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1. Introduction

1.1. Matrices and eigenvalues. The study of random matrices as a field is a patchwork of many
fields. The main object we study is a probability distribution on a certain subset of the set of matrices
Mat(N ×N,R or C), thus giving us a random matrix A.

Definition 1.1. An eigenvalue λ of the matrix A is a root of the polynomial f(λ) = det(A−λI), where
I is the identity matrix (we use this notation throughout the notes). Equivalently, λ is an eigenvalue
if A if the matrix A − λI is not invertible. This second way of defining eigenvalues in fact works even
when A is not a finite size matrix, but an operator in some infinite-dimensional space.

We will largely be only concerned with real eigenvalues. That is the eigenvalues of a real symmetric
matrix over R or Hermitian over C that is where A∗ = A (here and everywhere below A∗ means AT ,
i.e., transposition and complex conjugation).

Remark 1.2. The case when eigenvalues can be complex is also studied in the theory of random
matrices, sometimes under the keyword complex random matrices. This area is more modern and is
actively developing now. See, for example, [GT10] for a discussion of the law of large numbers.

Proposition 1.3. Every eigenvalue of a Hermitian matrix is real.

Proof. Let A be a Hermitian matrix, so that A∗ = A. Let λ be an eigenvalue of A. Let v be a nonzero
vector in the null space of A−λI. Let a = vT v = |v|2, so that a is a positive real number. Let b = vTAv.

Then b̄ = bT = vTAv
T

= vT ĀT v = vTAv = b, so b is real. Since b = λa, λ must be real. �

Date: April 25, 2016.

1

https://github.com/lenis2000/RMT_Spring_2016


NOTES ON RANDOM MATRICES 2

Let HN be the set of N ×N Hermitian matrices. For each N , let µN be a probability measure on HN
(it can be supported not by the whole HN , but by a subset of it, too). Then for each matrix A ∈ HN we
may order the real eigenvalues λ1 ≥ · · · ≥ λN of A (the collection of eigenvalues is called the spectrum
of A).

A collection of probability measures µN on HN for each N ≥ 1 is said to be a random matrix ensemble.
For such an ensemble, the eigenvalues λ(N)

1 ≥ · · · ≥ λ(N)
N of matrices N form random point configurations

on R with growing numbers of points. Our main goal is to study the asymptotic properties of these
collections of points on R, as N →∞.

1.2. Why study random matrices? Let us briefly discuss five possible motivations to study random
matrices and asymptotic distributions of random matrix spectra.

1.2.1. Matrices are a natural generalization of real numbers, so studying them would seem natural from
a pure probability point of view. However, the development of the theory of Random Matrices was much
application driven.

1.2.2. Hurwitz and theory of invariants. A. Hurwitz in the 1890s [Hur97] computed the volume of or-
thogonal and unitary groups of matrices.1 For example, U(1), the set of unitary 1× 1 unitary matrices
— the unit circle — has volume 2π. For general N , the volume of U(N) is the normalization constant
ZN =

∫
U(N) 1 · d(HaarN ) in probabilistic integrals over the Haar measure on the unitary group,

ZN = 2N(N+1)/2
N∏
k=1

πk

Γ(k)
= 2N(N+1)/2

N∏
k=1

πk

(k − 1)!
.

See [DF15] for a recent survey.

1.2.3. Statistics. J. Wishart in 1928 [Wis28] considered random covariance matrices of vector-valued
data. For testing the hypothesis of independence of components of the vector, it is natural to study the
distribution of the random covariance matrix of the uncorrelated vector (the null-hypothesis distribu-
tion). Let us assume that the components of the vector are identically distributed.

This latter matrix ensemble (called the Wishart ensemble) can be constructed by taking a rectangular
matrix Y with independent (or uncorrelated) identically distributed entries, and taking A = Y TY . Then
A is a square matrix which is said to have the (real) Wishart distribution.

For the purposes of statistics, the distribution of the Wishart matrix A should be compared with
the distribution under the alternate hypothesis that the entries of the vector are correlated. For certain
assumed nature of the correlation structure, this leads to considering spiked random matrices of the form
A+R, where A is Wishart and R is a finite-rank perturbation. It turns out that sometimes the presence
of a nonzero matrix R may be detected by looking at the spectrum of A + R, which again leads to
considering spectra of random matrices. One reference (among many others which are not mentioned)
relevant for the current research on spiked random matrices is [BBAP05].

1.2.4. Nuclear physics. Active development of the theory of random matrices begins in the 1950s when
Wigner, Dyson, Mehta, and their collaborators explored nuclear physics applications. In nuclear quan-
tum physics a state of a system is an operator on an L2 space of functions; its eigenvalues are the
energy levels of the system. For large nuclei it is difficult to analyze the operator in L2 directly, but
Wigner postulated that differences in energy levels could be modeled by differences in eigenvalues of
certain classes of matrices under appropriate probability measures. That is, the collections {∆Ei} and
{λi − λi+1} should be statistically close. Moreover, the random matrix ensemble should have the same

1The group O(N) of orthogonal N ×N matrices consists of matrices O with real entries, for which OTO = OOT = I.
The group U(N) of unitary N × N matrices consists of matrices U with complex entries, for which UUT = UTU = I.
Both groups are compact, and so possess finite Haar measures, i.e., measures µ which are invariant under left and right
shifts on the group.



NOTES ON RANDOM MATRICES 3

symmetry as that quantum system. The symmetry classes of random matrices are discussed in detail
in a recent survey [Zir10]. Dyson proposed a model of stochastic dynamics of energies (eigenvalues of
random matrices). We will study the Dyson’s Brownian motion later.

Section 1.1 of the book [Meh04] contains a nice outline of physical applications of random matrices.

1.2.5. Number theory. Dyson and Montgomery uncovered number theoretic applications of random ma-
trices in the 1970’s [Mon73], with Odlyzko in the 1980’s [Odl87] providing powerful numerical simulations.

Consider the Riemann Zeta Function

ζ(s) =

∞∑
n=1

1

ns
for s ∈ C with the real part of s > 1

Riemann showed that ζ(s) can be analytically continued to a function on C with a pole at s = 1.
The famous Riemann hypothesis is that all the zeroes of the Zeta function with real part greater than
0 lie on the critical line 1

2 + it. It turns out that the distribution of the zeroes on the critical line can
be linked to the distribution of eigenvalues of random matrices. Consider the zeros 1

2 + itn of the zeta
function with tn ∈ R. Let us define

wn =
tn
2π

log

(
|tn|
2π

)
,

then lim
L→∞

1

L
# {wn ∈ [0, L]} = 1, i.e., the average density of the wn’s is 1. The theorem/conjecture of

Montgomery2 states that the pair correlations of the zeroes of the zeta function have the form

lim
L→∞

1

L
#

{
wn ∈ [0, L]

α ≤ wn − wm ≤ β

}
∼
∫ β

α

(
δ(x) + 1− sin2(πx)

π2x2

)
dx, (1.1)

where δ(x) is the Dirac delta. Further details on this and other connections between number theory and
random matrices can be found in [KS00], [Kea06].

Remark 1.4. There are accounts of Montgomery meeting Dyson at teatime at the IAS; the latter pointed
out the connection between Montgomery’s formula and the eigenvalue distributions of random matrices.
A quick Internet search lead to the following links containing details: https://www.ias.edu/articles/
hugh-montgomery and http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/dyson.htm.

1.3. Course outline. The course will consist of five main parts, with the last part being optional:
1. Limit shape results for random matrices (such as Wigner’s Semicircle Law). Connections to Free

Probability.
2. Concrete ensembles of random matrices (GUE, circular, and Beta ensembles). Bulk and edge asymp-

totics via exact computations. Connection to determinantal point processes.
3. Dyson’s Brownian Motion and related stochastic calculus.
4. Universality of random matrix asymptotics.
5. (optional, depending on time available) Discrete analogues of random matrix models: random per-

mutations, random tilings, interacting particle systems.

2. Wigner’s Semicircle Law and its combinatorial proof

After discussing the object and motivations for studying random matrices, let us proceed to the first
part of the course — the laws of large numbers for the eigenvalue distributions of random matrices. The
first of these laws of large numbers is the Wigner’s Semicircle Law. It dates back to [Wig55].

2Depending in part on the Riemann hypothesis and in part on how strong is the assumed convergence in (1.1).

https://www.ias.edu/articles/hugh-montgomery
https://www.ias.edu/articles/hugh-montgomery
http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/dyson.htm
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2.1. Real Wigner matrices. A particular ensemble of random matrices is the real Wigner matrices.
Let A ∈ Mat(N × N,R) with A = (aij)

N
i,j=1 such that aij = aji. To describe the distribution of the

random matrix A we only need to describe the upper triangular portion of A.

Definition 2.1. The law of the real Wigner N ×N matrix is described as follows:
• {aij}i≤j is an independent collection of random variables
• {aii}Ni=1 is iid3, and {aij}i<j is iid.
• E aij = 0 for all i, j; E a2ij = 2 for i = j; and E a2ij = 1 for i 6= j.
• all moments of aij are finite.

The last condition greatly simplifies technicalities of the proofs, but most results on real Wigner matrices
hold under weaker assumptions.

Example 2.2. A large class of Wigner random matrices (which helps justify why in A the variances
on the diagonal must be twice the off-diagonal variances) can be constructed as follows. Suppose the
collection of random variables xij for 1 ≤ i, j ≤ N is iid with Exij = 0 and Ex2ij = 1. Let X = (xij) be
an N ×N matrix. Define

A :=
X +XT

√
2

.

One readily sees that A is real Wigner. Namely, for example, a11 = x11+x11√
2

=
√

2x11, so E a11 = 0

and E a211 = 2Ex211 = 2. If N ≥ 2 then a12 = a21 with a12 = x12+x21√
2

, and we have E a12 = 0 and
Var a12 = 1

2 Var(x12 + x21) = 1 because x12 and x21 are independent.

2.2. Gaussian Orthogonal Ensemble. A special case of real Wigner matrices is when each aij is
Gaussian. This case is called the Gaussian Orthogonal Ensemble (GOE ).

Lemma 2.3. The distribution of the GOE is orthogonally invariant, that is, if A has the GOE distribu-
tion and O ∈ O(N) is a fixed orthogonal matrix, then OAOT has the same probability distribution as A.

Proof. It is not hard to check that the probability density of A with respect to the Lebesgue measure
on Mat(N ×N,R) (this space is isomorphic to RN(N+1)/2 by considering the upper triangular part) has
the form

f(A) = c exp(− tr(A2)),

where c is a normalization constant.4 Since the matrix trace is invariant under cyclical permutations,

tr(OA2OT ) = tr(A2OTO) = tr(A2).

Thus, OA2OT
D
= A. �

We will discuss the GOE (and its close relative GUE, Gaussian Unitary Ensemble) in detail in the
course later, but for now we will focus on properties of real Wigner matrices with general entry distri-
bution.

2.3. Formulation of the Wigner Semicircle Law. For a real Wigner matrix AN ∈ Mat(N ×N) let
λ
(N)
1 ≥ · · · ≥ λ(N)

N be the eigenvalues of AN . The empirical distribution of the eigenvalues is

LN =
1

N

N∑
i=1

δ
N−1/2λ

(N)
i

. (2.1)

That is, we put delta masses of size 1/N into the N positions of rescaled eigenvalues λ(N)
i /
√
N . This

rescaling will turn out to be appropriate for the law of large numbers. Note that LN is a probability
measure on R.

3Independent identically distributed.
4Here and below tr(A) = a11 + a22 + . . .+ aNN is the trace of a matrix.
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Remark 2.4. For the purposes of asymptotic statements, we will always assume that the off-diagonal
entries of real Wigner matrices A = AN have the same fixed distribution independent of N , and similarly
the diagonal entries have the same fixed (but different) distribution.

Figure 1. Semicircle density SC(x).

Figure 2. Histogram of the empirical distribution LN for N = 5000.

Definition 2.5. The semicircle distribution SC is a fixed probability distribution on R supported on
[−2, 2] which is absolutely continuous with respect to the Lebesgue measure and has the density

SC(x) :=
1

2π

√
4− x2, −2 ≤ x ≤ 2. (2.2)

See Figure 1.
Note that slightly abusing the notation, by SC we will denote both the semicircle distribution and its

probability density (2.2).

Theorem 2.6 (Wigner’s Semicircle Law). As N →∞, the empirical distributions LN converge weakly,
in probability to the semicircle distribution SC.

Let us explain what we mean by convergence “weakly in probability”. Formally this means that for
any bounded continuous function f on R (f ∈ CB(R)) and each ε > 0 we have

lim
N→∞

P
(∣∣∣∣∫

R
f dLN −

∫
R
f dSC

∣∣∣∣ > ε

)
= 0. (2.3)

That is, “in probability” means the usual convergence in probability of random elements LN to a (non-
random) element SC. On the other hand, “weakly” specifies the metric on the space of probability
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measures on R (to which all LN and SC belong). Convergence of probability measures in this metric
simply means weak convergence of probability measures on R.

In other words, let us use a convenient notation for the pairing 〈f, µ〉 =
∫
R f dµ =

∫
R f(x)µ(dx) for a

given function f and measure µ. If µ is a random measure (such as LN , since LN depends on AN which
is random), then 〈f, µ〉 is a random element of R (usually we say random variable). Since SC is not
random, the pairing 〈f,SC〉 is a fixed number for a given function f . The Semicircle Law thus states that
for any given f ∈ CB(R) the random variable 〈f, LN 〉 converges in probability to the constant 〈f,SC〉
which may be written as

∀ε > 0, lim
N→∞

P (|〈f, LN 〉 − 〈f, SC〉| > ε) = 0, (2.4)

which is the same as (2.3).

Remark 2.7. This type of convergence is reminiscent of the classical weak law of large numbers: for

{Xi}∞i=1 iid random variables with E |X1| <∞, the random variables
1

N

∑N
i=1Xi converge to the constant

EX1 in probability as N →∞.

2.4. Strategy of the proof. We will employ the following strategy in our proof of the Wigner’s semi-
circle law. This is only the first of the proofs we will consider, and it is based on the computation
of moments and on the related combinatorics. Recall that for a probability measure µ the quantities
〈xk, µ〉, k = 0, 1, 2, . . ., are called the moments of µ.

First, in Section 2.5 we will compute the moments mk := 〈xk, SC〉 of the limiting semicircle distribu-
tion, and identify the answer in terms of the Catalan numbers. Our second step in the proof is to show
the convergence limN→∞ E〈xk, LN 〉 = mk for each k. We do this in Section 2.7 below. The third step
(in Section 2.9) is to show that the variance of 〈xk, LN 〉 goes to zero as N →∞ for each k. Finally, to
complete the proof we will need to justify that the convergence (2.4) for any function f(x) follows from
the case of f(x) = xk, k = 0, 1, 2, . . .. This is done in Section 2.10.

2.5. Moments of the semicircle distribution. Here we will compute the moments of the semicircle
distribution:

mk = 〈xk,SC〉 =

∫ 2

−2
xk SC(x) dx =

∫ 2

−2
xk

(√
4− x2
2π

)
dx.

Clearly, by symmetry we have mk = 0 for k odd. If k is even, let us perform a trigonometric
substitution x = 2 sin θ, −π

2 ≤ θ ≤
π
2 , in the above integral:

m2k =
22k+1

π

∫ π
2

−π
2

sin2k θ cos2 θ dθ. (2.5)

Lemma 2.8. We have
1

π

∫ π
2

−π
2

sin2k θ dθ =
(2k − 1)!!

2kk!
,

where recall that (2k − 1)!! = 1 · 3 · 5 · · · (2k − 3)(2k − 1).

Proof. Denote the integral in the right-hand side by αk. Observe that α0 = 1. Integrating by parts for
k ≥ 1, we have

αk = − 1

π

∫ π
2

−π
2

sin2k−1 θ d(cos θ) =
1

π

∫ π
2

−π
2

(2k − 1) sin2k−2 θ cos2 θ dθ = (2k − 1)αk−1 − (2k − 1)αk.

Therefore, the quantities αk satisfy
αk
αk−1

=
2k − 1

2k
,
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which is the same relation as for the quantities (2k−1)!!
2kk!

. This completes the proof. �

By relating m2k (2.5) and αk in the above lemma, we see that the even moments of the semicircle
distribution are given by

m2k =
1

k + 1

(
2k

k

)
, k = 0, 1, 2, . . . . (2.6)

These quantities are called the Catalan numbers.

2.6. Catalan numbers. The Catalan numbers Catk are defined as

Catk :=
1

k + 1

(
2k

k

)
, k = 0, 1, 2, . . . . (2.7)

The first twenty one of them are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440,

9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420.

They are ubiquitous in combinatorics: for example, there are more than 200 families of objects enumer-
ated by the Catalan numbers [Sta15]. A list of references and properties of Catalan numbers may be
found at [Cat].

Here we will list a number of properties of the Catalan numbers which will be important for our proof
of the semicircle law.

2.6.1. Dyck paths.

Definition 2.9. A Dyck path of length 2n is a sequence d0, d1, . . . , d2n such that d0 = d2n = 0, di+1−di =
±1 for all i, and that di ≥ 0 for all i. Graphically Dyck paths can be represented as in Figure 3.

k

dk

1 2 3 4 5 6 7 8 9 10

Figure 3. A Dyck path of length 2n = 10.

Figure 4. All five Dyck paths of length 2n = 6. The first two paths first return to zero
at time 2j = 2, the third path first returns to zero at time 2j = 4, and the last two paths
first return to zero at time 2j = 6.
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Exercise 2.10. The number of Dyck paths of length 2n is equal to the Catalan number Catn.

Idea. Use the reflection principle — a tool used in the study of random walks and Brownian motion.
See https://en.wikipedia.org/wiki/Catalan_number#Second_proof for details.

Another way to count the Dyck paths is to first establish the recurrence (2.8), and then use generating
functions to solve the recurrence (see Remark 2.12 below). �

2.6.2. Recurrence.

Lemma 2.11. The Catalan numbers satisfy the recurrence relation

Cat0 = 1, Catn =
n∑
j=0

Catj−1Catn−j . (2.8)

Proof. The easiest way to see this is by counting the Dyck paths: let the first time a Dyck path reaches
0 be 2j, then j can be any number from 1 to n (see Figure 4). The part of the Dyck path after time
2j is independent from the part before 2j. The number of paths from 2j to 2n is exactly Catn−j . The
number of paths from 0 to 2j (with the condition that they do not get to 0 in the meantime) can be
seen to be Catj−1 by cutting out the first up and the last down steps. This implies the recurrence. �

Remark 2.12. The recurrence (2.8) provides a way to get the explicit formula (2.7). Namely, considering
the generating function G(z) =

∑∞
n=0 Catnz

n, we see that (2.8) implies

G(z) = zG(z)2 + 1.

This equation on G(z) has two solutions 1±
√
1−4z
2z , of which we should pick 1−

√
1−4z
2z because the other

solution diverges as z → 0. The Taylor expansion of this function is

1−
√

1− 4z

2z
=
∞∑
n=0

1

n+ 1

(
2n

n

)
zn = 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + 132z6 + . . . ,

which converges for |z| < 1
4 . This shows that the Dyck paths are enumerated by the Catalan numbers.

2.6.3. Trees. As was mentioned before, the Catalan numbers enumerate numerous families of combina-
torial objects. We will need one more family of such objects — rooted ordered trees. An ordered tree is a
rooted tree (i.e., a tree with a distinguished vertex R called the root) in which children of every vertex
are linearly ordered. On pictures this ordering will be represented from left to right (see Figure 5).

R R

Figure 5. These trees are isomorphic as rooted trees, but are different as rooted ordered
trees. A beginning of the walk of Exercise 2.14 is displayed for the second tree.

Lemma 2.13. The number of rooted ordered trees with n+ 1 vertices (including the root) is equal to the
Catalan number Catn.

Proof. Assume that the leftmost subtree contains j vertices (without the root), then the rest of the tree
including the root contains n−j+1 vertices. This readily implies the recurrence (2.8), which establishes
the claim. �

https://en.wikipedia.org/wiki/Catalan_number#Second_proof
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Figure 6. Dyck paths corresponding to the rooted ordered trees in Figure 5 (see Exercise 2.14).

Exercise 2.14. By comparing the proof of Lemmas 2.11 and 2.13, come up with a bijection between
Dyck paths and ordered rooted trees.

Idea. Consider the walk around the tree (such that the tree is always to the left of the walker), which
starts to the left of the root. Let dk be the distance of the walker from the root. The Dyck paths
corresponding to trees in Figure 5 are given in Figure 6. �

2.7. Convergence of expectations E〈xk, LN 〉 → mk. With the Catalan preparations in place, let us
return to the semicircle law. We would like to show that

lim
N→∞

E〈xk, LN 〉 = mk =

{
0, k odd;

Catk/2, k even.
(2.9)

First, observe that the left-hand side has the form

E〈xk, LN 〉 = E
∫
R
xk LN (dx)

= E
∫
R
xk

1

N

N∑
i=1

δN−1/2λi
(dx)

= E
1

N

N∑
i=1

∫
R
xkδN−1/2λi

(dx)

= E
1

N

N∑
i=1

(N−1/2λi)
k

= N−1−k/2 E
N∑
i=1

λki .

Since A is diagonalizable (as an N × N real symmetric matrix), we have
∑N

i=1 λ
k
i = tr(Ak). We may

express the trace of the kth power of a matrix by a k-fold sum of cyclic products

tr(Ak) =

N∑
i1,i2,...,ik=1

ai1i2ai2i3 · · · aik−1ikaiki1 .

So we have

E〈xk, LN 〉 = N−1−k/2
N∑

i1,i2,...,ik=1

E(ai1i2ai2i3 · · · aik−1ikaiki1). (2.10)

Our goal now is to understand the combinatorial structure of the above big sum.

Definition 2.15. Each term of the sum can be encoded by a closed word i1 . . . iki1 of length k + 1
(“closed” in the sense that the word starts and ends with the same letter). For example, 123241 is a
closed word of length 6. The support of a closed word is the set of all letters participating in this word.
The support of 123241 is {1, 2, 3, 4}.
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To each closed word w we associate an undirected graph Gw with vertices labeled by the support of the
word, edges (i1, i2), (i2, i3), . . . , (ik, i1) connecting each consecutive pair of letters in the word. For exam-
ple, if w = 123241, then Gw has four vertices {1, 2, 3, 4} and five edges {(1, 2), (2, 3), (3, 2), (2, 4), (4, 1)}
(see Figure 7). Notice each graph Gw is connected. These (and similar) graphs are sometimes referred
to as Feynman diagrams.

1 2 3 4

Figure 7. Graph Gw corresponding to the word w = 123241.

Let Nw
i1i2

be the number of distinct edges connecting i1 to i2 in Gw. In our running example we have
Nw

12 = 1 and Nw
23 = 2. Each edge may be a self edge such as (1, 1), or it can be an edge connecting

distinct vertices such as (2, 3).
With this notation we have

E ai1i2ai2i3 · · · aik−1ikaiki1 =
∏
self e

e∈Gi1...iki1

E aNe11

∏
connecting e
e∈Gi1...iki1

E aNe12 , (2.11)

since all diagonal elements are iid, and all the elements above the diagonal are iid. Here the product
runs over all possible distinct edges in the graph of the word.

In order for the expectation (2.11) to be nonzero, we must have the following properties:
• Since E aij = 0, each edge in Gi1...iki1 must have Ne ≥ 2..
• The graph Gi1...iki1 has k + 1 edges, and so it can have at most 1 + k/2 vertices.

Now let us look at the sum (2.10) as a whole. Call two graphs equivalent if they differ only by
relabeling the vertices. Note that the expectations of the form (2.11) coming from equivalent graphs are
the same. If a graph has t vertices, then there are N↓t := N(N − 1) . . . (N − t+ 1) ways to relabel the
vertices to get an equivalent graph. This implies that the sum (2.10) can be rewritten as

E〈xk, LN 〉 =

1+bk/2c∑
t=0

N↓t

N1+k/2

∑
Gw∈EqClasst

∏
self e
e∈Gw

E aNe11

∏
connecting e

e∈Gw

E aNe12

︸ ︷︷ ︸
(∗)

, (2.12)

where by EqClasst we have denoted the set of equivalence classes of graphs Gw corresponding to closed
word, having t vertices and k + 1 edges, and also having Ne ≥ 2 for each edge.

Clearly, for fixed t and k, the expression (∗) above does not depend on N and is finite. Also, since
N↓t = O(N t), the sum (2.12) vanishes as N →∞ unless t = 1 +k/2. Because t ≤ bk/2c, this is possible
only for k even. Therefore, E〈xk, LN 〉 converges to zero if k is odd.

Now consider the case when k is even and t = 1 + k/2. Then the graph corresponding to each word
i1 . . . iki1 has k + 1 edges, 1 + k/2 vertices, and Ne ≥ 2 for each edge. Hence, gluing together pairs of
edges connecting the same vertices, we see that the graph Gi1...iki1 must be a tree (see Figure 8).5 In
particular, there are no self edges and Ne = 2 for each connecting edge. This implies that

lim
N→∞

E〈xk, LN 〉 =
∣∣EqClass1+k/2∣∣.

5The words which correspond to such trees contributing to (2.12) are sometimes referred to as Wigner words.
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i1 i2 i3 i4 i5 i6

Figure 8. A graph Gw corresponding to a Wigner word w = i1i3i4i5i4i6i4i3i1i2i1 which
nontrivially contributes to the expansion (2.12). Here k = 10.

1 6 2 3 4 5

1

62

3

4 5

Figure 9. A representative graph Gw ∈ EqClass1+k/2 corresponding to the graph as in
Figure 8 (left), and its representation as a rooted ordered tree (right).

To count the number of trees Gw ∈ EqClass1+k/2, let us choose representatives w = v1 . . . vk+1, such
that for each i = 1, . . . , k + 1, the set {1, 2, . . . , vi} is an interval in {1, 2, . . . , N} beginning at 1 (thus,
v1 = vk+1 = 1).

Exercise 2.16. There is a unique way of choosing such representatives.

Let the vertex 1 be the root R, and clearly the order coming from the word defines an order on this
rooted tree (see Figure 9). This implies that

∣∣EqClass1+k/2∣∣ = Catk, and finally proves the desired
convergence (2.9).

2.8. An example of counting terms in the expansion of eq. (2.10). Before proceeding to finish
the proof, let us consider one example how expansion (2.10) works for k = 6.

Exercise 2.17. How go get Cat3 = 5 from E(tr(A6)) ?

Solution. We want to show how

E( tr(A6) ) = N−1−3
N∑

i1,...,i6=1

E (ai1,i2 · ai2,i3 · · · ai5,i6 · ai6,i1) −−−−→
N→∞

5.

We need to determine which terms are nonzero and how many such terms there are. If there are 5
or 6 independent indices, we get a product of expected values of independent random variables with
expected value zero, so these terms do not contribute. If there are 3 or fewer independent indices, there
are not enough terms to overcome the factor of N−4, so these terms do not contribute in the limit. Thus
we are interested in nonzero terms with 4 independent indices. One can check that there are 5 types of
such terms:

(1)
(i1, i2), (i2, i1)︸ ︷︷ ︸, (i1, i3), (i3, i1)︸ ︷︷ ︸, (i1, i4), (i4, i1)︸ ︷︷ ︸
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(2)
(i1, i2), (i2, i3), (i3, i2)︸ ︷︷ ︸, (i2, i1)︸ ︷︷ ︸, (i1, i4), (i4, i1)︸ ︷︷ ︸

(3)
(i1, i2), (i2, i3), (i3, i2)︸ ︷︷ ︸, (i2, i4), (i4, i2)︸ ︷︷ ︸, (i2, i1)︸ ︷︷ ︸

(4)
(i1, i2), (i2, i3), (i3, i4), (i4, i3)︸ ︷︷ ︸, (i3, i2)︸ ︷︷ ︸, (i2, i1)︸ ︷︷ ︸

(5)
(i1, i2), (i2, i1)︸ ︷︷ ︸, (i1, i3), (i3, i4), (i4, i3)︸ ︷︷ ︸, (i3, i1)︸ ︷︷ ︸

These sequences bijectively correspond to noncrossing pair partitions of 6 elements. These partitions
are in a clear bijection with Dyck paths of length 6 (shown in Figure 4), and are enumerated by the
Catalan number Cat3 = 5.

For each of these patterns, there are N(N − 1)(N − 2)(N − 3) ∼ N4 terms in the sum, and each term
is a product of the expected value of the squares of three independent off-diagonal random variables
with expected value 0 and variance 1, like

E(ai1,i2 · ai2,i1 · ai1,i3 · ai3,i1 · ai1,i4 · ai4,i1) = E(a2i1,i2) · E(a2i1,i3) · E(a2i1,i4) = 1.

So in the limit we get the Catalan number Cat3 = 5. �

2.9. Variances of 〈xk, LN 〉. Let us now show that the variances vanish in the limit:

E( 〈xk, LN 〉2)−
(
E( 〈xk, LN 〉 )

)2
−−−−→
N→∞

0. (2.13)

Recall that

〈xk, LN 〉 = N−1−k/2
n∑

~i=i1,...,ik=1

ai1,i2 · · · aik,i1 .

Now, writing a~i for ai1,i2 · · · aik,i1 , we have

E( 〈xk, LN 〉2)−
(
E( 〈xk, LN 〉 )

)2
= N−2−k

∑
~i,~j

(
E
(
a~i · a~j

)
− E(a~i) · E(a~j)

)
.

If the graphs G~i and G~j (corresponding to the words i1 . . . iki1 and j1 . . . jkj1, respectively) do not share
common edges, then the corresponding random variables a~i and a~j are independent, and so E(a~i · a~j) =

E(a~i) ·E(a~j). Thus we are only interested in the terms for which edges of the graphs G~i and G~j overlap.

Example 2.18. For instance, if ~i = (1, 2, 3, 2, 1) and ~j = (1, 2, 1, 1, 1), then

E(a~i) = E(ai1,i2 · ai2,i3 · ai3,i2 · ai2,i1) = E(a21,2)
2 = 1;

E(a~j) = E(ai1,i2 · ai2,i1 · ai1,i1 · ai1,i1) = E(a21,2) · E(a1,1) = 2;

E(ai1,i2 · ai2,i3 · ai3,i2 · ai2,i1 · ai1,i2 · ai2,i1 · ai1,i1 · ai1,i1) = E(a4i1,i2) · E(a2i2,i3) · E(a2i1,i1) = 2E(a41,2).

The corresponding graphs are given in Figure 10.

We now argue similarly to the proof given in Section 2.7 (for the convergence of the first moments).
Namely, in order for E(a~i · a~j)− E(a~i)E(a~j) to be nonzero we must have the following:

• Since E(aij) = 0, the graphs need to have Ne ≥ 2;
• The graphs G~i and G~j need to share some edges.
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1 2 3

Figure 10. Graphs G~i (solid lines) and G~j (dashed lines) in Example 2.18.

If the combined graph has t vertices, there are N↓t = N(N − 1) · · · (N − t + 1) equivalent classes of
graphs. Thus, the variance takes the form

E( 〈xk, LN 〉2)−
(
E( 〈xk, LN 〉 )

)2
= N−2−k

2k∑
t=1

N↓t


∑

equiv. classes
of graphs with
2k vertices

(finite products of finite moments)


︸ ︷︷ ︸

finite and independent of N

Thus, we must have t ≥ k+2 in order to have a nonzero contribution as N →∞. The associated graphs
have Ne ≥ 2 and are connected (since G~i and G~j are connected and overlap). There are totally 2k edges
with multiplicities, thus ≤ k double edges. We conclude that there are no such graphs, and so there are
no nonzero contributions to the variance in the limit as N →∞. This completes the proof of (2.13).

Remark 2.19. Remark: by a similar argument, t = k+1 also cannot contribute. Indeed, the combined
graph of G~i and G~j has ≤ k double edges and k + 1 vertices so it must be a tree (in the same sense
of gluing edges as in Section 2.7 above). However, as G~i and G~j must also overlap (i.e., share common
edges), there are no such trees. This implies a better estimate on the variance:

E
(
〈xk, LN 〉2

)
− E

(
〈xk, LN 〉

)2
= O(N−2), N →∞.

This estimate can in fact be used to show almost-sure convergence to the semi-circular law.

2.10. Estimates and completing the proof. We want to show that for any continuous bounded
function f ∈ CB(R), the random variables 〈f, LN 〉 converge in probability to 〈f, SC〉 (this is further
detailed in (2.4)). We have already shown that

• The moments converge: E〈xk, LN 〉 → 〈xk,SC〉.
• The variances vanish: E(〈xk, LN 〉2)− (E〈xk, LN 〉)2 → 0.

We will also need the following a priori estimate that the empirical distributions LN are concentrated
around zero:

Lemma 2.20. For all ε > 0 there exists B > 0 so that

P
(〈
|x|k1|x|>B, LN

〉
> ε
)
−−−−→
N→∞

0.

Here an everywhere below 1A denotes the indicator function of an event A, so the function |x|k1|x|>B
looks as in Figure 11.

Proof. We will use the Markov (sometimes also called Chebyshev) inequality:

P(|X| > a) <
E |X|
a

for any a > 0.
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Note that for |x| ≥ B ≥ 1, x2k = |x|k|x|k ≥ Bk|x|k, hence |x|k ≤ x2k/Bk. Now we have by the Markov
inequality:

P
(〈
|x|k1|x|>B, LN

〉
> ε
)
<

1

ε
E
(〈
|x|k1|x|>B, LN

〉)
≤

E
(
〈x2k, LN 〉

)
εBk

.

We know that
E
(
〈x2k, LN 〉

)
→ E

(
〈x2k,SC〉

)
= Catk.

An easy (and in fact exact in the exponential order) estimate for the Catalan numbers is

Catk =
1

k + 1

(
2k

k

)
≤

2k∑
j=0

(
2k

j

)
= 22k = 4k.

Thus

lim sup
N→∞

P
(〈
|x|k1|x|>B, LN

〉
> ε
)
≤ Catk

εBk
≤ 4k

εBk
.

As k grows, the left hand side grows. However, for B > 4 the right hand side decays to zero. Thus if we
set

αk = lim sup
N→∞

P
(〈
|x|k1|x|>B, LN

〉
> ε
)
,

then

0 ≤ α1 ≤ α2 ≤ . . . ≤
4k

εBk
→ 0.

Thus, all the αk are zero. Since the probabilities are nonnegative, the desired result follows. �

Figure 11. The function |x|51|x|>5.

Now, fix B > 4 (say, B = 5), and uniformly approximate the function f1|x|≤B (a continuous function
on a compact interval) by a polynomial. That is, by the Weierstrass Approximation Theorem, for every
δ > 0 there is a polynomial Qδ(x) such that

sup
|x|≤B

|f(x)−Qδ(x)| < δ.

Therefore, we can estimate

|〈f, LN 〉 − 〈f, SC〉| ≤ |〈f, LN 〉 − 〈Qδ,SC〉|+ |〈Qδ, SC〉 − 〈f, SC〉|
≤
∣∣〈f1|x|≤B, LN 〉 − 〈Qδ,SC〉∣∣+

∣∣〈f1|x|>B, LN 〉∣∣+ |〈Qδ,SC〉 − 〈f,SC〉|
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≤
∣∣〈Qδ1|x|≤B, LN 〉 − 〈Qδ,SC〉∣∣

+
∣∣〈f1|x|≤B, LN 〉 − 〈Qδ1|x|≤B, LN 〉∣∣+

∣∣〈f1|x|>B, LN 〉∣∣+ |〈Qδ, SC〉 − 〈f, SC〉|
≤ |〈Qδ, LN 〉 − 〈Qδ,SC〉|+

∣∣〈Qδ1|x|>B, LN 〉∣∣
+
∣∣〈f1|x|≤B, LN 〉 − 〈Qδ1|x|≤B, LN 〉∣∣+

∣∣〈f1|x|>B, LN 〉∣∣+ |〈Qδ, SC〉 − 〈f, SC〉|
≤ |〈Qδ, LN 〉 − E〈Qδ, LN 〉|+ |E〈Qδ, LN 〉 − 〈Qδ,SC〉|+

∣∣〈Qδ1|x|>B, LN 〉∣∣
+
∣∣〈f1|x|≤B, LN 〉 − 〈Qδ1|x|≤B, LN 〉∣∣+

∣∣〈f1|x|>B, LN 〉∣∣+ |〈Qδ, SC〉 − 〈f, SC〉|
≤ |〈Qδ, LN 〉 − E〈Qδ, LN 〉|+ |E〈Qδ, LN 〉 − 〈Qδ,SC〉|

+
∣∣〈Qδ1|x|>B, LN 〉∣∣+

∣∣〈f1|x|>B, LN 〉∣∣+ 2δ.

Therefore, we can estimate the probabilities as follows (given that δ is sufficiently small):

P
(
|〈f, LN 〉 − 〈f,SC〉| > ε

)
≤ P

(
|〈Qδ, LN 〉 − E〈Qδ, LN 〉| > ε/5

)
+ P

(
|E〈Qδ, LN 〉 − 〈Qδ,SC〉| > ε/5

)
+ P

( ∣∣〈Qδ1|x|>B, LN 〉∣∣ > ε/5
)

+ P
( ∣∣〈f1|x|>B, LN 〉∣∣ > ε/5

)
.

The first summand above convergences to zero by Chebyshev inequality:

P
(
|〈Qδ, LN 〉 − E〈Qδ, LN 〉| > ε/5

)
≤

E
(
〈Qδ, LN 〉2

)
−
(
E〈Qδ, LN 〉

)2
(ε/5)2

,

which goes to zero because variances go to zero (Section 2.9). The second summand convergences to zero
because the moments converge (Section 2.7). The last two summands converge to zero by Lemma 2.20
(note that f is bounded and so can be bounded by a polynomial). This completes our first proof of the
Wigner’s semicircle law (formulated above as Theorem 2.6).

2.11. Related laws of large numbers for random matrix spectra. Let us mention two relatives
of the Wigner semicircle law which can be proven by similar methods of moments and trees counting.

2.11.1. Complex Wigner matrices. The first is the law of large numbers for complex (Hermitian) random
Wigner matrices A = (aij)

N
i,j=1, in which

• aij = aji, i ≤ j, are complex-valued independent random variables.
• The diagonal elements aii are iid real valued with mean 0 and variance 2.
• aij with i < j are iid complex random variables with expected value 0 and (complex) variance 1.
On other words, aij = xij + yij , where xij and yij are independent real random variables with
mean 0 and variance 1

2 . This implies that E a2ij = 0 and E |aij |2 = 1.
• All moments E |aij |k are finite.

Defining LN in in the same way by (2.1) (note that the eigenvalues of A are real because it is Hermitian),
we still have the semicircle law: LN → SC weakly in probability. The proof of this result involves counting
of graphs similarly to the real case described above, but in the case of Hermitian Wigner matrices the
graphs will be directed.

There also exist laws of large numbers for complex eigenvalues of random matrices, and typical is the
circular law stating that the eigenvalues of a random matrix with iid entries are distributed uniformly
inside a unit disc on the complex plane (cf. Remark 1.2).

2.11.2. Marchenko–Pastur law. The second relative is the Marchenko–Pastur law [MP67] for Wishart
matrices (random sample covariance matrices). The Wishart ensemble is defined as follows. Let Y be
an N ×M matrix of iid real-valued random variables with mean 0 and variance 1. Then, by definition,
W = Y Y T is called a Wishart N × N random matrix. It is a symmetric random matrix which is,
moreover, positive definite. Therefore, all its eigenvalues are real and nonnegative.
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Remark 2.21. If the entries of Y are Gaussian, then the entries of W are sums of squares of Gaussians,
so they have chi square distributions — a type of distribution arising when studying sample covariance
matrices of Gaussian random vectors.

Figure 12. The Marchenko–Pastur density fα(x) for α = 3.

Suppose M/N → α ∈ [1,∞). The Marchenko–Pastur law states that

LN =
1

N

N∑
i=1

δλi/
√
N → Sα

weakly in probability. Here Sα, α ∈ [1,∞) are the Marchenko–Pastur distributions defined as follows.
Set

b± = (1±
√
α)2.

Then the density function of Sα is

fα(x) =

√
(x− b−)(b+ − x)

2πx
, b− ≤ x ≤ b+,

which looks as in Figure 12.
Note that if M � N , then the random matrices W are likely to be nondegenerate, so the distribution

does not hit zero. In fact, the distribution S1 corresponding to α = 1 is the image of the semicircle law
SC under the squaring map x 7→ x2.

2.12. Notes and references. The combinatorial proof of the Wigner’s semicircle law was essentially
given by Wigner in [Wig55]. In our proof we closely follow Section 2.1 of [AGZ10].

3. Elements of Free Probability

3.1. Motivating question. We will discuss certain ideas from Free Probability applied to spectra of
random matrices. Our main goal is to motivate and describe the operation of free convolution of two
probability distributions with compact support. We will not discuss all the technical aspects and proofs,
but will focus on certain concrete examples.
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The motivating question we will be interested in is the following. Suppose AN and BN are two
ensembles of (real symmetric or Hermitian) N ×N random matrices, and assume

LN (AN )→ µ, LN (BN )→ ν,

where LN is the empirical spectral distribution (2.1), and µ and ν are limiting probability measures on
R with compact support. The above convergence is the weak convergence in probability, as in (2.3) and
(2.4). The question is, how to understand the convergence of the sum:

LN (AN +BN )→ ?

Of course, the answer will involve the dependence structure of the ensembles AN and BN , and here
we will consider one choice of this dependence — free independence, which informally means that the
eigenbases corresponding to the matrices AN and BN are in generic position. Then the empirical spectral
distributions of AN +BN converge to the free convolution µ� ν of the measures µ and ν.

Example 3.1. Suppose AN and BN are independent and real Wigner. Then by Theorem 2.6 we have

LN (AN )→ SC and LN (BN )→ SC. However,
AN +BN√

2
is also clearly real Wigner, and so

LN

(
AN +BN√

2

)
→ SC.

We will see that this corresponds to the following rule for the free convolution:

SC� SC√
2

= SC. (3.1)

In classical probability, if X and Y are iid random variables such that for any constants a, b we have
aX + bY

D
= cX + d for some other constants c, d, then X is called stable. An important such example is

Gaussian random variables. Indeed, if X,Y are iid Gaussian random variables with mean 0 and variance
1, then X +Y =

√
2X. This suggests that the semicircle distribution should be the free analogue of the

Gaussian distribution.

3.2. Classical moments and cumulants. Given a random variable X, the nth moment of X is

mn(X) = E(Xn), n ≥ 0.

Definition 3.2. The moment (exponential6) generating function for a random variable X is given by

M(z) = E(ezX) =
∞∑
n=0

mn(X)zn

n!
. (3.2)

Let us define a new exponential generating function C(z) := log(M(z)), and call its expansion coefficients
cn(X), n ≥ 1, the cumulants of X:

C(z) =

∞∑
n=1

cn(X)zn

n!
= log(M(z)). (3.3)

Remark 3.3. When speaking of moments and cumulants, we will assume that the series (3.2) converges
for sufficiently small z, and that the moments define the distribution of X uniquely. A sufficient as-
sumption which we will employ in this section unless otherwise noted is that all random variables (and
probability distributions) have compact support.

6The word “exponential” refers to the presence of the factorials in the series, which resembles the Taylor series for the
exponent ez.
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The cumulants (sometimes also called half/semi-invariants) of X form a sequence (cn)n≥1, where cn
is a homogeneous polynomial of moments mk, k ≤ n, with the leading term mn:

c1 = m1 = EX,
c2 = Var(X) = m2 −m2

1,

c3 = skewness = m3 − 3m2m1 + 2m3
1,

c4 = kurtosis = m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1,

...

(3.4)

Example 3.4 (Cumulants of the Gaussian random variable). The moment generating function (3.2) of
N (0, 1), is

M(z) =

∫ ∞
−∞

ezx
e−x

2/2

√
2π

dx

= ez
2/2

∫ ∞
−∞

e−(x−z)
2/2

√
2π

dx

= ez
2/2.

Hence, the cumulant generating function (3.3) is

C(z) = z2/2.

This implies that the the cumulant sequence of N (0, 1) is

(0, 1, 0, 0, ...). (3.5)

Now, if X and Y are independent random variables, then

c2(X + Y ) = Var(X + Y ) = Var(X) + Var(Y ) = c2(X) + c2(Y ),

so their second cumulants add up. In fact, this holds for all higher cumulants, too:

Proposition 3.5. If X and Y are independent random variables, then for all n ≥ 1,

cn(X + Y ) = cn(X) + cn(Y ). (3.6)

Proof. We have MX(z) = E ezX , so E(ezX+zY ) = E ezX E ezY by the usual product rule for expectations
of independent random variables ezX and ezY , which implies logMX+Y (z) = logMX(z) + logMY (z), as
desired. �

So, the cumuluants “linearize” addition of independent random variables. Note also that for α ∈ R,

cn(αX) = αncn(X). (3.7)

To showcase the utility of the cumulants, we use them to prove the classical Central Limit Theorem
(CLT):

Theorem 3.6 (Central Limit Theorem). Let X1, X2, ... be iid random variables with EXi = 0 (recall
that we assume compact support). Then,

SN =
X1 + ...+XN√

N

D−−→ N (0,Var(X1)).

Proof sketch. Note that, by (3.6) and (3.7), for each n and N ,

cn(SN ) = N−n/2Ncn(X1).
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In particular, we have:7

n = 1 : c1(SN ) = E(X1) = 0,

n = 2 : c2(SN ) = c2(X1) = Var(X1),

n ≥ 3 : cn(SN )
N→∞−−−−→ 0.

So, the cumulant sequence of lim
N→∞

SN is

(0,Var(X1), 0, 0, ...). (3.8)

By comparing (3.8) and (3.5), we see that the cumulant sequences of SN and N (0, 1) are the same up
to a constant, which implies the CLT. �

3.3. Moments and cumulants of Gaussian and semicircle distributions. From Example 3.4 we
see that the moment generating function of N (0, 1) is

M(z) = ez
2/2 =

∞∑
n=0

z2n

2nn!
=
∞∑
k=0

mkz
k

k!
.

Hence, N (0, 1) has moments

m2n+1 = 0,

m2n =
(2n)!

2nn!
= (2n− 1)!! := (2n− 1)(2n− 3) · · · 3 · 1.

Furthermore, we know from (2.6) that the semicircle distribution SC distribution has moments

m2n+1 = 0,

m2n = Catn =
1

n+ 1

(
2n

n

)
,

where Catn is the nth Catalan number. Now, we have the following correspondence:

Classical: moments ←→ cumulants ←→ N (0, 1) has simplest cumulants
Random matrices: moments ←→ ? ←→ “cumulants” s.t. SC has simplest?

A natural question is how the cumulants of SC look like. Turns out they are not so nice. In fact,
∞∑
n=0

znCatn =
1−
√

1− 4z

2z
,

which is a good algebraic function. However, the moment exponential generating function (3.2) for SC
is more complicated:

M(z) =
∞∑
n=0

Catnz
n

n!
= e2z(I0(2z)− I1(2z)),

where the Ik’s are the modified Bessel functions of the first kind:

Iα(z) =

∞∑
n=0

(z/2)α+2n

n! Γ(n+ 1 + α)
.

We thus will need a nicer analogue for cumulants.

7The argument for cn(SN ) vanishing in the limit is similar to the one from the proof of the Wigner’s Semicircle Law,
see (2.12) in particular.
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3.4. Free cumulants. To explain the definition of free cumulants which replace the usual cumulants
in the context of random matrices in connection with the semicircle distribution, let us first investigate
the combinatorial relation between the moments and the classical cumulants in detail. That is, we want
to generalize the formulas (3.4) to arbitrary n. We will use the following combinatorial statement which
can be found in [Sta01, Section 5.1]:

Proposition 3.7 (Exponential formula). The moments can be expressed through cumulants as follows:

mn =
∑

π∈P(n)

∏
B∈π

c|B|, (3.9)

where P(n) is the set of all partitions of the set {1, ..., n}, and B ∈ π are the blocks of the partition π.
See Figure 13 for an example.

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Figure 13. All partitions of {1, 2, 3}, yielding the expansion m3 = c3 + 3c2c1 + c31.

This also implies that the cumulants can be recursively determined by the moments:

cn = mn −
∑

π∈P(n)
# of blocks≥2

∏
B∈π

c|B|. (3.10)

Proof. We start with the identity of generating functions

M(z) = exp(C(z)), (3.11)

that is,
∞∑
n=0

mnz
n

n!
=
∞∑
k=0

(C(z))k

k!
.

Our aim is to use the definition of the exponential generating function C(z) (3.3) to get the coefficient
by zn from the right-hand side of the above identity of the generating functions. Write

1

k!
(C(z))k =

1

k!

( ∞∑
i=0

ciz
i

i!

)k
.

Take a partition i1, ..., ik of n, i.e. i1 + ... + ik = n, and take the ij-th term from each bracket above.
Then, we can write

mn =
∑
k

i1,...,ik

ci1 · · · cikn!

k!i1! · · · ik!
. (3.12)

Notice that
n!

i1! · · · ik!
is the multinomial coefficient, that is, the number of ways to put n labeled objects

into k labeled boxes, such that there are ij elements in the jth box. Since in the set partition of
{1, 2, . . . , n} the blocks are unlabeled, we have to divide this multinomial coefficient by k! to get the
number of the corresponding set partitions. With this perspective, we can rewrite the nth moment
(3.12) as (3.9), where k is the number of the blocks of the partition π, and i1, . . . , ik are the sizes of
these blocks. �
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Applying (3.9) to the Gaussian distribution N (0, 1), we have

m2n = (2n− 1)!! =
∑

π∈P(2n)

∏
B∈π

c|B|. (3.13)

However, since cn = 0 for n 6= 2 and c2 = 1, the sum is only over pair partitions (i.e. partitions in which
all blocks have size 2). Hence,

m2n = (2n− 1)!! = #
{
pair partitions of {1, 2, . . . , 2n}

}
.

See Figure 14.

Figure 14. All pair partitions of the set {1, 2, 3, 4, 5, 6}. There are 5 = Cat3 noncrossing
such partitions (the top 5), and 15 = 5!! = 5 · 3 · 1 pair partitions in total.

Mimicking the classical Gaussian case, we would like to find a class P ′(2n) of partitions of the set
{1, 2, . . . , 2n}, such that the semicircle moments have the form

Catn = m2n(SC) =
∑

π∈P ′(2n)

∏
B∈π

κ|B|, (3.14)

where (κn)n≥1 are the would-be free cumulants. We want the semicircle distribution to have the simplest
free cumulants, that, is, κ2 = 1 and κn = 0 for n 6= 2. Therefore, for the semicircle distribution the sum
in (3.14) must be over pair partitions from P ′(n).

But we already know that the Catalan number Catn counts the number of noncrossing
pair partitions of {1, 2, . . . , 2n} — they are in a natural bijection with Dyck paths of
length 2n (cf. Section 2.8).

The noncrossing pair partitions of {1, 2, 3, 4, 5, 6} are given in Figure 14, top.
This motivates the following general definition:

Definition 3.8 (Free cumulants). Given a random variable X with compact support and moments
mn = E(Xn), its free cumulants are defined via the following expansion of moments

mn =
∑

π∈NC(n)

∏
B∈π

κ|B|, (3.15)

where NC(n) is the set of noncrossing partitions of {1, 2, . . . , n} (cf. Figure 15).

Clearly, rewriting (3.15) similarly to (3.10) as

κn = mn −
∑

π∈NC(n)
# of blocks≥2

∏
B∈π

κ|B|, (3.16)
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we see that the sequence of free cumulants (κ1, κ2, . . .) is uniquely determined by the sequence of mo-
ments.

Figure 15. All noncrossing partitions of {1, 2, 3, 4}, yielding the expansion m4 = κ4 +
4κ3κ1 + 2κ22 + 6κ2κ

2
1 + κ41.

Let us give a couple of remarks:

Remark 3.9. For the “simplest” random variables — Gaussian in the classical case and the semicircle
in the free case — the sequence of cumulants or free cumulants, respectively, has the form

(0, 1, 0, 0, . . .).

Therefore, the expansions (3.13) and (3.14) involve only pair partitions. For general random variables
such expansions should involve all partitions with arbitrary part sizes.

Remark 3.10. Because all partitions are noncrossing for n ≤ 3, we have

c1 = κ1,

c2 = κ2,

c3 = κ3.

3.5. Example. Counting graphs. It is not essential that the quantities mn and cn in Proposition 3.7
are moments and cumulants of a certain random variable. Indeed, the exponential formula (3.9) holds
for coefficients of any exponential generating series related as (3.11).

The combinatorial meaning of the exponential formula (3.9) is the following. If the quantities mn

enumerate certain kinds of objects on n labeled vertices, then the quantities cn related to mn via (3.9)
or (3.10) count such objects which are connected.

In particular, for counting undirected graphs on n labeled vertices:

mn = # of graphs = 2(n2),

cn = # of connected graphs.

This property that the cn’s count connected objects is clear from (3.9): we count the total number of
objects by splitting each object into connected components (this corresponds to picking a partition π),
and then counting the numbers of connected objects on vertices inside these connected components.

Arguing in a similar way with the noncrossing cumulant formula (3.15), we see that if the moments
mn = 2(n2) count graphs, then the free cumulants κn count geometrically connected graphs on n la-
beled vertices. The geometrically connectedness condition naturally leads to splitting into noncrossing
partitions. See Figure 16.

3.6. Free independence. Recall that in the classical case, for independent random variables X and Y
and each n ≥ 1,

cn(X + Y ) = cn(X) + cn(Y ).

So, we would like to define free independence such that the same holds for free cumulants. That is, if X
and Y are free independent random variables, then for all n ≥ 1,

κn(X + Y ) = κn(X) + κn(Y ).
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1

37

5

2

46

8

Figure 16. The geometric connectedness means that the graph on n labeled vertices
located on the circle is connected as a geometric figure if not as a graph. The displayed
graph has 3 connected and 2 geometrically connected components.

To make a more precise definition of the free independence that we will work with, we need joint
cumulants (classical and free). That is, we want to speak not only about the variance and its higher
analogues, but also about the covariance and its higher analogues (for two or more random variables).
This construction is rather straightforward: the joint moments are defined as

mn(X1, ..., Xn) = E[X1, ..., Xn],

and the joint cumulants — by the expansion

mn(X1, ..., Xn) =
∑

π∈P(n)

∏
B∈π

c|B|(Xi : i ∈ B).

To get the definition of the joint free cumulants, simply replace P(n) in the above formula by NC(n),
and c|B|(Xi : i ∈ B) by κ|B|(Xi : i ∈ B):

mn(X1, ..., Xn) =
∑

π∈NC(n)

∏
B∈π

κ|B|(Xi : i ∈ B). (3.17)

Note that from (3.17) (more precisely, rewriting (3.17) in a recursive form like (3.16)) we see that κn is
a symmetric multilinear function of its arguments.

Definition 3.11 (Free independence of classical random variables). Two random variables X and Y
with EX = EY = 0 are said to be free independent if all their joint mixed free cumulants vanish for all
n ≥ 2:

κn(X,Y, Y, . . . , Y, Y ) = κn(X,X, Y, . . . , Y, Y ) = . . . = κn(X,X,X, . . . ,X, Y ) = 0.

Exercise 3.12. Two random variables X and Y with EX = EY = 0 are classically independent if and
only if all their joint mixed classical cumulants are zero: cn(X,X, ...X, Y, ..., Y ) = 0.

Example 3.13. Note that this will not be the same as regular independence. Indeed, if you have two
free independent SC random variables X and Y , then

X + Y
D
=
√

2 · SC.

For classically independent X and Y , their sum X + Y clearly does not have the distribution
√

2 · SC
(in particular, SC is not a stable distribution).

It turns out that free independence of classical random variables is problematic. To see this, consider
free independent classical random variables X and Y . Then,

m4(X,X, Y, Y ) = m4(X,Y,X, Y ),
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where

m4(X,X, Y, Y ) = κ2(X,X)κ2(Y, Y ) + κ2(X,X) + κ1(Y )2 + κ2(Y, Y )κ1(X)2 + κ1(X)2κ1(Y )2,

and

m4(X,Y,X, Y ) = κ2(X,X)κ1(Y )2 + κ1(X)2κ2(Y, Y ) + κ1(X)2κ2(Y )2.

Hence κ2(X,X)κ2(Y, Y ) = 0, which means that, for classical random variables, free independence re-
quires one of the random variables to be constant.

The solution is to introduce noncommutativity, whence

m4(X,X, Y, Y ) 6= m4(X,Y,X, Y ),

and, in fact, XXY Y 6= XYXY . This is the motivation for the definitions in the following subsection.

3.7. Noncommutative spaces of random variables. The idea of free random variables was invented
by Voiculescu in the beginning of the 1980s, cf. [VDN92]. The space L∞(Ω,F ,P) of bounded random
variables is a commutative von Neumann algebra. Hence, noncommutative random variables would live
in a noncommutative von Neumann algebra.

To define a von Neumann algebra, first, let H be a Hilbert space (complete inner product space over
C) and B(H) be the space of all bounded linear operators on H (bounded with respect to the norm
induced by the inner product (·|·) on H). The space B(H) has a natural involution given by

(Tx|y) = (x|T ∗y)

for any T ∈ B(H) and x, y ∈ H. Elements of B(H) of the form T ∗T are called nonnegative.
In addition to the topology on B(H) induced by the norm, there is a weak operator topology. We say

that for Tn, T ∈ B(H), Tn → T as n→∞ in the weak operator topology if for any x, y ∈ H,

(Tnx|y)→ (Tx|y), n→∞.

Definition 3.14. A von Neumann algebra A is a unital (i.e., 1 ∈ A) ∗-closed subalgebra of B(H), which
is closed with respect to the weak operator topology.

We would like to replace L∞(Ω,F ,P) with a von Neumann algebra A. To complete the picture, we
would need an analogue of the expectation which in the commutative case comes from the probability
distribution. In lieu of the classical expectation, we have a notion of tracial state on our von Neumann
algebra.

We will not consider the most general definition of a tracial state on a von Neumann algebra, but will
deal with functionals τ : A → C satisfying

(1) τ(1) = 1;
(2) τ(ab) = τ(ba) for all a, b ∈ A+ (here A+ is the subset of nonnegative elements in A);
(3) τ(a∗a) ≥ 0 for all a ∈ A.

The tracial state is faithful if τ(a∗a) = 0 implies a = 0.
So, we have the following correspondences:

Classical Noncommutative
L∞(Ω,F , P ) a von Neumann algebra A

E[·] τ [·]
mn(X) mn(a) = τ(an), a ∈ A+

Now, we define free independence for noncommutative random variables.

Definition 3.15. Elements a and b in a von Neumann algebra A are free independent if for any poly-
nomials f1, g1, ..., fk, gk such that τ(fi(a)) = τ(gj(b)) = 0, we have

τ(f1(a)g1(b)f2(a)g2(b) · · · gk(b)) = 0.

Note that this is essentially mimicking Definition 3.11 stating that joint mixed cumulants are zero.
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Compare this to the classical independence:

Definition 3.16. Elements a and b in a von Neumann algebra A are classically independent if ab = ba
and for any polynomials f and g such that τ(f(a)) = τ(g(b)) = 0, we have

τ(f(a)g(b)) = 0.

If the moments mn(a) of an element a ∈ A can be identified with moments of a compactly supported
probability distribution on R, we will denote this distribution by µa. That is, talking about a single
random variable yields the same results in commutative or noncommutative setting.

Definition 3.17 (Free convolution). If a, b ∈ A are free independent and correspond to compactly
supported probability distributions µa and µb on R, respectively, then their sum a+ b corresponds to a
new compactly supported probability distribution µa+b on R. This distribution µa+b is called the free
convolution of the distributions µa and µb, and is denoted by

µa+b = µa � µb.

As we will see below in Proposition 3.19 and Section 3.9, working with free convolution does not require
von Neumann algebras.

To apply free probability to random matrices, we will need the following definition:

Definition 3.18. For a sequence (AN , τN ) of von Neumann algebras with tracial states, and sequences
(aN ) and (bN ) with aN , bN ∈ AN for each N , we say that (aN ) and (bN ) are asymptotically free if for
all polynomials f1, g1, ..., fk, gk such that τ(fi(aN ))→ 0 and τ(gj(bN ))→ 0, we have

τ(f1(aN )g1(bN )f2(aN )g2(bN ) · · · gk(bN ))→ 0.

An example of a sequence (AN , τN ) of von Neumann algebras is given by random matrices. Take
AN to be the von Neumann algebra of Hermitian random matrices with almost surely bounded entries.8
Equip each AN with a tracial state

τN (A) :=
1

N
E tr(A), A ∈ AN ,

coming from the usual matrix trace. Recall that quantities like τN (A) played a major role in the proof
of the Wigner’s semicircle law in Section 2.

Proposition 3.19. Consider sequences (AN ), (BN ) of N × N Hermitian random matrices from AN
with

LN (AN )→ µ, LN (BN )→ ν,

as discussed in Section 3.1. Assume that µ and ν are compactly supported. For each N , let UN be the
random Haar-distributed unitary matrix that is independent of AN and BN .

Then the random matrices AN and UNBNU∗N from AN are asymptotically free.

Proof. We will not prove this statement as it requires a graph enumeration somewhat similar to the
proof of the semicircle law. See, e.g., [NL12, §3.6] for an outline of the proof and more references. �

This proposition shows that the abstract definition of the free convolution (Definition 3.17) can be
realized more concretely using summation of random matrices, one of which is randomly rotated, so that
the eigenbases of AN and UNBNU∗N are in “completely generic” position.

8One can also take real symmetric random matrices as we did in Section 2. However, from now on we will mostly work
with Hermitian complex matrices, so we are switching to this setting.
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3.8. Semicircle law again. Using Proposition 3.19, we can give another proof of the Wigner’s semicircle
law, now for the Gaussian Unitary Ensemble (GUE). First, note that a free analogue of the Central Limit
theorem states that if X1, X2, . . . is a family of free independent identically distributed elements of (A, τ)
with mean 0 and variance 1,9 then

X1 + ...+XN√
N

→ SC, N →∞,

in the sense that for any n ≥ 0 we have

τ

[(X1 + ...+XN√
N

)n]
→ mn(SC) =

{
0, n odd;

Catn/2, n even.
(3.18)

This is proven using free cumulants exactly in the same way as in the proof of the classical Central Limit
Theorem using the classical cumulants (Theorem 3.6).

Let us now sketch a proof of the semicircle law for the Gaussian Hermitian matrices. Let GN be an
N × N GUE random matrix (i.e., an Hermitian random matrix with iid standard real Gaussians on
the diagonal, and iid standard complex Gaussians — with independent real and imaginary parts having
Gaussian distribution with variance 1

2 — above the diagonal). We would like to show that LN (GN )→ SC
weakly in probability. We have seen in Section 2 that for this it is enough to show the convergence of the
moments as in (3.18). Let G(1)

N , ..., G
(N)
N be independent copies of GN . By the unitary invariance of the

GUE (see Section 4.1 below), for for U (k)
N , 1 ≤ k ≤ N Haar-distributed unitary matrices independent of

everything else, we have U (k)
N G

(k)
N (U

(k)
N )∗

D
= GN . Furthermore, we clearly have by the Gaussian nature

of the elements of the matrix:

GN
D
=
U

(1)
N G

(1)
N (U

(1)
N )∗ + ...+ U

(N)
N G

(N)
N (U

(N)
N )∗√

N
.

Finally, by Proposition 3.19, the summands above are asymptotically free. Thus, by the free CLT,
LN (GN ) converges to the semicircle distribution SC.

3.9. Free convolution and Voiculescu’s algorithm. Let us now describe the operation of the free
convolution (µ, ν) 7→ µ � ν of Definition 3.17 (where µ and ν are probability distributions on R with
compact support) in more concrete terms.

We would like to describe an algorithm for computing µ � ν given µ and ν. Recall that under free
convolution we have κn(µ� ν) = κn(µ) + κn(ν) for each n ≥ 1. We will use the following fact relating
(ordinary, not exponential) moment generating function of a measure and its free cumulant generating
function:

L(z) = 1 +
∞∑
n=1

mnz
n, K(z) = 1 +

∞∑
n=1

κnz
n, (3.19)

Proposition 3.20. Thus defined generating series are related as follows:

L(z) = K
(
zL(z)

)
. (3.20)

Proof. This is the free analogue of the exponential formula (Proposition 3.7), which can be proven by
combinatorial manipulations with generating series. We will not give its proof here. �

Remark 3.21. Relation (3.20) between infinite power series can be used to compute coefficients of
L(z) if the coefficients of K(z) are known, and vice versa. This is done in a purely formal way, by
recursively looking at coefficients by powers of z in both sides. Thus, (3.20) shows that moments and
free cumulants uniquely determine each other. Of course, this uniqueness already follows from the
combinatorial relations (3.15) and (3.16).

9That is, τ(X1) = 0 and τ(X2
1 ) = 1.
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Now, take the Cauchy transform (sometimes also called the Stieltjes transform) of each measure:

Gµ(z) =

∫
R

dµ(x)

z − x

=

∫
R

z−1dµ(x)

1− x/z

=

∫
R

∞∑
n=0

z−1
xn

zn
dµ(x)

=

∞∑
n=0

∫
R
z−1

xn

zn
dµ(x)

=
∞∑
n=0

mn(µ)

zn+1

for large enough |z|, and similarly for Gν(z) (recall that the measures have finite support). Using (3.19)
and Proposition 3.20, define

Vµ(z) :=
1

z
Kµ(z),

and similarly for ν. Proposition 3.20 readily implies that the functions Gµ and Vµ are mutual inverses:

Vµ
(
Gµ(z)

)
= Gµ

(
Vµ(z)

)
= z. (3.21)

Example 3.22 (Semicircle distribution). We can compute GSC using the Cauchy Transform:

GSC(z) =

∫ 2

−2

1
2π

√
1− 4x2

z − x
dx

=

∞∑
n=0

Catn
z2n+1

=
1

z

(
1−

√
1− 4/z2

2

)

=
1

2
z − 1

2

√
z2 − 4.

We have computed this using the explicit formula for the Catalan numbers (2.7). This expansion can
be verified by simply Taylor expanding 1

2z −
1
2

√
z2 − 4 at z =∞.

On the other hand, since we know that the free cumulant sequence for SC is (0, 1, 0, 0, ...), we can
compute

VSC(z) =
1

z
+ z.

Hence, we can regain GSC from (3.21):
1

G
+G = z ⇒ G2 − zG+ 1 = 0

⇒ G =
1

2
(z −

√
z2 − 4).

Therefore, we have established the following algorithm for computing the free convolution of compactly
supported measure µ and ν on R:

Theorem 3.23 (Voiculescu’s Algorithm for Free Convolution). To compute the free convolution µ� ν,
follows these steps:
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(1) Compute the Cauchy transforms Gµ(z) = E(z −X)−1 and Gν(z) = E(z − Y )−1 (here X and Y
are distributed as µ and ν, respectively).

(2) Solve Gµ(Vµ(z)) = z and Gν(Vν(z)) = z subject to V (z) ∼ 1/z at 0.
(3) Compute Voiculescu’s R-transforms

Rµ(z) = Vµ(z)− 1/z, Rν(z) = Vν(z)− 1/z.

These R-transforms linearize the free convolution:

Rµ�ν(z) = Rµ(z) +Rν(z),

so Vµ�ν(z) = Vµ(z) + Vν(z)− 1/z.
(4) Finally, solve Vµ�ν(Gµ�ν(z)) = z subject to G(z) ∼ 1/z at ∞.
(5) Recover the distribution µ� ν from its Cauchy transform Gµ�ν .

This algorithm essentially involves only formal manipulations with power series and rational functions
in one variable z, and thus can be implemented to compute an arbitrary number of first terms of the
Cauchy transform Gµ�ν for arbitrary input Gµ(z) and Gν(z).

To recover a distribution from its Cauchy transform requires one more step. In principle, having a
distribution µ and its Cauchy transform

Gµ(z) =
∞∑
n=0

mn

zn+1
, (3.22)

one can take the moments mn and construct the exponential generating function E ezX =
∫
R e

zxµ(dx).
The exponential generating function can then be inverted using the usual inverse Fourier transform.
However, there is a more direct approach:

Proposition 3.24 (Inversion of Cauchy transform). Let µ be an absolutely continuous distribution (i.e.,
it has density ρ(t)) supported inside a finite interval I ⊂ R. Then we have

ρ(x) = lim
y→0+

1

π
Im(G(x+ iy)),

where i =
√
−1 and Im means the imaginary part of a complex number.

Proof. Setting z = x+ iy, we get

G(z) =

∫
I

ρ(t) dt

z − t

=

∫
I
ρ(t)

[
x− t

(x− t)2 + y2
− i y

(x− t)2 + y2

]
dt.

Now for any a < b we can find the following integral by interchanging the integrations (allowed by
Fubini’s theorem):∫ b

a
Im(G(x+ iy)) dx =

∫
I
ρ(t) dt

∫ b

a

−y
y2 + (x− t)2

dx

=

∫
I
ρ(t) dt arctan

(
x− t
y

) ∣∣∣∣x=b
x=a

=

∫
I
ρ(t) dt

[
arctan

(
b− t
y

)
− arctan

(
a− t
y

)]
.

As y → 0+, we have arctan
(
b−t
y

)
− arctan

(
a−t
y

)
= 0 for t /∈ [a, b]. Moreover,

arctan

(
b− t
y

)
− arctan

(
a− t
y

)
→ π

2
− −π

2
= π, y → 0+.
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Hence, ∫ b

a
Im(G(x+ iy)) dx→

∫
I
πρ(t) dt, y → 0+.

This completes the proof. �

Exercise 3.25. Derive a generalization of the inversion formula of Proposition 3.24 in the case when µ
is not necessarily absolutely continuous (but still compactly supported).

3.10. Examples of free convolution. Let us conclude with a couple of concrete examples.

Example 3.26 (Bernoulli�Bernoulli). Suppose µ = ν = 1
2δ−1+ 1

2δ1, that is, the corresponding random
variables take values ±1 with probabilities 1

2 . Note that classical convolution yields

µ ∗ ν =
1

4
δ−2 +

1

2
δ0 +

1

4
δ2.

To find µ� ν, we follow Voiculescu’s Algorithm (Theorem 3.23):

(1) G(z) = E
1

z − x
=

1

2

(
1

z + 1
+

1

z − 1

)
=

z

z2 − 1
.

(2) Solving z = G(V (z)) =
V

V 2 − 1
yields zV 2 − V − z = 0. So,

V (z) =
1±
√

1 + 4z2

2z
.

Since V (z) = K(z)
z ∼ 1

z at z = 0, we choose

V (z) =
1 +
√

1 + 4z2

2z
.

(3) Vµ�ν(z) = Vµ(z) + Vν(z)− 1

z
=

√
1 + 4z2

z
.

(4) Solving z = Vµ�ν(Gµ�ν(z)) =

√
1 + 4G2

G
yields

Gµ�ν(z) = ±(z2 − 4)−1/2.

Since zGµ�ν(z)→ 1 at z = 0, we choose

Gµ�ν(z) =
1√

z2 − 4
.

(5) From Proposition 3.24, we see that the probability density ρ(x) for µ� ν is

ρ(x) =
1

π
lim
y→0+

Im

(
1√

(x+ iy)2 − 4

)

=

0, |x| > 2;
1

π
√

4− x2
, |x| ≤ 2.

This is the arcsine distribution (Figure 17). We see that this is quite different from the classical convo-
lution.

Exercise 3.27 (Free Poisson Theorem). Let α > 0, λ > 1, and consider the Bernoulli density

µN = (1− λ/N)δ0 + λ/Nδα
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Figure 17. The arcsine density.

supported by 0 and α. Classically,

µ∗NN → Poisson(λ) on {0, α, 2α, . . .}, N →∞.

In the free situation, by computing the R-transform, multiplying it byN , and then inverting, show that
µ�NN converges to the density 1

2παt

√
4λα2 − (t− α(1 + λ))2, which is the Marchenko–Pastur distribution

(Section 2.11.2) under a change of parameters. If λ ≤ 1, then the limiting distribution is different.
Namely, it has an atom of size 1−λ at 0, and the rest of the mass λ is distributed according to the same
Marchenko–Pastur law.

Exercise 3.28 (Cauchy Density). Show that for the Cauchy density C = 1
π(1+x2)

on R,

µ ∗ C = µ� C,

i.e., the free convolution with the Cauchy density is the same as the classical convolution. See [AGZ10,
Exercise 5.3.41] for more hints.

3.11. Notes and references. Free Probability was invented by Voiculescu in the 1980s to study oper-
ator algebras (e.g., [VDN92] gives an early introduction). In particular, the word “free” comes from the
free groups. Studying operator algebras associated with the free groups was one of the motivations for
developing Free Probability. In our discussions we mainly follow Chapter 5 of [AGZ10], and also lecture
notes [NL12] which provide a lot of combinatorial insights into Free Probability.

4. Gaussian Unitary Ensemble and its asymptotic behavior

4.1. Definition and basic properties. Recall that by HN we denote the set of N × N Hermitian
matrices over C.

Definition 4.1. The law of the Gaussian Unitary Ensemble (GUE) is a probability distribution on HN ,
and the law of a random matrix A = (aij)

N
i,j=1 ∈ HN is described as follows:

• aii ∼ N (0, 1) for each i.
• aij = aji ∼ N (0, 1/2) +

√
−1N (0, 1/2) for i < j.

All real normal random variables involved above are assumed to be independent. Note that E aij = 0
for all i, j.
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Now fix any (nonrandom) A ∈ HN . Then we can write

tr(A2) = tr(AA) =

N∑
i=1

a2ii +
∑
i 6=j

aijaji =

N∑
i=1

a2ii + 2
∑
i<j

|aij |2.

Identify HN with RN2 with the standard Lebesgue measure which in the matrix coordinates can be
written as

dA =
∏
i

daii
∏
i<j

da<ijda
=
ij .

Here the superscripts < and = refer to the real and imaginary parts.
The GUE distribution µ on HN has probability density (with respect to the above Lebesgue measure)

dµ(A) =
1

ZN
e−

∑
i a

2
ii/2e−

∑
i<j(a

<
ij)

2−
∑
i<j(a

=
ij)

2

dA

=
1

ZN
e−

1
2
(
∑
i a

2
ii+2

∑
i<j |aij |2)dA

=
1

ZN
e−

1
2
tr(A2)dA,

where ZN = (
√
π)N

2
(
√

2)N is the normalization constant (its value follows from the normalization of
the Gaussian distribution).

This computation shows that the GUE density is unitary invariant. That is, if A is a random
matrix with GUE distribution and U ∈ U(N) is a fixed unitary matrix, then UAU−1 D= A (equality in
distribution).

4.2. Joint eigenvalue density. Let A ∈ HN have the GUE distribution. Denote its eigenvalues (which
are necessarily real) by λ1 ≥ · · · ≥ λN .

Exercise 4.2. Show that under the GUE distribution the eigenvalues of the matrix are almost surely
pairwise distinct.

We will now derive the joint density of eigenvalues of the GUE random matrix:

Theorem 4.3. Let A = AN ∈ HN have the GUE distribution. Then the joint density of the eigenvalues
of A with respect to the Lebesgue measure on RN is given by

CN
∏
i<j

|λi − λj |2
N∏
i=1

e−λ
2
i /2.

We will not compute the value of the normalization constant CN right now, but later in Section 4.4

we will see that it is equal to
(2π)−N/2

0!1! · · · (N − 1)!N !
(see also Remark 4.7 below on a slight ambiguity in

the value of this normalization constant).

Proof. We will in fact prove a more general result. Namely, let f be a function on the space HN of
Hermitian N×N matrices which is unitary invariant, i.e. f(UAU∗) = f(A) for any fixed unitary matrix
U . (This implies that f depends only on the eigenvalues λ1, . . . , λN of A, and moreover, in a symmetric
way.) We will show that∫

HN
f(A)dA = constN

∫
RN

f(λ1, . . . , λN )
∏
i<j

|λi − λj |2 dλ1 · · · dλN , (4.1)

where both integrals are with respect to the corresponding Lebesgue measures. In other words, we aim
to find the Jacobian of the transformation mapping from A to the set of its eigenvalues.
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Example 4.4. As an example, consider the change of coordinates in R2 from Cartesian to polar:
(x, y)→ (r, θ). If f(x, y) is independent of θ, i.e. it is radially symmetric, then∫∫

R2

f(x, y) dxdy = 2π

∫ ∞
0

f(r)rdr.

The factor r comes from the Jacobian, and so 2πr = const · r is the radial part of the Lebesgue measure
on R2. What we are about to do now is a generalization of this procedure. That is, we will find the
radial part of the Lebesgue measure on the space of N ×N Hermitian matrices.

Continuing with the proof, view HN as a space with an action of the unitary group U(N) by con-
jugations: A 7→ UAU∗. A typical matrix10 A ∈ HN can be written as UΛU∗, where Λ is the diagonal
matrix of eigenvalues of A. This gives rise to a change of variables

A↔ (~λ, U̇),

where ~λ is the vector of eigenvalues and U̇ = U mod T , where T is the torus of diagonal matrices which
stabilize ~λ. The matrix U̇ represents the rotation to the eigenbasis of A.

The Jacobian we aim to compute is dA = (?)d~λdU̇ , where dU̇ is Haar measure. We note that the
Jacobian must be independent of U since the Lebesgue measure is rotationally invariant.

Let us write U = 1+X where X is “small”. In other words, we are applying a Lie algebraic perspective.
Since U is unitary, the matrix X must be skew-Hermitian: X +X∗ = 0. This leaves N2 real parameters
in X (which corresponds to the well-known fact that U(N) is N2-dimensional over R). Then U∗ =
U−1 = 1−X + smaller order terms. Since A = UΛU∗, we can write

A+ dA = (1 +X)(Λ + dΛ)(1−X) = Λ + dΛ +XΛ− ΛX + smaller order terms.

Hence small changes in diagonal terms in A are

daii = dλi,

while small changes in the off-diagonal terms have the form (here j < k)

dajk = xjkλk − λjxjk = (λk − λj)xjk.

Since both dajk and xjk are complex, the contribution (λk − λj) affects both da<jk and da=jk, so overall
we see that the the Jacobian is

∏
j<k |λj − λk|2.

The theorem then follows from (4.1) by setting f(A) = e−
1
2
tr(A2). �

4.3. Other random matrix ensembles with explicit eigenvalue density. The eigenvalue density
result of Theorem 4.3 opens a way to generalize the Gaussian Unitary Ensemble in several directions.
We can express the joint eigenvalue density of a GUE using the Vandermonde determinant

V (λ) =
∏
i<j

|λi − λj |.

Exercise 4.5. Show that V (λ) = ±
N

det
i,j=1

λj−1i .

The density of eigenvalues of Theorem 4.3 is

CGUEN V (λ)2
N∏
i=1

e−
1
2
λ2i .

10That is, almost every matrix with respect to the GUE (or, equivalently, the Lebesgue) measure on HN .
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4.3.1. Beta ensembles. Certain other Gaussian random matrix ensembles defined similarly to the GUE
have eigenvalue densities also involving V (λ).

Recall that a real symmetric matrix A has Gaussian Orthogonal Ensemble (GOE) distribution if
aii ∼ N (0, 2) and aij = aji ∼ N (0, 1) for i < j. Then the GOE eigenvalue density is

CGOEN |V (λ)|
N∏
i=1

e−λ
2
i /4

with respect to the Lebesgue measure on RN .
The powers of V (λ) can be generalized, leading to Gaussian β Ensembles (GβE), with eigenvalue

density (with respect to Lebesgue measure) given by

CβN |V (λ)|β
N∏
i=1

e−(λ
2
i /4)β. (4.2)

For certain special values of β the above density is a probability density of eigenvalues of random
matrices:

β = 1 GOE R
β = 2 GUE C
β = 4 G Symplectic E (GSE) H

(We will not define the GSE here — see, for example, [Meh04].) No other values of β correspond to
similar invariant random matrix ensembles. However, there are still ways to study general GβE. In fact,
the spectral distributions of these ensembles still converge to the Wigner semicircle law (but the local
limiting distributions are substantially different).

One way to treat the Gaussian β ensembles is to introduce a completely different random matrix
model for the spectral distribution (4.2). This was first observed in [DE02] by applying the standard
tridiagonalization procedure from linear algebra to Gaussian random matrices, and reading off the cor-
responding distributions. This tridiagonal matrix ensemble for GβE looks as follows. Let χt be a χ
random variable of parameter t, that is, with density

21−t/2xt−1e−x
2/2

Γ(t/2)

on the real line. Let yi ∼ χiβ , ξi ∼ N (0, 1) be independent random variables. Then the tridiagonal
ensemble

AβN =



√
2
β ξ1 yN−1/

√
β . . . 0

yN−1/
√
β

√
2
β ξ2

. . .
...

...
. . . . . . y1/

√
β

0 . . . y1/
√
β
√

2
β ξN


has the eigenvalue density GβE.

One can view the above matrix AβN as a linear operator, in this case it will be a random difference
operator. As N →∞ it converges to a random differential operator. This analysis is performed in, e.g.,
[RRV11].

Remark 4.6. Eigenvalue densities are also accessible for Gaussian random matrices without Hermitian
or real symmetry. That is, if the elements of a random matrix aij ∼ N (0, 1) are i.i.d. for all i, j, then
the spectrum of this matrix (which is complex) is the so-called Ginibre ensemble. The limiting spectral
distribution in this case is uniform on the unit disc in the complex plane. This result is known under
the name Girko’s Circular Law.
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4.3.2. Circular ensembles. Another example is the Circular Dyson’s ensemble (CUE) of randommatrices.
Consider the Haar measure µ on the compact group of unitary matrices U(N). This measure is shift
invariant, i.e.

∀A ⊆ U(N), ∀V ∈ U(N), µ(VA) = µ(AV ) = µ(A),

and is normalized so µ(U(N)) = 1.
The eigenvalues of a random matrix UN ∈ U(N) lie on the unit circle, so they are of the form

eiθk , k = 1, . . . , N . The joint density of the eigenvalues is

CCUEN

∏
k<j

|eiθk − eiθj |2

with respect to the Lebesgue measure on the N -dimensional torus {|z| = 1}N . This ensemble does not
have any edge behavior, so we will not consider it. The local (bulk) distribution in the CUE case is
similar to that of the Gaussian Unitary Ensemble with real eigenvalues.

It is also possible to define general β CUE ensembles by changing the power of the Vandermonde
determinant.

4.3.3. Invariant ensembles. (log-gas interpretation of the eigenvalue density, and invari-
ant ensembles — to be filled in here)

4.4. Determinantal structure of the GUE. We now return to the GUE case, and investigate its
joint eigenvalue density in more detail.

4.4.1. Correlation functions. Recall that the GUE joint probability density with respect to the Lebesgue
measure has the form CNV (x)2

∏N
i=1 e

−x2i /2, where V (x) is the Vandermonde determinant.

Remark 4.7. Note that the joint GUE eigenvalue density is invariant under permutations of the xi’s,
which creates an ambiguity on which space one should consider the density — the whole RN or the
ordered cone WN := {x1 ≥ . . . ≥ xN} ⊂ RN?11 The difference between these choices leads to an
additional factor of N ! in the normalization constant CN . Here we will adopt the first convention, and
will think of the argument in the joint density as an element of RN .

According to Theorem 4.3 and with the understanding of Remark 4.7, the joint probability density of
eigenvalues of the GUE matrix has the form

ρ̃N (x1, . . . , xN ) = CN
∏

1≤i<j≤N
|xi − xj |2

N∏
i=1

e−x
2
i /2, x = (x1, . . . , xN ) ∈ RN . (4.3)

Definition 4.8. The function ρk : Wk → R, where ρk(y1, . . . , yk) is the probability density (with
respect to the Lebesgue measure on the space Wk of k-point configurations) to find eigenvalues close to
y1, · · · , yk, is called the kth correlation function.

Note that the argument of the correlation function ρk is a point configuration and not an element of
Rk. The arguments in the correlation function must be distinct, otherwise it vanishes by agreement.

Example 4.9. The first correlation function ρ1(y1) is called the density function; it may be used to get
the semicircle law.

Remark 4.10. The correlation function ρk is not necessarily a probability density function, because it
does not necessarily integrate to 1. For example,

∫ b
a ρ1(y1)dy1 is the expected number of eigenvalues in

the segment [a, b].

11The space WN is sometimes also called the Weyl chamber.
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We can compute ρk(y1, · · · , yk) as follows:

ρk(y1, · · · , yk) =

∫
RN−k

N !

(N − k)!
ρ̃N (y1, · · · , yk, xk+1, · · · , xN )dxk+1 · · · dxN .

In particular, ρN (x1, . . . , xN ) = N ! ρ̃N (x1, . . . , xN ) for (x1, . . . , xN ) ∈ WN , which makes sense because
(x1, . . . , xN ) in the left-hand side is a point configuration, and to get ρN (x1, . . . , xN ) one should sum
the values of ρ̃N over all permutations.

We will now work towards showing that the correlation functions ρk are given by k× k determinants
of a certain form.

4.4.2. Determinantal point processes and biorthogonal ensembles. By a point process (say, on R) we
mean a probability measure on the space of point configurations on R. In this way the eigenvalues of
the GUE random matrix form a point process on R (which has N points almost surely).

Definition 4.11. If there exists a function K(x, y) such that for any k and any pairwise distinct

y1, . . . , yk one has ρk(y1, . . . , yk) =
k

det
i,j=1

K(yi, yj), then the point process is called determinantal.

We will now obtain a formal statement showing that certain probability distributions on N -point
configurations are determinantal, and will compute the corresponding correlation kernels. Let (X, µ) be
a “sufficiently nice” space with a probability measure. Define a distribution on the space of N -point
configurations on X:

P (dx1 · · · dxN ) = CN
N

det
i,j=1

φi(xj) ·
N

det
i,j=1

ψi(xj) · µ(dx1) · · ·µ(dxN ), (4.4)

where φ1, . . . , φN and ψ1, . . . , ψN are fixed functions on X and CN is the normalization constant.

Example 4.12. For example, if X = R, µ is the standard normal distribution, and φi(x) = ψi(x) = xi−1,
then the measure (4.4) corresponds to the GUE spectrum.

We will now proceed to the computation of the correlation kernel of the point process (4.4).
Step 1. Set Gij =

∫
X φi(x)ψj(x)µ(dx). The matrix G = [Gij ]

N
i,j=1 is sometimes called the “Gram

matrix”. Then

1

CN
=

∫
· · ·
∫

N
det
i,j=1

φi(xj)
N

det
i,j=1

ψi(xj)µ( ~dx)

=
∑

σ,τ∈SN

(−1)σ(−1)τ
N∏
i=1

∫
X
φσ(i)(xi)ψτ(i)(xi)µ(dxi)

=
∑

σ,τ∈SN

(−1)σ(−1)τ
N∏
i=1

Gσ(i)τ(i)

= N ! det[G].

Above we have expanded the determinants as summations over the symmetric group SN , and rewrote
the result as a new determinant. The above computation implies that G is invertible.
Step 2. Let us now compute the correlation functions

ρk(x1, · · · , xk) =
N !

(N − k)!

∫
· · ·
∫
XN−k

N
det
i,j=1

φi(xj)
N

det
i,j=1

ψi(xj)
µ(dxk+1) . . . µ(dxN )

N ! det[G]
.
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Since G is invertible, there exist N ×N matrices A,B such that AGBT = 1.12 Define Φk =
∑N

l=1Aklφl
and Ψk =

∑N
l=1Bklψl. Then clearly ∫

X
Φk(x)Ψl(x)µ(dx) = δkl, (4.5)

that is, the functions Φk and Ψl form a biorthogonal family. For this reason the probability distribution
(4.4) is sometimes referred to as the biorthogonal ensemble.

Using these biorthogonal functions, the measure (4.4) takes the form

P (dx1, . . . , dxN ) =
1

N !

N
det
i,j=1

Φi(xj) ·
N

det
i,j=1

Ψi(xj) · µ(dx1) . . . µ(dxN ).

Step 3. Thus, the correlation functions have the form

ρn(x1, · · · , xn) =
1

(N − n)!

∫
· · ·
∫
XN−n

∑
σ,τ∈SN

(−1)σ(−1)τ
( N∏
i=1

Φσ(i)(xi)Ψτ(i)(xi)

)
µ(dxk+1) . . . µ(dxN ).

By the biorthogonality, nonzero terms in the above sum must have σ(k) = τ(k), k = n+ 1, · · · , N , so

ρn(xn+1, · · · , xN ) =
1

(N − n)!

∑
1≤j1≤···≤jn≤N

det[Φj1,··· ,jn
x1,··· ,xn ] det[Ψj1,··· ,jn

x1,··· ,xn ] =
n

det
i,j=1

[ N∑
k=1

Φk(xi)Ψk(xj)

]
.

(4.6)
We now explain these two equalities and the notation. By Φj1,··· ,jn

x1,··· ,xn we mean the n by n matrix consisting
of the intersection of the first n rows of [Φj(xi)] and the n columns corresponding to j1, · · · , jn, and
similarly for Ψj1,··· ,jn

x1,··· ,xn . The first equality follows by the biorthogonality (4.5), and to obtain the second
equality we have used the Cauchy-Binet formula from the next proposition.

Proposition 4.13 (Cauchy-Binet formula). Let A be an m × n matrix and B an n × m matrix. If
J ⊆ {1, · · · , n} has size m, let AJ be the m×m submatrix of A with columns from J , and let BJ be the
m×m submatrix of B with rows from J . Then

det(AB) =
∑

J⊆{1,··· ,n} : |J |=m

det(AJ) det(BJ).

Step 4. The computation (4.6) implies that the point process (4.4) is determinantal with the corre-
lation kernel K(x, y) =

∑
Φk(x)Ψk(y). As written, it depends on the choice of A and B, but one can

rewrite it in the form

K(x, y) =

N∑
i,j=1

[G−1]ji φi(x)ψj(y) =

N∑
i,j=1

[G−transpose]ij φi(x)ψj(y), (4.7)

so the kernel is in fact independent of the choice of A and B.

Remark 4.14. In this general setting, the correlation functions ρk(y1, . . . , yk) are defined with respect
to the reference measure µ on X. That is, ρk(y1, . . . , yk)µ(dy1) . . . µ(dyk) is the infinitesimal probability
to find particles from the point process around the locations y1, . . . , yk. Therefore, the kernel K(x, y)
is also defined with respect to the same reference measure. Later, when talking about scaling limits of
correlation kernels, an appropriate object would be

K(x, y)
√
µ(dx)µ(dy), (4.8)

or, in other words, an integral operator in L2(µ).

12Note that their choice is not unique, which can be helpful in some applications.
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4.4.3. Correlation kernel for the GUE. Applying the computation of Section 4.4.2 to the GUE setting,
we let µ(dx) = 1√

2π
e−x

2/2 be the standard N (0, 1) distribution, and φi(x) = ψi(x) = xi−1 be the power
functions. To get a formula for the correlation kernel of the GUE, let us orthogonalize the powers xi−1

with respect to the weight e−x2/2. We have

PGUE(dx1, · · · , dxN ) =
1

N !

( N
det
i,j=1

Hi−1(xj)
)2
µ(dx1) · · ·µ(dxN ), (4.9)

where the Hi’s are orthogonal polynomials called the Hermite polynomials:∫
Hk(x)Hl(x)µ(dx) = δkl, k, l = 0, . . . , N − 1.

We have thus established the following result:

Theorem 4.15. The random point process (4.3), (4.9) corresponding to the GUE eigenvalues is de-
terminantal, with the correlation kernel (with respect to the standard normal reference measure, cf.
Remark 4.14)

KN (x, y) =

N−1∑
j=0

Hj(x)Hj(y). (4.10)

The asymptotics of the kernel KN determine the asymptotics of the GUE eigenvalues.

4.5. Non-rigorous asymptotics via spectral projections. (put all stuff about Hermite
polynomials in Section 4.6, and reference it here)

4.6. Hermite polynomials.

4.7. Rigorous asymptotics via contour integrals (Plancherel–Rotach asymptotics). [PR29]

4.8. Edge asymptotics.

4.9. Inclusion/exclusion and Fredholm determinants.

4.10. Tracy–Widom distribution. [TW02]

4.11. Notes and references. The material in Section 4 represents a classical chapter in random matrix
theory. The Gaussian Unitary Ensemble is a random matrix ensemble for which all the computations
can be carried out explicitly. Section 4.5 closely follows the book [Tao12].

The proof that the variational problem for the limiting spectral distribution reduces to the Euler–
Lagrange equations (for which a naive argument was given in Section 4.3.3) may be deduced from [ST13],
see also [For10].

Generalities and details on determinantal point processes can be found in the surveys [Sos00], [HKPV06],
[Bor11].

The asymptotic results for the GUE presented here are believed to be universal — that is, they should
not depend on the concrete structure of the ensemble and hold in much greater generality. Getting
such universal results for random matrices is an important ongoing program which is successful so far
in the bulk case (with getting the sine kernel). See, e.g., [Joh01], [TV11], [TV12], [ESY11]. Addressing
some universality results is the next general goal of the course, for which we will need certain Markov
processes on random matrices and on their spectra.
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