x1 −m+ 1 steps) of fastest path from x⃗ to the absorbing state
δm. This fact follows by taking the product of the one-step transition probabilities (2.6) and
observing that the q-Vandermonde factors cancel out, except for the first such factor com-
ing from the initial condition x⃗. The resulting expression for 1/Z[M(⃗x)

m ] is then verified
directly.

2.5. Determinantal kernel

Fix m ∈ Z⩾1 and an initial configuration x⃗ ∈Wm for the noncolliding q-exchangeable random
walks Υm (definition 2.5). View the trajectory y⃗(t) of the process Υm as a random point con-
figuration {yj(t) : j = 1, . . . ,m, t ∈ Z⩾0} ⊂ Z2

⩾0. The next statement is our first main result.

10
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Theorem 2.10. Thus defined random point configuration in Z2
⩾0 forms a determinantal point

process, that is, for any ℓ⩾ 1 and any pairwise distinct points (ui, ti) ∈ Z2
⩾0, we have

Prob(therandomconfiguration{yj(t) : 1⩽ j⩽ m, t⩾ 0} containsall(ui, ti), i = 1, . . . , ℓ)

= det
[
Kwalks(ui, ti;uj, tj)

]ℓ
i, j=1

, (2.13)

where the correlation kernel Kwalks has double contour integral form:

Kwalks(y1, t1;y2, t2) := 1t1=t21y1=y2 − 1t2>t11y2+t2>y1+t1
q(t1−t2)(y1+t1)(qy1−y2+t1−t2+1;q)t2−t1−1

(q;q)t2−t1−1

− q−t1−y1

(2πi)2

‹
dzdw

z−t2wt1

w− z
(q;q)t1

(wq−y1−t1 ;q)t1+1

(zq1−y2−t2 ;q)t2−1

(q;q)t2−1

× (w−1;q)∞
(z−1;q)∞

m∏
r=1

1− qxr/z
1− qxr/w

. (2.14)

Here y1,y2 ∈ Z, t1 ∈ Z⩾0, t2 ∈ Z>0, the w contour is an arbitrarily small circle around 0, and
the z contour goes around qy2+t2 ,qy2+t2+1,qy2+t2+2, . . ., 0, the w contour, and encircles no other
z poles of the integrand.

We prove theorem 2.10 in section 4 below after relating (in section 3) the process Υm of
noncolliding q-exchangeable random walks to a q-weighted distribution on lozenge tilings of
a sawtooth polygons. The determinantal kernel for the latter is known from [Pet14].

2.6. Asymptotic results

Recall the definition of a determinantal kernel which should appear in the bulk of our noncol-
liding q-exchangeable random walks as the number of walks and the time go to infinity:

Definition 2.11. Let ω ∈ C \ {0,1}, Imω ⩾ 0, be a parameter called the complex slope. The
incomplete beta kernel is defined as

Bω(∆t,∆p) :=
1
2π

ˆ ω

ω

(1− u)∆tu−∆p−1du, ∆t,∆p ∈ Z, (2.15)

where the integration arc from ω to ω crosses (0,1) for ∆t⩾ 0 and (−∞,0) for ∆t< 0.

The kernel (2.15) was introduced in [OR03] to describe local asymptotics of a certain
ensemble of q-distributed random lozenge tilings of the whole plane (equivalent to random
plane partitions). Moreover, the incomplete beta kernel is the universal bulk scaling limit of
uniformly random lozenge tilings of bounded shapes [Agg19]. By [She05, KOS06], for every
complex slope ω, there is a unique ergodic translation invariant Gibbs measure on lozenge
tilings of the whole plane, and its determinantal correlation kernel is Bω.

Let us now describe the asymptotic regime of our random walks. Let m→+∞, and set
q= e−γ/m for fixed γ > 0. Scale the time and the space variables in the random walk (as in
figure 2, left) proportionally to m: t= bτmc, y= bρmc, where τ,ρ ∈ R⩾0 are fixed. Let the
initial condition x⃗ ∈Wm form a fixed number L⩾ 1 of densely packed clusters:

xi = i+ bmCkc for mak ⩽ i< mak+1, (2.16)

where i = 1, . . . ,m, k= 1, . . . ,L, and 0< C1 < C2 < .. . < CL and 0= a1 < a2 < .. .
< aL+1 = 1 are the fixed parameters of the clusters. See the beginning of section 5.1 for
more detail.
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Figure 3. Examples of the liquid region and the frozen boundary in the (τ,ρ) plane,
with γ = 1/3,1, and 3, and the same initial conditions a⃗= (0,0.1,0.2,0.6,1), C⃗=
(0.05,0.45,0.8,1). The bounding polygonal region indicates where the walks trajector-
ies may lie, with the vertical straight pieces being the initial densely packed clusters of
particles x⃗. Outside the liquid region, there are either no walks, or the walks are densely
packed and move deterministically straight, horizontally or diagonally.

In the (τ,ρ) plane, let ∂D be the curve with the following rational parametrization in the
exponential coordinates (eγτ ,eγρ):

eγτ(w) =
(wF(w))′ − e−γ

wF′(w)−F(w)+ eγF 2(w)
, eγρ(w) =

eγF′(w)
eγ(wF(w))′ − 1

, w ∈ R,

where

F(w) :=
w

w− 1

L∏
i=1

weγ(ai+Ci) − 1
weγ(ai+1+Ci) − 1

.

This curve bounds a domain denoted by D such that D∩ ([0, τ ]×R⩾0) is bounded for any
τ > 0. We call ∂D the frozen boundary curve, and D the liquid region. See figure 3 for
examples.

For any (τ,ρ) ∈ D, let ω = ω(τ,ρ) be the unique root of the algebraic equation

ωF
(
e−γρ 1−ω

1− eγτω

)
= e−γ(τ+1)

in the upper half complex plane. The existence and uniqueness of the complex root of this
equation (equivalent to (5.9)) follow from section 5.2 and the change of variables (5.19). With
all this notation in place, we can now formulate the main asymptotic result of the paper:

Theorem 2.12. For any (τ,ρ) ∈ D, in the limit regime described above, we have

lim
m→+∞

(−1)∆teγ(τ+ρ)∆tKwalks (bρmc+∆p,bτmc+∆t;bρmc,bτmc)

= 1∆t=∆p=0 −Bω(∆t,∆p)

for any fixed∆t,∆p ∈ Z.

Let us make two remarks about theorem 2.12. First, the factor (−1)∆teγ(τ+ρ)∆t in front of
Kwalks is a so-called ‘gauge transformation’ of the correlation kernel which does not change
the determinants in (2.13), and thus preserves the determinantal process. Therefore, theorem
2.12 states that the point process of the random walks converges locally (at the lattice level, in
a neighborhood of the global position (τ,ρ)) to the complement of the point process coming
from the unique ergodic translation invariant Gibbs measure on lozenge tilings of the whole

12
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plane with parameter ω. The complement arises by the Kerov’s complementation principle
(see, for example, [BOO00, appendix A.3]) because our correlation kernel is 1−Bω, where 1
is the identity operator.

Second, let us discuss the densely packed clusters assumption (2.16). On the one hand, it
restricts the generality of the initial conditions. On the other hand, it leads to elegant formulas
for the global frozen boundary, and simplifies the technical part of the analysis. The bulk limit
asymptotics of theorem 2.12 should follow for general initial data x⃗ by a more delicate steepest
descent analysis of our kernel, similarly to what is done in [GP19] for the q= 1 noncolliding
random walks with general initial data. We do not pursue this analysis here. See also [DM15],
[DM20] for limit shape and fluctuation results on uniformly random lozenge tilings with more
general boundary conditions.

Finally, we make a conjecture about the final absorbing time of the noncolliding q-
exchangeable random walks:

Remark 2.13 (Asymptotics of the absorption time of Υm). Note that the liquid region is
unbounded. More precisely, the frozen boundary has an asymptote approaching ρ= 1 as τ →
+∞. This implies that the absorption time of the Markov chain Υm, that is, the random time

tabs(m) :=min{t ∈ Z⩾0 : y1(t) = m− 1} ,
grows faster than m. Based on the result of Mutafchiev [Mut06] on unrestricted random plane
partitions, we conjecture that tabs(m)∼ m logm as m→+∞.

It should be possible to obtain a more precise behavior with the generating function coef-
ficients technique as in [Mut06] (based on Hayman’s admissible functions [Hay56]). Indeed,
this is because our ensemble of plane partitions coming from Υm has an explicit partition
function (proposition 2.9).

3. From lozenge tilings to noncolliding q-exchangeable walks

Here we recall the result from [Pet22] which shows how the noncolliding q-exchangeable
random walks Υm arise as a limit of the q-distributed random lozenge tilings.

3.1. q-distributed lozenge tilings of sawtooth polygons

Let GTN be the set of all partitions of length N, that is, N-tuples of nonnegative integers
λ= (λ1 ⩾ λ2 ⩾ . . .λN ⩾ 0). Denote |λ|= λ1 + . . .+λN. We say that µ ∈GTN−1 inter-
laces with λ ∈GTN, denoted by µ≺ λ, if λ1 ⩾ µ1 ⩾ λ2 ⩾ . . .⩾ λN−1 ⩾ µN−1 ⩾ λN. For
a sequence

Λ = (∅≺ Λ(1) ≺ Λ(2) ≺ ·· · ≺ Λ(N−1) ≺ Λ(N)), Λ( j) ∈GTj, (3.1)

define its volume by

volume(Λ) =
N−1∑
m=1

|Λ(m)|.

Fix λ ∈GTN, and consider the probability measure on sequences (3.1) with fixed top row
Λ(N) = λ, and probability weight proportional to q−volume(Λ). Denote this probability measure
by T (λ)

N . We may express the partition function of T (λ)
N as follows (see, e.g. [Pet14, section 3]

for more detail):

Z[T (λ)
N ] =

∑
Λ: Λ(N)=λ

q−volume(Λ) = sλ(q
1−N,q2−N, . . . ,q−1,1), (3.2)
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Figure 4. An example of a lozenge tiling of a sawtooth polygon of height N= 8 with
top row λ= (16,16,16,16,14,11,11,8). The particle array P= {pni } consists of the
red circle dots placed at the centers of the vertical lozenges, with coordinates relative to
the (p, n) coordinate system (with dotted axes).

where sλ is the Schur symmetric polynomial sλ(z1, . . . ,zN) = det[zλj+N−j
i ]Ni, j=1

∏
1⩽i<j⩽N

(zi− zj)−1. The right-hand side of (3.2) may also be simplified to the product form:

Z[T (λ)
N ] = q|λ|(1−N)

∏
1⩽i<j⩽N

qλi−i− qλj−j

q−i− q−j
.

The probability measure T (λ)
N has a bijective interpretation as a distribution on lozenge

tilings of a sawtooth polygon of depth N and fixed top boundary determined by λ. Define

pni = Λ
(n)
i − i, 1⩽ i⩽ N⩽ N. (3.3)

Under T (λ)
N , the quantities pni form a random integer array P= {pni }1⩽i⩽N⩽N satisfying the

interlacing constraints:

pni+1 < pn−1
i ⩽ pni

(for all i’s and n’s for which these inequalities can be written out). Viewing each pni as the
coordinate of the center of a vertical lozenge , we may complete the tiling in a unique way
by the other two types of lozenges. This leads to a corresponding tiling of a sawtooth polygon
as in figure 4.

Remark 3.1. Note that themeasure T (λ)
N on lozenge tilings of a sawtooth polygonwith weights

proportional to q−volume is different from the measureM(⃗x)
m described in section 2.4 above. In

particular, the tilings under M(⃗x)
m live in an infinite domain, and are weighted proportionally

to q+volume. In the next section 3.2 we explain how the measures T (λ)
N as N→+∞ and special

choice of λ lead to M(⃗x)
m .

14
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3.2. Limit transition to random walks

Now let us connect the probability measure T (λ)
N to the noncolliding q-exchangeable random

walks Υm from definition 2.5. Observe that for λ ∈GTN, we have:

T (λ)
N

(
Λ(N−1) = µ

)
=
q−|µ|Z[T (µ)

N−1]

Z[T (λ)
N ]

= q(N−1)(|λ|−|µ|) sµ(1,q, . . . ,qN−2)

sλ(1,q, . . . ,qN−2,qN−1)
.

Indeed, the first equality follows from the q−volume probability weights, and the second equality
is due to (3.2) and the homogeneity of the Schur polynomials.

Fixm⩾ 1 and x⃗, y⃗ ∈Wm. Let λ ∈GTN and µ ∈GTN−1 depend on x⃗, y⃗ as follows (here and
below we assume that N is sufficiently large):

{λ1 − 1,λ2 − 2, . . . ,λN−N}= {0,1,2, . . . ,N+m− 1} \ {x1, . . . ,xm} ,
{µ1 − 1,µ2 − 2, . . . ,µN−1 − (N− 1)}= {1,2, . . . ,N+m− 1} \ {y1 + 1, . . . ,ym+ 1} .

(3.4)

This choice of λ and µ means that we pass from a lozenge tiling to nonintersecting paths
avoiding the lozenges of type , see figure 4. Moreover, we choose the boundary conditions
such that the number m of paths stays fixed as N grows.

The following result is a particular case of [Pet22, section 3] with t= q:

Proposition 3.2. With the above notation, for fixed m and x⃗, y⃗ ∈Wm, we have

lim
N→+∞

T (λ)
N

(
Λ(N−1) = µ

)
=Υm(⃗x, y⃗),

where Υm is given by (2.6).

Proposition 3.2 states that the limiting distribution of the nonintersecting paths in figure 4 is
the same as the distribution of the trajectory of the noncolliding q-exchangeable randomwalks
Υm. In figure 4, the noncolliding paths live in the coordinate system (y, t) (with dashed axes),
and convergeΥm in an arbitrary finite neighborhood of the point y= t= 0. In section 4 below
we use this limiting relation to write down the correlation kernel for the random walks Υm.

4. Limit transition in the kernel

4.1. Correlation kernel for q-distributed lozenge tilings of sawtooth polygons

We begin by recalling Theorem 4.1 from [Pet14] about the correlation kernel of the measure
T (λ)
N on lozenge tilings of the sawtooth polygon with top row λ described in section 3.1 above.

By the results of [Ken97] (see also [Bor11, section 7]), this measure is a determinantal point
process in the sense that for any ℓ⩾ 1 and any pairwise distinct (p1,n1), . . . ,(pℓ,nℓ) ∈ Z2 we
have

Prob(the random arrayPcontains all(p1,n1), . . . ,(pℓ,nℓ)) = det [Kloz(pi,ni;pj,nj)]
ℓ
i, j=1 . (4.1)
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The kernel Kloz is computed in [Pet14, theorem 4.1] and is given by the following double
contour integral formula:

Kloz(p1,n1;p2,n2) =−1n2<n11p2⩽p1q
n2(p1−p2) (q

p1−p2+1;q)n1−n2−1

(q;q)n1−n2−1

+
(qN−1;q−1)N−n1

(2πi)2

‹
dzdw
w

qn2(p1−p2)zn2

w− z

× 2ϕ1(q
−1,qn1−1;qN−1 | q−1;w−1)

(zq1−p2+p1 ;q)N−n2−1

(q;q)N−n2−1

N∏
r=1

w− qλr−r−p1

z− qλr−r−p1
.

(4.2)

Here the points (p1,n1),(p2,n2) ∈ Z2 are such that 1⩽ N1 ⩽ N, 1⩽ N2 ⩽ N− 1. The z and
w integration contours are counterclockwise and do not intersect. The z contour encircles
qp2−p1 ,qp2−p1+1, . . . ,qλ1−1−p1 and not qp2−p1−1,qp2−p1−2, . . .. The w contour is sufficiently
large and goes around 0 and the z contour. Finally, 2ϕ1 in (4.2) is the (in this case, termin-
ating) Gauss q-hypergeometric function given by

2ϕ1(q
−1,qn1−1;qN−1 | q−1;w−1) =

n1−1∑
j=0

(q−1;q−1)j(qn1−1;q−1)j
(qN−1;q−1)j

w−j

(q−1;q−1)j
. (4.3)

In the rest of this section we consider the N→+∞ limit of the kernel Kloz in the regime
leading to the noncolliding q-exchangeable random walks (as discussed in section 3.2), and
prove theorem 2.10.

4.2. Rewriting the kernel

Fix t1 ⩾ 0, t2 > 0, and let n1 = N− t1,n2 = N− t2 (throughout the rest of the sectionwe assume
thatN is sufficiently large). Change the integration variables in (4.2) as z̃= zqp1 , w̃= wqp1 , and
then rename back to z,w. We have

qN(p2−p1)Kloz(p1,N− t1;p2,N− t2) =−1t2>t11p2⩽p1q
(−t2)(p1−p2) (q

p1−p2+1;q)t2−t1−1

(q;q)t2−t1−1

+
(qN−1;q−1)t1

(2πi)2

‹
dzdw
w

q(−t2)(p1−p2)zN−t2q−p1(N−t2)

w− z

× 2ϕ1(q
−1,qN−t1−1;qN−1 | q−1;w−1qp1)

× (zq1−p2 ;q)t2−1

(q;q)t2−1

N∏
r=1

w− qλr−r

z− qλr−r
. (4.4)

Here the z contour encircles only qp2 ,qp2+1,qp2+2, . . . and no other z poles of the integrand,
and the w contour goes around 0 and the z contour.

The factor qN(p2−p1) is a so-called ‘gauge transformation’ of the correlation kernel
which does not change the determinants in (4.1) and thus preserves the determinantal pro-
cess. In general, by a gauge transformation we mean replacing a kernel K(p1, t1;p2, t2) by
f(p1,t1)
f(p2,t2)

K(p1, t1;p2, t2), where f is nowhere vanishing.
In the next step, we use the fact that the top row λ depends on N as in (3.4). Here x⃗ ∈

Wm is the fixed initial configuration of the noncolliding q-exchangeable random walks Υm.
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Relation (3.4) allows to express the last product over r in the integrand in (4.4) in terms of the
xj’s. After necessary simplifications, we obtain

qN(p2−p1)Kloz(p1,N− t1;p2,N− t2) =−1t2>t11p2⩽p1q
(−t2)(p1−p2) (q

p1−p2+1;q)t2−t1−1

(q;q)t2−t1−1

+
(qN−1;q−1)t1

(2πi)2

‹
dzdw
w

z−t2qp2t2

w− z

× q−Np1wN2ϕ1(q
−1,qN−t1−1;qN−1 | q−1;w−1qp1)

× (zq1−p2 ;q)t2−1

(q;q)t2−1

N+m−1∏
j=0

1− q j/w
1− q j/z

m∏
r=1

1− qxr/z
1− qxr/w

. (4.5)

The integration contours in (4.5) are the same as in (4.4).

4.3. Exchanging the contours

We now move the w contour inside the z contour in (4.5). The integral stays the same, but we
need to add a contour integral of minus the residue Resz=w over the w contour around 0. The
residue is equal to

−Resz=w =
(qN−1;q−1)t1

2πi
1
w
w−t2qp2t2

× q−Np1wN2ϕ1(q
−1,qN−t1−1;qN−1 | q−1;w−1qp1)

(wq1−p2 ;q)t2−1

(q;q)t2−1
. (4.6)

Lemma 4.1. The integral in w of (4.6) over a small contour around zero is equal to

1t2>t1q
(−t2)(p1−p2) (q

p1−p2+1;q)t2−t1−1

(q;q)t2−t1−1
.

Proof. Notice that 2ϕ1(q−1,qN−t1−1;qN−1 | q−1;w−1qp1) and (wq1−p2 ;q)t2−1 are Laurent
polynomials in w. Therefore, the integral of (4.6) over a small contour around zero is simply
the operation of picking the coefficient by 1/w.

By the q-binomial theorem, we can write

(wq1−p2 ;q)t2−1 = (w−1qp2−t2+1;q)t2−1(−wq1−p2)t2−1q(
t2−1
2 )

= (−wq1−p2)t2−1q(
t2−1
2 )

t2−1∑
j=0

(−1)jq(p2−t2+1)jq(
j
2)

(q;q)t2−1

(q;q)j(q;q)t2−1−j
w−j. (4.7)

Using formula (4.3) for 2ϕ1 and (4.7), the product of the two Laurent polynomials has
the form

N−t1−1∑
j=0

qp1j
(qN−t1−1;q−1)j
(qN−1;q−1)j

w−j×
t2−1∑
j=0

(−1)jq(p2−t2+1)jq(
j
2)

(q;q)t2−1

(q;q)j(q;q)t2−1−j
w−j

=

N+t2−t1−2∑
j=0

djw−j.
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From the prefactor in (4.6) we see that we need to compute the sum dN−1 which has the
form

dN−1 =
N−1∑
m=0

qp1(N−1−m)q(
m
2)(−1)mq(p2−t2+1)m (q

N−t1−1;q−1)N−1−m

(qN−1;q−1)N−1−m

(q;q)t2−1

(q;q)m(q;q)t2−1−m
.

Observe thatmth term in the sum vanishes form> t2 orm< t1, so the limits of the summation
are 1t2>t1

∑t2−1
m=t1

. Rearranging the terms and relabeling k= m− t1, we have

dN−1 = 1t2>t1(−1)t1
(qt2−t1 ,q)t1
(qN−t1 ,q)t1

qp1(N−1−t1)+(t12)+(p2−t2+1)t1

×
t2−t1−1∑
k=0

q(t1−p1+p2−t2+1)kq(
k
2)(−1)k

(q;q)t2−t1−1

(q;q)k(q;q)t2−t1−1−k
.

Applying the q-binomial theorem, we can simplify this sum to:

dN−1 = 1t2>t1(−1)t1
(qt2−t1 ;q)t1
(qN−t1 ,q)t1

qp1(N−1−t1)+( t2)+(p2−t2+1)t1(qt1−p1+p2−t2+1;q)t2−t1−1.

Putting together all factors from the above computation completes the proof.

By lemma 4.1, the kernel takes the form

qN(p2−p1)Kloz(p1,N− t1;p2,N− t2) = 1t2>t11p2>p1q
(−t2)(p1−p2) (q

p1−p2+1;q)t2−t1−1

(q;q)t2−t1−1

+
(qN−1;q−1)t1

(2πi)2

‹
dzdw
w

z−t2qp2t2

w− z

× q−Np1wN2ϕ1(q
−1,qN−t1−1;qN−1 | q−1;w−1qp1)

× (zq1−p2 ;q)t2−1

(q;q)t2−1

N+m−1∏
j=0

1− q j/w
1− q j/z

m∏
r=1

1− qxr/z
1− qxr/w

. (4.8)

The integration contours in (4.8) have changed, namely, the w contour is an arbitrarily small
circle around 0, and the z contour goes around qp2 ,qp2+1,qp2+2, . . ., 0, the w contour, and
encircles no other z poles of the integrand. In (4.8), the first summand is a combination of
the residue from lemma 4.1 and the first summand in the previous expression (4.5).

4.4. Limit of the q-hypergeometric function

After exchanging the z and w contours, |w| can be taken arbitrarily small. This allows to take
a limit in N in the part of the integrand in (4.8) containing the q-hypergeometric function 2ϕ1

(observe that this is essentially the only dependence on N left in the integrand). Denote

QN(w) := (qN−1;q−1)t1q
−Np1wN2ϕ1(q

−1,qN−t1−1;qN−1 | q−1;w−1qp1).

Then

QN(w) = (qN−1;q−1)t1q
−Np1wN

N−t1−1∑
j=0

(qN−t1−1;q−1)j
(qN−1;q−1)j

w−jqjp1

= (qN−1;q−1)t1

N−t1−1∑
k=0

(qN−t1−1;q−1)N−t1−1−k

(qN−1;q−1)N−t1−1−k
(w/qp1)t1+1+k,
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where we used (4.3) and in the last line flipped the summation index as k= N− t1 − 1− j. We
have

lim
N→+∞

(qN−1;q−1)t1 = 1.

Next, in each kth term in the sum we have (for k fixed):

(qN−t1−1;q−1)N−t1−1−k

(qN−1;q−1)N−t1−1−k
(w/qp1)t1+1+k

= (w/qp1)t1+1+k
N−t1−k−2∏

i=0

1− qk+i+1

1− qt1+k+i+1
→ (w/qp1)t1+1+k

t1−1∏
i=0

(1− qk+i+1), N→+∞,

and because |w| is small, the convergence is uniform in k and w. Thus, we have

lim
N→+∞

QN(w) =
∞∑
k=0

(w/qp1)t1+1+k(qk+1;q)t1 , (4.9)

uniformly in w for small |w|.

Lemma 4.2. The sum in the right-hand side of (4.9) is equal to

(w/qp1)t1+1 (q;q)t1
(wq−p1 ;q)t1+1

.

Proof. We have
∞∑
k=0

(wq−p1)t1+1+k(qk+1,q)t1 = (wq−p1)t1+1(q;q)t1

∞∑
k=0

(wq−p1)k
(q,q)k+t1

(q;q)k(q;q)t1

= (wq−p1)t1+1 (q;q)t1
(wq−p1 ;q)t1+1

,

where we used the q-binomial theorem, and the series converges because |w| is small.

Putting together the formula (4.8) for the kernel Kloz and the results of the current
section 4.4, we arrive at a N→+∞ limit of the kernel Kloz. Denote

Klim
loz (p1, t1;p2, t2) := 1t2>t11p2>p1

q−t2(p1−p2)(qp1−p2+1;q)t2−t1−1

(q;q)t2−t1−1
+
qp2t2−p1t1−p1

(2πi)2

‹
dzdw

z−t2wt1

w− z

× (q;q)t1
(wq−p1 ;q)t1+1

(zq1−p2 ;q)t2−1

(q;q)t2−1

(w−1;q)∞
(z−1;q)∞

m∏
r=1

1− qxr/z
1− qxr/w

, (4.10)

where the w contour is an arbitrarily small circle around 0, and the z contour goes around
qp2 ,qp2+1,qp2+2, . . ., 0, the w contour, and encircles no other z poles of the integrand.

The next proposition follows directly from the previous computations.

Proposition 4.3. For any fixed t1 ⩾ 0, t2 > 0, p1,p2 ∈ Z, we have

lim
N→+∞

qN(p2−p1)Kloz(p1,N− t1;p2,N− t2) = Klim
loz (p1, t1;p2, t2).

4.5. Particle-hole involution and time shift

We are now in a position to derive theorem 2.10 from the limit transition of proposition 4.3.
Define

Kwalks(y1, t1;y2, t2) := 1t1=t21y1=y2 − qt1(t1+y1)−t2(t2+y2)Klim
loz (y1 + t1, t1;y2 + t2, t2). (4.11)
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Observe that we performed two transformations to get Kwalks from Klim
loz in (4.11):

• First, the point process defined by the noncolliding walks (formed by the solid dots in
figure 4) is the complement of the process defined by the particles pni . Therefore, by the
Kerov’s complementation principle (see, for example, [BOO00, appendix A.3]), the kernel
for the walks is the identity minus the kernel for the lozenges.

• Second, the shifting of the variables pi = yi+ ti, i = 1,2, corresponds to the passage from
the coordinate system (p, n) (where n= N− t) to the coordinate system (y, t), see figure 4.

Finally, the factor in front of Klim
loz in (4.11) is simply a gauge transformation which does not

change the determinantal process. One can readily verify that the resulting kernel Kwalks (4.11)
is the same as (2.14). This completes the proof of theorem 2.10.

5. Asymptotic analysis

In this section, we perform the bulk asymptotic analysis of the correlation kernel Kwalks (2.14)
of the process Υm in the regime as q→ 1, m→∞, and the initial configuration x⃗ forms a
finite number of densely packed clusters. We make the latter assumption for technical con-
venience, see, e.g. Duse–Metcalfe [DM15, DM20] for asymptotic results on uniformly random
lozenge tilings with more general boundaries. Using the steepest descent method, we prove
theorem 2.12, that is, obtain the limit shape of the trajectories of Υm, as well as the universal
local fluctuations of the paths which are governed by the incomplete beta kernel introduced
by Okounkov–Reshetikhin [OR03]. The latter is a two-dimensional extension of the discrete
sine kernel introduced by Borodin–Okounkov–Olshanski [BOO00].

5.1. Limit regime

The limit regime we consider for the kernel Kwalks(p1, t1;p2, t2) (2.14) is as follows:

m→+∞; q= e−γ/m ↗ 1; t2 = bmτc, t1 = t2 +∆t; p2 = bmρc, p1 = p2 +∆p.

(5.1)

Here (τ,ρ) ∈ R2
⩾0, γ > 0, and the quantities ∆t= t1 − t2,∆p= p1 − p2 ∈ Z are fixed. The

regime with fixed differences ∆t,∆p is called bulk limit, and it describes local correlations
around the global point of observation (τ,ρ) ∈ R2

⩾0. Finally, we assume that the initial config-
uration x⃗ ∈Wm scales as follows:

xi = bmg(i/m)c, 1⩽ i⩽ m; g(u) =
L∑

i=1

(u+Ci)1u∈[ai,ai+1), (5.2)

where L⩾ 1 is fixed (this is the number of clusters of densely packed particles in x⃗), and

0< C1 < C2 < .. . < CL, 0= a1 < a2 < .. . < aL+1 = 1 (5.3)

are the parameters of the clusters, and g(u) is weakly increasing with derivative 0 or 1.
We apply the standard steepest descent approach outlined in [Oko02, section 3]. For this,

we first rewrite the integrand in the double integral in Kwalks(p1, t1;p2, t2) (2.14) as

− q−t1−p1

(2πi)2
z−t2wt1

w− z
(q;q)t1

(wq−p1−t1 ;q)t1+1

(zq1−p2−t2 ;q)t2−1

(q;q)t2−1

(w−1;q)∞
(z−1;q)∞

m∏
r=1

1− qxr/z
1− qxr/w

=−q
−t1−p1

(2πi)2
(q;q)t1

(q;q)t2−1

1
(w− z)(1− zq−p2)(1− zq−p2−t2)

exp{m(Sm(w; t1,p1)− Sm(z; t2,p2))} ,
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where

Sm(w; t,p) :=
t
m
logw− 1

m

t∑
i=0

log(1−wq−p−t+i)

+
1
m

∞∑
i=0

log(1−w−1qi)− 1
m

m∑
r=1

log(1−w−1qxr). (5.4)

Here we can take any branches of the logarithms so that Sm is holomorphic in w belonging
to the upper half complex plane. Indeed, any branches taken the same in Sm(w; t1,p1) and
Sm(z; t2,p2) produce the same signs in the exponent in the integrand.

Using (5.1)–(5.2), let us define the limiting version of the function Sm:

S(w;τ,ρ) := τ logw−
ˆ τ

0
log

(
1−weγ(τ+ρ−u)

)
du

+

ˆ ∞

0
log

(
1−w−1e−γu

)
du−

ˆ 1

0
log

(
1−w−1e−γg(u)

)
du. (5.5)

Lemma 5.1. We have Sm(w;bmτc,bmρc) = S(w;τ,ρ)+O(m−1) as m→+∞, uniformly for
w and (τ,ρ) belonging to compact subsets of {w : Imw> 0} and R2

⩾0, respectively.

Proof. This follows from the convergence of the Riemann sums in (5.4) to the corresponding
integrals in (5.5), as the integrands are piecewise C1 functions in u with norms uniformly
bounded in w, τ,ρ belonging to compact subsets of their respective domains.

Integrals in (5.5) can be expressed through the dilogarithm function which has the series
and the integral representations

Li2(ξ) =
∞∑
k=1

ξk

k2
=−η

ˆ ∞

0
log

(
1− ξ e−ηu

)
du. (5.6)

The series converges for |ξ|< 1, and the integral representation (valid for any η > 0, but we
will mostly use it with η = γ) follows a certain branch of the logarithm. For example, we may
choose a branch of Li2(ξ) to have cut at ξ ∈ R⩾1. We have

Li ′2(ξ) =− log(1− ξ)

ξ
,

∂

∂ξ
ξ
∂

∂ξ
Li2(ξ) =

1
1− ξ

. (5.7)

With this notation and using (5.2), we have

S(w;τ,ρ) = τ logw− γ−1Li2(we
γρ)+ γ−1Li2

(
weγ(ρ+τ)

)
− γ−1Li2(w

−1)+ γ−1
L∑

i=1

[
Li2

(
w−1e−γ(ai+Ci)

)
−Li2

(
w−1e−γ(ai+1+Ci)

)]
. (5.8)

5.2. Critical points and the frozen boundary

Let us count the critical points of S(w;τ,ρ) in the complex upper half-plane. Recall that w is
a critical point if, by definition, S ′(w;τ,ρ) = 0, where the derivative is taken in w. By looking
at eγwS

′(w;τ,ρ), we see that the critical points must satisfy the following algebraic equation:

weγ(τ+1)

w− 1
· weγρ − 1
weγ(ρ+τ) − 1

L∏
i=1

weγ(ai+Ci) − 1
weγ(ai+1+Ci) − 1

= 1. (5.9)
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Figure 5. Graphs of pnum and pden for large ρ.

Lemma 5.2. For any τ,ρ > 0, equation (5.9) has at most one non-real root in w in the complex
upper half-plane.

We denote this root in the upper half-plane by wc = wc(τ,ρ).

Proof of lemma 5.2. Denote by pnum(w) and pden(w) the polynomials in the denominator and
the numerator, respectively, in the left-hand side of (5.9). Let us first count the real roots of (5.9)
by considering intersections of the graphs of pnum(w) and pden(w), w ∈ R. Both polynomials
pnum and pden are of degree L+ 2, and have only real roots. Since their top degree coefficients
have the same sign, we may and will assume that pnum(−∞) = pden(−∞) = +∞.

The roots of pnum(w) are 0, e−γρ, and wnum
i := e−γ(ai+Ci), 1⩽ i⩽ L. Similarly, pden(w) has

roots 1,e−γ(ρ+τ), and wden
i := e−γ(ai+1+Ci), 1⩽ i⩽ L. By (5.2), the roots interlace as

0⩽ widen < winum < wi−1
den ⩽ 1, 2⩽ i⩽ L. (5.10)

We first discuss two examples illustrating how we count the roots. Let us start with ρ >
(aL+1 +CL). Then the two leftmost roots of pden(w) are 0 and e−ρ, and the two leftmost roots of
pnum(w) are e−γ(ρ+τ) and e−γ(aL+1+CL). Moreover, 0< e−γ(ρ+τ) < e−ρ < e−γ(aL+1+CL). We
see that on each of L+ 1 segments between the roots of pnum, the graph of pnum intersects
with the graph of pden. This counting produces at least L+ 1 real solutions to (5.9). Since this
equation is equivalent to a polynomial equation of degree at most L+ 2, it follows that there
are no complex solutions to (5.9). See figure 5 for an illustration.

Let us now decrease ρwhile keeping ρ+ τ constant. At some point we will have a repeated
root e−γρ = e−γ(aL+1+CL), which upon further decreasing ρ breaks the interlacing. Then we
can have L− 1 or L+ 1 roots (counted with multiplicity) at the intersections of the graphs of
pnum and pden, see figure 6 for an illustration. When there are L− 1 intersections, (5.9) may
have a single pair of complex conjugate non-real roots. We see that there cannot be more than
one such pair.

Now let us describe what happens for ρ < (aL+1 +CL). Recall that e−γ(aL+1+CL)⩽e−γρ⩽1,
so for some 1⩽ i ⩽ L we have wden

i ⩽ e−γρ ⩽Wden
i−1, where we set w

den
0 = 1 for convenience.

From (5.10) we also have wden
i < wnum

i < wden
i−1, thus we have two roots of the numerator,

namelywnum
i and e−γρ located between two roots of denominator. Denote the interval between

wnum
i and e−γρ by I, so [0,1] = [0,min(wnum

i ,e−γρ)]∪ I∪ [max(wnum
i ,e−γρ),1]. Note that some

of these intervals might be empty in the presence of double roots of pnum.
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Figure 6. Graphs of pnum and pden for ρ+ τ > aL+1 + cL > ρ > aL+ cL. Possible
dashed graphs lead to nonexistence of complex roots, and solid graphs lead to exactly
one complex root in the upper half-plane.

If e−γ(ρ+τ) ∈ I, then the interlacing is restored, and we have a structure similar to the first
case as in figure 5. The graphs of pnum and pden intersect L+ 1 times, which gives at least L+ 1
real critical points, and thus no complex roots exist.

On the other hand, if e−γ(ρ+τ) /∈ I, the configuration is similar to figure 6, and we have
either L− 1 or L+ 1 intersections, leaving the possibility that at most one complex root in the
upper half-plane exists. This completes the proof.

Definition 5.3. LetD ⊂ P be the open set of pairs (τ,ρ), such that S(w;τ,ρ) defined by (5.5),
(5.8) has one non-real critical point wc in the upper half-plane. We call D liquid region, and
its boundary curve ∂D the frozen boundary.

Let us obtain a parametrization of the frozen boundary ∂D. Because the equation (5.9) has
real coefficients, as (τ,ρ) approaches ∂D, the corresponding critical point wc becomes close
with its complex conjugate wc. At ∂D these two roots of (5.9) merge, and thus the frozen
boundary is the discriminant curve of the equation (5.9). We may thus take wc ∈ R as a para-
meter of this curve τ = τ(wc), ρ= ρ(wc).

Denote

F(w) :=
w

w− 1

L∏
i=1

weγ(ai+Ci) − 1
weγ(ai+1+Ci) − 1

.

Then the two equations for the double roots of (5.9) yield a rational parametrization of ∂D in
the exponential coordinates (eγτ ,eγρ):

eγτ(w) =
(wF(w)) ′ − e−γ

wF ′(w)−F(w)+ eγF 2(w)
, eγρ(w) =

eγF ′(w)
eγ(wF(w)) ′ − 1

, w ∈ R. (5.11)

We used this explicit parametrization to draw the frozen boundaries in figure 3 from section 2.6.

5.3. Analysis of S(w;τ,ρ)

In this subsection we assume that (τ,ρ) ∈ D, and investigate the behavior of the steepest
descent contours ImS(w;τ,ρ) = ImS(wc;τ,ρ) started from the critical point wc. In the next
section 5.4 we use this information to deform the original integration contours in Kwalks (2.14)
to the steepest descent ones. This will yield theorem 2.12.
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Figure 7. The graph of v 7→ ImS(v+ iε;τ,ρ) for small ε. For any fixed ε> 0 this func-
tion is continuous. Its maximum is in the neighborhood of zero and has orderO(|logε|).

First, we consider the behavior of ImS(w;τ,ρ) close to the real line, that is, w= v+ iε,
v ∈ R, and ε> 0 is sufficiently small and fixed. In logw and Li2(w) entering (5.8) we choose
the standard branch of the logarithm which has branch cut along the negative real line. Using
the integral representation in (5.6), we see that Li2(ξ) has branch cut along [1,+∞).

Lemma 5.4. For sufficiently small fixed ε> 0, the graph of the function v 7→ ImS(v+ iε;τ,ρ),
v ∈ R, has at most four intersections with any horizontal line. If there are four intersections,
then the leftmost of these intersections is in a small left neighborhood of zero, and goes to 0
as ε→ 0.

See figure 7 for an illustration of the graph of this function.

Proof of lemma 5.4. Observe the following behavior of the functions entering (5.8):

• The graph of

v 7→ Im(τ log(v+ iε)) = τ tan−1(ε/v)+πτ1v<0

is in an O(ε) neighborhood of the graph of the step function v 7→ πτ1v<0 with the added
vertical segment from (0,π) to (0,0).

• The graph of v 7→ Im
(
Li2(v+ iε)

)
is in an O(ε) neighborhood of the graph of the function

χ+(v) := π logv · 1v>1. Indeed, this is because

Im
(
Li2(v+ iε)

)
=−
ˆ ∞

0
Arg

(
1− (v+ iε)e−u

)
du

= π

ˆ ∞

0
11−ve−u<0du+O(ε)

= π logv · 1v>1 +O(ε). (5.12)

• The graph of v 7→ Im
(
Li2 (1/(v+ iε))

)
is in an O(ε) neighborhood of the graph of the func-

tion χ−(v) := π logv · 10<v<1 with the added vertical line from (0,0) to (0,−∞). This fact
is obtained similarly to the expansion (5.12).
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Thus, for small ε the graph of v 7→ ImS(v+ iε;τ,ρ) belongs to an O(ε) neighborhood of
the graph of the following function:

SR(v;τ,ρ) := πτ1v<0 − γ−1χ+(ve
γρ)+ γ−1χ+

(
veγ(ρ+τ)

)
− γ−1χ−(v)+ γ−1

L∑
i=1

[
χ−(ve

γ(ai+Ci))−χ−

(
veγ(ai+1+Ci)

)]
.

We see that for v< 0 and for sufficiently large v, the function SR is equal to πτ . Next, the
function SR is piecewise linear in logv. Due to the ordering of ai and Ci (5.3), one readily sees
that SR(v;τ,ρ) for v> 0 first weakly decreases in v, then it may weakly increase v, and finally
it weakly decreases in v again until it stabilizes at the value πτ .

Moreover, for any fixed ε> 0, the pre-limit function v 7→ ImS(v+ iε;τ,ρ) is not constant.
Thus, we see that the graph of the pre-limit function may intersect any horizontal line at most
four times: at most once in a small left neighborhood of v= 0, and at most three times for
v> 0. For small ε, the graph of v 7→ ImS(v+ iε;τ,ρ) becomes more and more vertical, and
thus we see that the leftmost point of intersection with a horizontal line goes to 0 as ε→ 0.
This completes the proof.

Let us now look at the behavior of ImS(w;τ,ρ) for large |w|.

Lemma 5.5. We have

lim
R→+∞

ImS(Reiθ;τ,ρ) = πτ,

uniformly in θ ∈ [0,π].

Proof. Clearly, we have Im(logReiθ) = θ. Moreover, Li2(w−1)→ 0 for |w| →+∞ because
Li2 is continuous at 0. To complete the proof, it remains to show that

Im
(
Li2(Re

iθ)
)
∼ (π− θ) logR, R→+∞,

uniformly in θ ∈ [0,π]. We have [NIS23, (25.12.4)]

Im
(
Li2(Re

iθ)
)
=− Im

(
Li2(R

−1e−iθ)
)
− 1

2
Im

(
log(−Reiθ)

)2
.

The first term goes to zero as R→+∞, and for the second term we have

−1
2
Im

(
log(−Reiθ)

)2
=−Re

(
log(−Reiθ)

)
Im

(
log(−Reiθ)

)
=− logR · (θ−π),

and we are done.

5.4. Contour deformation and convergence to the incomplete beta kernel

Lemmas 5.4 and 5.5 imply that when (τ,ρ) is in the liquid region D, all four half-contours
emanating from the critical point wc in the upper half plane end on the real line. Let us denote
these points by

uz− = 0< uw− < uz+ < uw+. (5.13)

We take the leftmost point to be 0 as the ε→ 0 limit of the leftmost point of intersection in
lemma 5.4. Moreover, from the proof of lemma 5.4 we see that

uw− < e−γ(τ+ρ) < uz+ < e−γρ < uw+. (5.14)
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Let us denote two closed, positively oriented contours ImS(w;τ,ρ) = ImS(wc;τ,ρ) by γz,
γw, where both of them pass through wc and wc, the contour γz goes through uz−,u

z
+, and γw

goes through uw−,u
w
+.

Lemma 5.6. We have ReS(uz±;τ,ρ)> ReS(wc;τ,ρ) and ReS(uw±;τ,ρ)< ReS(wc;τ,ρ).

These inequalities justify our notation for the points (5.13) and the contours γz,γw. The
latter will be the new integration contours in the correlation kernel.

Proof of lemma 5.6. Clearly, on the contours ImS(w;τ,ρ) = ImS(wc;τ,ρ) (which are the
steepest descent/ascent ones), the real part of S is monotone. Moreover, the increasing and
decreasing behavior of ReS alternates throughout the four half-contours originating at the
critical point wc (which is a saddle point for ReS). Therefore, the result will follow if we show
that +∞= ReS(uz−;τ,ρ)> ReS(wc;τ,ρ). That is, let us show that ReS(w, τ,ρ)→+∞ as
|w| → 0.

Using [NIS23, (25.12.4)] similarly to the proof of lemma 5.5, we can write for small |w|:

Re
(
Li2(w

−1)
)
=−Re

(
Li2(w)

)
− π2

6
− 1

2
Re

(
log(−w−1)

)2
.

For |w| → 0, the first summand in the right-hand side goes to zero, while for the last one we
have

−1
2
Re

(
log(−w−1)

)2
=−1

2
(log |w|)2 + 1

2
(Arg(−w−1))2.

The argument is bounded, and so we see using (5.8) that ReS(w;τ,ρ) behaves for small |w| as

−τ log(|w|−1)+
γ−1

2
(log |w|)2 + γ−1

2

L∑
i=1

((
log

∣∣weγ(ai+1+Ci)
∣∣)2 − (

log
∣∣weγ(ai+Ci)∣∣)2)+ const.

The term −τ log(|w|−1) is of smaller order than the squared logarithms, and one readily sees
that the total contribution of the latter is +∞. This completes the proof.

Let us recall the original integration contours in the kernelKwalks (2.14) which we reproduce
here for convenience:

Kwalks(p1, t1;p2, t2) = 1t1=t21p1=p2 − 1t2>t11p2+t2>p1+t1
q(t1−t2)(p1+t1)(qp1−p2+t1−t2+1;q)t2−t1−1

(q;q)t2−t1−1

− q−t1−p1

(2πi)2

‹
dzdw

z−t2wt1

w− z
(q;q)t1

(wq−p1−t1 ;q)t1+1

(zq1−p2−t2 ;q)t2−1

(q;q)t2−1

× (w−1;q)∞
(z−1;q)∞

m∏
r=1

1− qxr/z
1− qxr/w

, (5.15)

The w contour is an arbitrarily small positively oriented circle around 0, and the z contour is
positively oriented, goes around qp2+t2 ,qp2+t2+1,qp2+t2+2, . . . and the w contour, and encircles
no other z poles of the integrand. The singularities of the integrand are as follows (see figure 8
for an illustration):

• In w, there is an essential singularity at w= 0, and all the simple poles are at

w= z and w ∈
{
qp1+j

}t1
j=0

⋂{
qxr

}m
r=1

. (5.16)
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Figure 8. Thick curves represent the original w and z contours in Kwalks (5.15). The
possiblew poles (5.16) lie between qp1 and qp1+t1 . The possible z poles (5.17) lie outside
of the segment between qp2+1 and qp2+t2−1. Note that the relative positions of p1 and p2,
as well as of p1 + t1 and p2 + t2, may be arbitrary, and in the figure we display only one
such possibility. The union of the dashed curves is the new w contour after we drag it
through infinity.

• In z, all the simple poles are at

z= w and z ∈
{
qj
}∞
j=0

\
({
qp2+j

}t2−1

j=1

⋃{
qxr

}m
r=1

)
. (5.17)

Note that z= 0 is not a pole thanks to the presence of the function (z−1;q)∞ in the denominator.
Moreover, observe that at infinity, the integrand behaves as O(w−2) as a function of w. This
implies that it has no residue at w=∞.

In the bulk asymptotic regime (5.1)–(5.2), assume that the position (τ,ρ) is in the liquid
region D (definition 5.3). We aim to deform the contours in Kwalks (5.15) to new contours
which intersect at the non-real critical points wc,wc, and coincide with the steepest descent
contours γz,γw (defined before lemma 5.6) outside a small neighborhood of the real line. Fix
small ε> 0, and perform the contour deformations in the following order:

(1) Keeping the w contour a small circle around 0 of radius ε/2, deform the z contour to
coincide with the steepest descent contour γz outside of the ε-neighborhood of R. In the
ε-neighborhood of R, we need to make sure that the deformation from the old to the new
z contour does not cross any z-poles of the integrand. Namely, in the ε-neighborhood of
uz− = 0, let the new z contour pass around 0 following a circle of radius ε instead of going
straight to 0 along γz. Around uz+ which is between e−γ(τ+ρ) and e−γρ (see (5.14)) but
may not be between qp2+t2 and qp2, let the new z contour follow straight lines at distance
ε from R, and then go around the existing poles at distance at least ε from these poles (see
figure 9 for an illustration). Denote the new z contour by γε

z .
(2) Drag w through infinity, that is, replace the w integral over a small contour around 0 by

minus the integral over all the other w-poles which are listed in (5.16). Thus, we obtain
minus the integral over the union of the dashed contours in figure 8, minus 2πi times the
residue of the integrand at w= z (which is still under the single integral in z over γε

z ).
(3) Now let us deform the w contour to the steepest descent contour γw outside the ε-

neighborhood of R. In the ε-neighborhood of R let us modify the new w contour so that
the deformation does not pick any residues one the real line, at points w= qj (this is done
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Figure 9. Deformed integration contours to the steepest descent ones, with modifica-
tions in the ε-neighborhood of the real line to avoid picking unnecessary residues. Note
that for large m, not all four modifications in the ε-neighborhood are present.

similarly to the contour γε
z , see figure 9 for an illustration). Denote the new w contour by

γε
w. The deformation of the w contour to γε

w picks a residue at w= z if z is in the right part
of its contour, from wc to wc in the counterclockwise order.

Accounting for all residues and sign changes throughout the contour deformation, we see
that the kernel Kwalks (5.15) takes the form:

Kwalks(p1, t1;p2, t2) =−1t2>t11p2+t2>p1+t1
q(t1−t2)(p1+t1)(qp1−p2+t1−t2+1;q)t2−t1−1

(q;q)t2−t1−1

+ 1t1=t21p1=p2 +
q−t1−p1

2πi

ˆ
wc→wc

zt1−t2(q;q)t1(zq
1−p2−t2 ;q)t2−1

(q;q)t2−1(zq−p1−t1 ;q)t1+1
dz

+
q−t1−p1

(2πi)2

˛
γε
z

dz
˛
γε
w

dw
(q;q)t1
(q;q)t2−1

exp{m(Sm(w; t1,p1)− Sm(z; t2,p2))}
(w− z)(1− zq−p2)(1− zq−p2−t2)

.

(5.18)

Here the single integral is over the left part of the contour γε
z , from wc to wc in the counter-

clockwise order, and we used the notation (5.4).

Lemma 5.7. With ε= m−1, in the bulk limit regime (5.1) and (5.2), the double contour integral
in (5.18) goes to zero.

Proof. All the quantities except exp{m(Sm(w; t1,p1)− Sm(z; t2,p2))} in the double con-
tour integral stay bounded in our limit regime. By lemma 5.1, the functions Sm are well-
approximated by S. Since the integration contours are steepest descent for S outside the ε-
neighborhood of R, we see that the contribution from the parts of the contours away from the
real line goes to zero. This is because outside a small neighborhood ofwc andwc, the integrand
is bounded in absolute value by e−cm for some c> 0.

To estimate the contribution from the neighborhood of the real line, we need to bound the
derivative of ReS(w;τ,ρ) along the straight and the circular parts of the additional contours.
All of these non-steepest descent additional contours have length of order ε= m−1. Indeed, for
example, an additional contour may go from qp1 to uw+, and because u

w
+ > e−γρ, the length of
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this contour is bounded from above by the distance between qp1 and e−γρ. This distance is of
order 1/m, see (5.1). Thus, it suffices to bound the derivative of ReS(w;τ,ρ) on the additional
contours by o(m1−δ) for some δ > 0. Indeed, then the total change of ReS(w;τ,ρ) along the
non-steepest descent additional contours is of order o(m−δ), and em(−c+o(m−δ)) still goes to
zero exponentially fast.

To estimate the derivative of the real part of a function f(z) = u(x,y)+ iv(x,y)which is holo-
morphic in a neighborhood of a curve z(θ) = (x(θ),y(θ)), we have by the Cauchy–Riemann
equations:

∂

∂θ
Re f(z(θ)) = x′(θ)Re f ′(z(θ))− y′(θ) Im f ′(z(θ)).

Let us now turn to the function S(w;τ,ρ) (5.8). Different summands in (5.8) have different
singularities, let us consider each of these singularities in order. First, in a neighborhood of
uz− = 0 the modified contour w(θ) = εeiθ goes in a circular way without straight parts. We
have (here and below in the proof, C denotes a fixed sufficiently large positive constant whose
value may differ from one inequality to the next):

∂

∂θ
Re

(
logw(θ)

)
= 0,

∣∣∣∣ ∂∂θ Re(Li2(Aw(θ)−1)
)∣∣∣∣⩽ C,

for any A> 0, and all other summands in (5.8) are regular around 0.
The next singularities may appear in the neighborhoods of uw± or uz+. In these neighbor-

hoods, the modified contours may contain straight lines and circular segments. By changing
variables, it suffices to estimate only the derivatives of the real parts of Li2(w) and Li2(w−1)
in the neighborhood of w= 1 (at all other points except w= 0 these functions are regular,
and we already considered w= 0 above in the proof). We have for the circular contours
w(θ) = 1+ εeiθ:∣∣∣∣ ∂∂θ Re(Li2(w(θ)))

∣∣∣∣⩽ Cε log(ε−1),

∣∣∣∣ ∂∂θ Re(Li2(w(θ)−1)
)∣∣∣∣⩽ Cε log(ε−1).

For the straight contours w(x) = x± iε we have:∣∣∣∣ ∂∂x Re(Li2(w(x)))
∣∣∣∣⩽ C log(ε−1),

∣∣∣∣ ∂∂x Re(Li2(w(x)−1)
)∣∣∣∣⩽ C log(ε−1).

We see that the derivative of ReS(w;τ,ρ) is upper bounded (in the absolute value) by
C log(ε−1) = C logm, which is o(m1−δ) for any δ < 1. This completes the proof.

It remains to compute the limit of all the other terms in the right-hand side of (5.18) except
the negligible double integral:

Lemma 5.8. In the bulk limit regime (5.1) and (5.2), the sum of the first three terms in (5.18)
converges to

(−1)∆te−γ(τ+ρ)∆t (1t1=t21p1=p2 −Bω(t1 − t2,p1 − p2)) ,

where Bω is the incomplete beta kernel (definition 2.11), and

ω = ω(τ,ρ) :=
1−wc(τ,ρ)eγρ

1−wc(τ,ρ)eγ(τ+ρ)
, (5.19)

where wc(τ,ρ) is the critical point of S(w;τ,ρ) (5.8) in the upper half-plane (see lemma 5.2).

The factor (−1)∆te−γ(τ+ρ)∆t is simply a gauge transformation of the kernel which does
not change a determinantal process.
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Proof of lemma 5.8. Recall that the quantities∆t= t1 − t2,∆p= p1 − p2 are fixed. The first
three terms in the right-hand side of (5.18) have the form

1∆t=∆p=0 − 1∆t<01∆t+∆p<0
q∆t(p1+t1)(q∆t+∆p+1;q)−∆t−1

(q;q)−∆t−1

+
q−t1−p1

2πi

ˆ
wc→wc

z∆t(q;q)t2+∆t(zq1−p2−t2 ;q)t2−1

(q;q)t2−1(zq−p2−t2−∆p−∆t;q)t2+∆t+1
dz. (5.20)

Here the integration arc is the left part of the contour, from wc to wc in the counterclockwise
order.

We have for ∆t< 0 and ∆t+∆p< 0:

q∆t(p1+t1)(q∆t+∆p+1;q)−∆t−1

(q;q)−∆t−1
→ (−1)−∆t−1e−γ(τ+ρ)∆t

(
−∆t−∆p− 1

−∆t− 1

)
.

Indeed, this is because 1−qa

1−qb →
a
b for fixed a,b ∈ Z⩾1 as q→ 1.

In the integrand, we have

(q;q)t2+∆t

(q;q)t2−1
= (qt2 ;q)∆t+1 → (1− e−γτ )∆t+1,

using the standard notation of the q-Pochhammer symbol (a;q)−k = (aq−k;q)−1
k , k ∈ Z⩾0,

with a negative index. Similarly,

(zq1−p2−t2 ;q)t2−1

(zq−p2−t2−∆p−∆t;q)t2+∆t+1

=
(zq1−p2−∆p;q)∆p−1

(zq−p2−t2−∆p−∆t;q)∆t+∆p+1
→

(
1− zeγρ

)∆p−1(
1− zeγ(τ+ρ)

)−∆t−∆p−1
.

Let us make a change of variables

u=
1− zeγρ

1− zeγ(τ+ρ)
, z= e−γρ 1− u

1− eγτu
, dz=−e−γρ 1− eγτ

(1− eγτu)2
du.

With this change of variables, (5.20) converges to

1∆t=∆p=0 + 1∆t<01∆t+∆p<0(−1)∆te−γ(τ+ρ)∆t

(
−∆t−∆p− 1

−∆t− 1

)
+

(−1)∆te−γ(τ+ρ)∆t

2πi

ˆ
ω→ω

(1− u)∆tu∆p−1du,

(5.21)

where ω is given by (5.19), and this point is in the upper half-plane. The integration arc goes
from ω to ω and crosses the real line between 0 and 1.

In (5.21), we can remove the overall factor (−1)∆te−γ(τ+ρ)∆t as it is a gauge transformation
leading to an equivalent determinantal kernel. Finally, for∆t< 0, let us write

1
2πi

ˆ
ω→ω

(1− u)∆tu∆p−1du=−Resu=0(1− u)∆tu∆p−1 − 1
2πi

ˆ ω

ω

(1− u)∆tu∆p−1du,
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where the integration arc from ω to ω in the right-hand side crosses the real line to the left of 0.
One readily sees that the minus residue at u= 0 exactly cancels out with the second summand
in (5.21). For ∆t⩾ 0, the integral in (5.21) is equal to − 1

2πi

´ ω
ω
(1− u)∆tu∆p−1du, where the

integration arc from ω to ω crosses the real line between 0 and 1. This completes the proof.

The contour deformations in the kernel Kwalks (5.15) and lemmas 5.7 and 5.8 complete the
proof of theorem 2.12.
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