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REMARKS

These are notes for the graduate course MATH 8380

Random Matrices at University of Virginia.

Exercises on the green background are expected to be
turned in after 2.5 or 3 weeks of the corresponding lecture

(see details in the syllabus).

All images (unless otherwise specified with a link to the

source) are generated by the author.
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Chapter 1

SOME
HISTORY

¢ Volumes of compact classical
groups

e Statistics
e Nuclear physics
e Number theory

e Back to statistics

Random matrix theory is a rich and lively subject with connections
to many areas of pure mathematics, mathematical physics, statistics
(within mathematical sciences), and numerous applications.
Examples of applications include biology, neuroscience, machine
learning, and others. New applications are discovered weekly. This
makes random matrices one of the frontiers of modern probability
theory. Because of the diverse nature of the subject, purely
probabilistic methods are not enough in the study of random
matrices, and one has to learn other tools from algebra,

combinatorics, representation theory, and classical analysis.

There is a rich toolbox to study random matrices, too. In the first
lecture | will discuss origins of random matrix theory which

motivate some of the tools.

Early on, random matrices and related objects were rediscovered /
revitalized at least three times - first by Hurwitz in the study of
compact classical groups around 1900, then by Wishart in statistics
in the 1920s, and then in physics by Wigner and others since the
1950s. Shortly after the third, a boost in the development of
random matrix theory came from connections to number theory

(namely, to zeroes of the Riemann Zeta Functions).

Since mid-20th century, random matrix theory entered into pure

mathematics in full, and continues to be its vital part.



VOLUMES OF COMPACT
CLASSICAL GROUPS

Compact classical groups are the Lie groups such as the
orthogonal O(N), unitary U(N), or symplectic Sp(N), or
their special subgroups, etc. These are generally defined as
groups of transformations of linear spaces (over R, C, H)

which preserve certain bilinear forms.

Each of the groups O(N), U(N), Sp(N) is compact, and has
a manifold structure (whose tangent space has a structure
of the corresponding Lie algebra). As such, one can define
natural invariant measures on these groups - called Haar
measures (a Haar measure — name is from the 1930s —
exists and is unique on any separable compact topological
group). The “volume” of a group is then the total mass of
this measure (which is finite because the group is

compact).

The “initial” normalization of the Haar measure is taken in

certain coordinates on the groups — Euler angles.

A

N

Euler angles

(by Lionel Brits https://commons.wikimedia.org/

wiki/File:Eulerangles.svg)
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INVARIANT VOLUME ELEMENT ON SO(V)

Recall that SO(V) is the group of matrices with determinant
one such that VVI = VIV = Id.

Let us discuss the invariant measure on SO(N), that is,
which satisfies du(VyV) = du(V') and du(VV,)) = du(V) for
each fixed V,, € SO(N).

First, consider the toy example of the multiplicative group

of positive real numbers. The invariant measure on this

group must satisfy du(cx) = du(x), and has the form

dx
du(x) = 7

So, for SO(N) we need to mimic this, so let’s consider
something like V71dV = VTdV. However, dV is not an
independent differential, so we need to let du be the

product of independent differentials of VdV.

Note that VIV = Id implies d(V))V + VI(dV) = 0,so VIdV
is anti-symmetric. For an antisymmetric real matrix A = [Aij],
its independent entries are all entries above the diagonal.

So, the product of the differentials is constHdAl-j.

i<j

Therefore, we conclude that the invariant measure is

du(V) = constHdAl-j, where A = VIdVis antisymmetric.
i<j

The fact that du(V,,V) = du(V) is clear from the definition.

To check du(VV,) = du(V), use the next exercise.

Then we have
du(VVy) = (VVp)'d(VVy) = Vi (V1dV)V, = V!dV, because

the determinant of VOTVO is one. This completes the proof.



EULER ANGLES ON SO(«V). VOLUME
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(where [, means the k X k identity matrix), and
Ej = Rj(ej,j+1)Rj—1(9j—1,j+1)'"Rl(el,j+1) .

Hurwitz in the 1890s proved that any generic matrix

Vy € SO(N) (by “generic” we mean Haar-almost-every) can
be represented uniquely as a product Vy = E\E,...Ey_;.
The amount of Euler angles is

OSQLJ+1<27T,OSQZ’J+1Sﬂ(2SlS]SN—1)

A general V; € SO(3) has the decomposition
cosgp sing O] |1 0 0 cosy siny 0
V3= |—-sin¢g cos¢ 0| |0 cos@ sin@| |—siny cosy O
0 0O 1|10 —sin@ cosf 0 0 1
where 0 <0 <7, 0 < ¢,y < 2x. Geometrically, this
corresponds to rotations about the z-axis, the transformed

x-axis, then the transformed z-axis, as first identified by
Euler (1770).

For general N, Hurwitz computed that the invariant
measure has the following density with respect to the

Lebesgue measure in the Euler angles coorinates:
dy =204 TT  (sin6,,)/"'d6; . Then Hurwitz
1<j<k<N
computed the volume of the group, which is the integral of

this density over the group. It is given by
N kP2

1 T
ol(SON)) = — N3 T *__
vol(SO)) = 5 g Tk/2)

Exercise 1.2. Using this formula, write down the volume
of O(N).

The same computation can be performed for other

compact classical groups. For the unitary group, we get
k

N
T
vol(U(N)) = 2N+ ——
(UWN)) [1; ©
k=1
(Recall that unitary matrices are complex matrices with

UU* = U*U = Id, where star means conjugate transpose.)



RANDOM COVARIANCE
MATRICES

In statistics, Wishart distribution is a probability distribution
on nonnegative-definite matrices which is a
multidimensional analogue of the Gamma distribution.
This arises as the distribution of the sample covariance
matrix for a sample from a multivariate normal distribution.
It occurs frequently in likelihood-ratio tests in multivariate

statistical analysis. This distribution was introduced by
Wishart in 1928.

To define a Wishart random matrix, take Xtobeap X n
matrix of iid standard normal random variables. Define

W = XX7T. This is the Wishart random matrix.

Note that if n < p, then the matrix Wis almost surely

degenerate, and we do not want that. So we assume that

nzp.
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WISHART MATRIGES. SIMULATIONS
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Sample of the eigenvalue distribution for
n = 6,000, p = 10,000. In this case the matrix is

highly degenerate, so has many zero eigenvalues
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Sample of the eigenvalue distribution for
n = 10,000, p = 14,000. In this case the matrix is
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NUCGLEAR PHYSICS

Nuclear physics studies atomic nuclei viewed as quantum
systems. As such, a quantum system is described by an
operator in a Hilbert space (a "quantum Hamiltonian”). Of
great interest are eigenvalues of this operator - they

describe possible energy levels of the quantum system.

For example, the eigenvalue equation for the simplest,

hydrogen, atom is the Schrodinger equation:

h2 2
——V?— ‘ w(r,0,¢) = Ey(r,0,¢p). Here E are the
2u Aregr

possible energy levels.

Large nuclei are described by much more complicated
Hamiltonians. In the 1950s, Wigner suggested that instead
of studying complicated Hamiltonians, one could get
some information about heavy nuclei from random
Hamiltonians. In particular, he predicted universality of
energy spacings. Random Hamiltonians are then

approximated by random Hermitian matrices.

https://upload.wikimedia.org/
wikipedia/commons/f/f0/

Nucleus_drawing.svg
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WIGNER'S SEMICIRGLE LAW

In one of the first papers of Wigner, he also obtained the
Semicircle Law - joint eigenvalue distribution of large

random Hermitian matrices with independent entries tends

to the semicircle.

In particular, let X, Y be real matrices with iid mean O
variance 1 entries (and some other moment conditions).
Define G = (X +iY) + (X — iY)T)/2. This is a random

Hermitian matrix.

I
150

Then the histogram of the eigenvalues of G looks like a

(normalized) semicircle from —2\/N to 24/ N, where N is the

size of the matrix.

This also suggests how the spacing of the eigenvalues in
the "bulk” of the spectrum should look like. Namely, the
eigenvalues have typical distance between them of order
1/4/N, and on that scale the distance depends on the

location in the spectrum through the density.

Later, connections between eigenvalue spacing and
number theory (spacing of zeroes of the Riemann Zeta
function on the critical line) have been discovered - see

note [4] for details.



BACK T0 STATISTICS

Random matrix theory continues to be widely applicable in
domains where it was originally discovered. Let me
mention one statistical application based on a 2004 (fairly

recent) work of Baik-Ben Arous-Peche.

Consider the goal of estimating a “spike” in the presence
of a random matrix. Namely, let W be a Wishart (random
covariance) matrix, and X be a rank-one matrix (a “spike”)

of “size” 1.

Looking at the eigenvalues of W + a X, for which values of a
is it possible to recover X? In other words, can we

statistically detect the null-case (random covariance matrix

of a mean-0 iid vector) from the “spiked” case?

Turns out that we should look at the edge of the spectrum.
The edge is on scale \/; and there exists a critical value ¢

(independent of n but depending ony = p/n < 1 which is

assumed constant), such that

e Ifa < ¢, the edge of the spectrum of W+ aXis

distributed the same as for W, so the “spike is lost in the

bulk”. This limit is not Gaussian, by the way, but is given
by the so-called Tracy-Widom (TW) distribution.

If a > ¢, the largest eigenvalue has the Gaussian

distribution, so we can detect the spike

Ata =c —dn~ 13 thereisa phase transition, and the
distribution of the largest eigenvalue of W+ aX tends to
yet another law called the BBP distribution. Depending

on the parameter d, BBP interpolates between Gaussian

and TW.



NOTES AND REFERENCES

1. Diaconis, Forrester, A. Hurwitz and the Origins of
Random Matrix Theory in Mathematics (2015) gives an
account of the first matrix integrals (invariant group
integrals) which appeared over 100 ago. The original

paper of Hurwitz is Uber die Erzeugung der Invarianten
durch Integration [Gott. Nachrichten (1897), 71-90].

2. The decomposition Vy = E|E,...Ey_; of SO(N)
matrices as products of rotation matrices is an
analogue of the fact that every permutation can be
written as a product of elementary transpositions (in a
particular order). One can think that in this case all

Euler angles are 0 or z.

3. J.Wishart, The generalized product moment
distribution in samples from a normal multivariate
population, Biometrika (1928) — one of the first

appearances of random matrices in statistics.

4. Wigner's original work on random matrices in nuclear
physics: Wigner, E. (1955). Characteristic vectors of

bordered matrices with infinite dimensions. Annals of
Mathematics. 62 (3): 548-564.

. An account of the meeting of Dyson and Montgomery,

when the applicability of random matrices to number
theory was discovered: https://www.ias.edu/ideas/

2013/primes-random-matrices

Phase transition of the largest eigenvalue for non-null
complex sample covariance matrices - Jinho Baik,
Gerard Ben Arous, Sandrine Peche. https://arxiv.org/
abs/math/0403022
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Chapter 2

GUE AND
DBM

e Gaussian distribution and
Brownian motion

e Gaussian Unitary Ensemble (GUE)
o GUE: some properties
e GUE: distribution of eigenvalues

e Dyson Brownian Motion (DBM)

In this chapter we discuss the most basic ensemble of random
matrices — the Gaussian Unitary Ensemble. We will obtain its

spectral distribution.

We will also connect the GUE to a dynamical model — the Dyson
Brownian motion (DBM). This connection is a direct analogue of
the link between the Gaussian (normal) distribution and the usual

Brownian motion.

Exercise 2.1. Prove the equivalency between these two
definitions of the GUE



GAUSSIAN (=NORMAL) DISTRIBUTION

Let us recall basic facts about the Gaussian distribution and

the Brownian motion.

N0 diaiby  S0- 1 o
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This was the real Gaussian. We will also need the complex

Gaussian.

The standard complex Gaussian random variable is given

by Z = X+ iY, wherei =+4/—1 and X, Y are independent

1
mean 0 normal random variables with variance 5 Here we

need variance 5 and not 1 because the variance of a

complex random variable is Var(Z) = E(Z — EZ|%), which
is E(|Z|2) = E(X?) + E(Y?) in our case.




GENTRAL LIMIT THEOREM

Let X, X,, ... be independent identically distributed In fact, there is a much more detailed CLT which was

random variables with mean 0 and variance 1. Denote established in the mid-20th century (Donsker invariance

5 rinciple). In a relatively weak form it states:
S =X/+...+X, Then —= = 0 asn — oo (this is the Law of principle) vely w !

n
Large Numbers, LLN). The convergence is almost sure, that o Q%) ) S i e e Co. Al
is, P(w: S,(w)/n » 0) =0. Le% A Vin ’
The next order approximation to the Law of Large 1 W as n—

Numbers is given by the Central Limit Theorem (CLT): MMLS\M vl
S
& where £ has the standard normal distribution. The /\ (at) Lol 1/6"3’//?

Vn mdcsp‘%“ﬁ/é“ Jo

convergence here is in distribution, that is, for each r € R el (0un CoqVe
we have P(S, < r\/Z) — P(E < ). de +ie (Brousiisow~

T M g o—
Note. In general, the convergence in distribution is valid
only for r being points of continuity of the cumulative The convergence here is in distribution, in Skorokhod
distribution function (cdf) fo the limiting random variable. space (space of cadlag functions). The metric in Skorokhod
However, as for the standard normal random variable the space is defined as
cdf is continuous everywhere, the convergence holds for d(f,g) = 1nf(||/1|| + sup | f(#) — g(A(®))|), where the

0<t<1

all r.

infimum is taken over all strictly increasing continuous

A(t) — A(s)

mappings [0,1] — [0,1], and ||4|| = suplog

s<t -9



BROWNIAN MOTION o L o A A R R

Let us discuss the limiting object — the Brownian motion (= "“'“{"*”r%\,g;; () 2 o e ~—~ S 1 e o
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If instead of W, we take a diffusion process dX, = pu,dt + 6,dW,, then
we obtain the full Ito's formula:

2 32
0 0
T\ e Gta_f dw.,.
X

9
= +pu—=+
o Hax T a2

Brownian motion is also a Markov process, in the sense
that the future location of the moving particle is
determined only by its present location, and not by the

past history. Mathematically this is expressed as follows.

There is a transition function

Px,y)=PW_,=y| W,=x),foralls >0, x,y € R.
The Brownian motion is time-homogeneous, i.e., its
transition function does not depend on s. The Markov
property is then

PWe, =y | Wy=xW, =x,...., W, =x) = P(x,y), for

all x; and all previous time moments s; < s.

For the Brownian motion the transition function has a

very simple density:

=2 gy,

Pt(x’ y) dy —
2t

The transition function satisfies the heat equation

0 1 02

—P(x,y) = =—Py(x,
o, Fi6y) =5=5Plxy)

and is also known as the heat kernel.



IDEA OF STOCHASTIC DIFFERENTIAL EQUATIONS

A diffusion is a process satisfying dX, = p,dt + 6,dW, Examples.

(where p,, 0, are functions of time). This means in integral
t t

u,du + J 0,dW,. The second

formthat X, — X, = J
0

0
integral is a stochastic integral (such as Ito integral).

On the other hand, we can describe processes implicitly,

requiring that the drift u and diffusion coefficient o
depend not only on time, but on the value of X, (e.g.,
location of the particle at a given time). This dependence
still leads to a Markov process, and is called a stochastic
differential equation (SDE): dX, = u(t, X,)dt + o(t, X,)dW,.

This equation is also understood in integral form.

Under mild conditions on u, o a solution to the SDE exists

and it unique.

One should be careful with stochastic integrals. For

! 1 1
example, for the Ito integral, J WdW, = EW"? — Et.
0

We will use SDEs to write down PDEs for probability

distributions of their solutions.




GAUSSIAN UNITARY ENSEMBLE (GUE)
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Let us obtain some basic properties of the GUE. First,
compute the joint density of the matrix elements with
respect to the Lebesgue measure on the space of N X N

Hermitian matrices. The Lebesgue measure itself is

N
dx =[]ax; ] a®’xpdSx),
=1

1<i<j<N
NN -1
Here there are N + 2(7) = N? real parameters in the

space. In other words, the space of N X N Hermitian

matrices can be identified with the Euclidean space RN,

Therefore, we see that the GUE density of matrix entries

has the form
dGUE(X) = const ez T"X)gx

which is the (simplest) random matrix analogue of the

Gaussian distribution.

Exercise 2.6. Show that the GUE distribution is invariant under
conjugations by arbitrary unitary matrices (i.e., under the action
X = UXU*, where U € U(N) is fixed).



MATRIX BROWNIAN MOTION

When we have a normal distribution, we also have a

Brownian motion. GUE is a Gaussian measure on the
space of N X N Hermitian matrices. This space is identified

with IRNZ, and the coordinates X, RX:. SXU- (i < j) become

i ijr
independent random variables. Taking independent
Brownian motions in these coordinates, we get a

Brownian motion on the space of Hermitian matrices. We

call is the matrix Brownian motion X,.

More precisely, for X;; the variance of the motion should

1

be 1, and for RX SXU (i < j)the variance is 5

l'j/
Exercise 2.7. Write down the transition function
P(X,Y)=Prob(X,,, =Y | X; = X) of the matrix Brownian

motion.

Exercise 2.8. Show that the matrix Brownian motion is unitary

invariant (you also need to define what this means exactly).

In one dimension, the Brownian motion does not have to
start from 0. A Brownian motion starting from any x € R
simply has the form x + W,, where W, is the standard

Brownian motion starting from O.

In the matrix case, we can start the matrix Brownian
motion from any fixed (or even random) matrix A, and it

has the form A + X,

If A is diagonalized, A = VD, V*, where D, is diagonal
(with eigenvalues a = (ay, ..., ay) of A on the diagonal),
then we have VD V* 4+ X .. But since X, has the GUE
distribution, it is unitary invariant, so VD, V* 4+ X, has the
same distribution as V(D, + X,)V*.

In other words, all unitary invariant properties of A + X,
(such as eigenvalues of A + X)) depend on A only through

its eigenvalues a.
This implies the following result:

Theorem. On eigenvalues, the matrix Brownian motion
(started from any fixed matrix) reduces to a Markov
process on the space {4, > ... > Ay: 4, € R} of ordered N

-tuples of reals.

This Markov process is called the Dyson Brownian Motion.

We will study some of its properties.



DYSON BROWNIAN
MOTION

Let A, = A,(?) be the eigenvalues of the matrix A + X,, where
X, is the matrix Brownian motion started at zero (also, X, has

GUE distribution with variance 1).

Theorem. These eigenvalues satisfy an SDE

dt
dii=dBi+Z/1 —,
j#

where B, are independent standard Brownian motions.

i=1,...,N,

This result is essentially due to Dyson (1962). We will prove
it by following T. Tao’s notes, which in a sense repeat
Dyson’s argument in a more modern language. The
argument is based on understanding how eigenvalues and
eigenvectors change (in first order) if we change the

matrix.

A/
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SDE FOR DBM

Now, back to the Dyson Brownian motion. Modulo
technicalities (related to non-simple eigenvalues) which
can be resolved, the derivation of the SDE looks as

follows.

Let the matrix Brownian motion at time ¢ be in state A.
Then, taking G to be the standard GUE random matrix, we

see that the matrix Brownian motion attime ¢t + dt is in
state A + (dt)'?G.

We have by the Ito’s formula that d4; equals the first
derivative times dW, plus 5 of the second derivative times

dt. The first derivative is ul.*Gui, and the second is

|u]?‘<Gu,-|2
Z — (the “2" from the Hadamard variational
iy

J#

formula disappears because OfE in Ito's formula).

Since G is unitary invariant, we may assume that u; form an
orthonormal basis of the N-dimensional space, and so
u*Gu; simply corresponds to independent real Brownian
motions dB;, while each term |uj*Gul- > has mean 1 and
small variance (and the variance is small even after

summing over j).

This completes the sketch of the proof of the SDE for the

Dyson Brownian Motion.




NOTES AND REFERENCES

1. Freeman J. Dyson, A Brownian—-Motion Model for the
Eigenvalues of a Random Matrix, Journal of
Mathematical Physics 3, 1191 (1962). This paper
contains a derivation of the equations of motion of

eigenvalues under the matrix Brownian motion.

2. One of the (many) interviews of Dyson https://
www.youtube.com/playlist?
list=PLVVOr6 CmEsFzDA6mtmKQEgWfclu49J4nN

3. The GUE is extended in at least two directions. One can
either keep the unitary invariance (invariant ensembles

TrVX))) or keep the independence of

with density « e
the entries (Wigner matrices). The unitary symmetry /
complex field can also be replaced by orthogonal
symmetry / reals (the Gaussian ensemble is called
GOE), or by symplectic symmetry / quaternions

(leading to GSE).

4. Atthe level of eigenvalue distribution, the symmetry
classes can be unified by including an interpolation
parameter B, which is equal to 1,2, or 4 for real,

complex, or quaternionic ensembles.
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Interlude

MARKOV
GHAINS AND
SDE

On a finite state space X, a time-homogeneous Markov chain with
discrete time corresponds to a stochastic transition matrix P(x, y),
whose elements are nonnegative and sum to one along each row:

Z P(x,y) = 1 for all x. In diffusion setting, an SDE is an analogue
yeX

of this transition matrix P(x, y).

When x € X is random with some distribution u(x), and we apply
to it one step of a Markov chain, then the distribution becomes

(uP)(y) = Z,u(x)P(x, y). In other words, in finite setting probability

xeX

distributions are modeled by row vectors. Multiplication by
transition matrices corresponds to time evolution of measures

under Markov chains.

On the other hand, if fis a function on X viewed as a column

vector, and we consider the function (Pf)(x) = Z P(x,y)f(v), then
yeX

(Pf)(x) is the expectation of f(£), where & is the location of the

Markov chain started at x after one step.

Thus, we see that the Markov chain transition matrix P describes
both the evolution of measures and the evolution of functions. An

SDE does essentially the same.



EQUATIONS FOR THE BROWNIAN MOTION

Our goal now is to mimic the finite Markov chain setting

for the Bronian motion.

This observation allows to obtain a PDE for the density for

W.. Namely, if the density of W, is p(z, x), then

EF(W) = J F(x)p(t, x)dx. From the previous exercise,

integrating by parts, one checks that

0 1 0? .
Ep(t’ X) = Eﬁp(t, x) . The fact that the transition

density of the Brownian motion satisfies this PDE was

mentioned earlier. In fact, combined with the initial

" . 1 —x2/(28)
condition p(0,x) = J,, the solution p(t,x) = ——e™ is

\ 2nt

unique. This is the density of the normal distribution with

mean 0 and variance t.



In this chapter we present two derivations of the joint eigenvalue
density of the GUE:

Chapter 3

® A stochastic processes computation involving the Dyson

Brownian motion
® A more classical computation of the joint density of eigenvalues

of the GUE random matrix,

E I G E N VALU E We will also discuss extensions of the eigenvalue density formula
which relates to other random matrix ensembles.
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GUE EIGENVALUE DENSITY AND GENERALIZATIONS

Let 4, > ... > Ay, 4; € R, be the eigenvalues of the GUE.
We want to show that their joint density is given by

TR e
f(lf\iwv M)’:.“f ﬂ €8
Here Z, = QRm)M?01112!...(N = 1)! is the normalizing

constant.

Interestingly, the eigenvalue density is generalized in at

least two different directions

Beta ensembles. The GUE comes from unitarily invariant
Gaussian complex matrices. If we consider real symmetric

Gaussian matrices (GOE), then the eigenvalue density has

a similar form, except for the factor H | 4; — 4| . For GSE,
j<k
the factor is H(ﬂj — /1,{)4. These ensembles are unified in
j<k
the Gaussian beta ensemble, GSE, which for f =1,2,4
becomes the GOE/GUE/GSE.

LS
il 4 S O

The GPE does not have a similar invariant matrix model,

but has a tridiagonal model [Forrester, (1.159)]:

I N[(), 1] iﬁ(N— 1)3
X(N-1)3 ~N 0,1]  X(n-2)3 )
X(N—-208  N[0,1]  X(n-3)3

X273 N[0, 1] X3

Here j, is the square root of the chi square random

2
ukle ™ > 0.

variable, with density
I'(k/2)

Invariant ensembles. The GUE is unitary-invariant and
Gaussian, and the matrix has density « e~z T |f instead
of —X?/2 we take an even polynomial which decays at
infinity, then we obtain an invariant ensemble with matrix

density « e~ 2T VX)) The eigenvalue density will be

replaced by He"v(’ii)H(/lj — )%

j<k



FROM DBM T0 EIGENVALUE DENSITY

dt
First, we know that dA, = dB, + Z T

j#i T

Then, taking a smooth function F(4,, ..., 4y) and applying

the multivariable Ito formula

S5t

1
dF(X), = ) 0,FdX,; + = Y 00;FdX, dX,
] i,J

we get a formula for dF(4,, ..., Ay). Because the vector d4
involves only independent Brownian motions, we see that
in the second term we get d/; ,d4;, = §,dt. Recall that the
expectation of the Brownian motion (or of dB,) is zero, so

we have, averaging the SDE,

0.EF()) =E 1AF+ Z ul
f 2 p -

Therefore, the density of the eigenvalues p = p(t, x) of the
GUE at time # (where x = (x; > ... > xy)) should satisfy the
PDE with the adjoint of the above operator that acted on

functions.

Namely, we obtain d,p = Dp, where

Let us now check that the density He‘liZ/(ZZ)V(/I)z,
where V(1) = H(/li — 4;) is the Vandermonde

i<j

determinant, satisfies this PDE.




Now, extend p to the whole space R in a symmetric way
(from the Weyl chamber 4, > ... > 4y). This means that u

extends antisymmetrically to RY.

Assume that the initial eigenvalues for the DBM are distinct

v =(v; 2 ... 2 Uy). Then, by antisymmetric extension,

u(0,4) = (1/) Z (=1)?8,_,,)- The solution to the heat
equation with thls initial data is immediate:
u(t,2) = V(ly) R Z (=1)%exp(— |4 — o) [*/(20)),
which equals the determlnant
w(t, 1) = —— — et emtmrien].

V) Qrr)N2

This leads to the formula for the transition density of DBM,

which is due to Brezin-Hikami-Johansson (around 2000):

P — )= 1 V) det [e‘(’li‘”f)z/ (2’)].
! QrH)N2 V(v)

Taking limit v — 0 gives the desired eigenvalue density of
the GUE.




“JACOBIAN" PROOF OF
THE EIGENVALUE
DENSITY

Here we prove again that the joint density of eigenvalues

of the GUE of size N is given by

Proof. We will in fact prove a more general result. Namely, let f be a function on the space Hy of
Hermitian N x N matrices which is unitary invariant, i.e. f(UAU™) = f(A) for any fixed unitary matrix
U. (This implies that f depends only on the eigenvalues A1, ..., Ay of A, and moreover, in a symmetric
way.) We will show that

f(A)dA = consty | fAr,.... An) [ 12 = A2 dAr - dAw, (4.1)

N

where both integrals are with respect to the corresponding Lebesgue measures. In other words, we aim
to find the Jacobian of the transformation mapping from A to the set of its eigenvalues.




Example 4.4. As an example, consider the change of coordinates in R? from Cartesian to polar:
(z,y) — (r,0). If f(x,y) is independent of 6, i.e. it is radially symmetric, then

/ f(z,y) dedy = 27 /OO f(r)rdr.
R2 0

The factor r comes from the Jacobian, and so 27r = const - r is the radial part of the Lebesgue measure
on R%2. What we are about to do now is a generalization of this procedure. That is, we will find the
radial part of the Lebesgue measure on the space of N x N Hermitian matrices.

Continuing with the proof, view Hy as a space with an action of the unitary group U(N) by con-
jugations: A — UAU*. A typical matrix!® A € Hy can be written as UAU*, where A is the diagonal
matrix of eigenvalues of A. This gives rise to a change of variables

A+ (NU),

where X is the vector of eigenvalues and U =U mod T, where T is the torus of diagonal matrices which
stabilize X. The matrix U represents the rotation to the eigenbasis of A.

The Jacobian we aim to compute is dA = (.)d/\dU , where dU is Haar measure. We note that the
Jacobian must be independent of U since the Lebesgue measure is rotationally invariant.

Let us write U = 1+ X where X is “small”. In other words, we are applying a Lie algebraic perspective.
Since U is unitary, the matrix X must be skew-Hermitian: X 4+ X* = 0. This leaves N? real parameters
in X (which corresponds to the well-known fact that U(N) is N2-dimensional over R). Then U* =
U~1 =1 — X + smaller order terms. Since A = UAU*, we can write

A+dA=(1+X)A+dA)(1—-X)=A+dA+ XA — AX + smaller order terms.
Hence small changes in diagonal terms in A are
da;; = d;,
while small changes in the off-diagonal terms have the form (here j < k)
dajr, = Tjp ke — NjTjk = (A — Xj)T k.

Since both daj; and zj; are complex, the contribution (A\y — A;) affects both daﬁ and daj%k, so overall
we see that the the Jacobian is [[;_; [A; — M|

The theorem then follows from (4.1) by setting f(A) = e~ 2tr(4%), []




EVALUATION OF THE NORMALIZATION CONSTANT

The normalization constant Cy in the GUE eigenvalue density is equal to N
1 ] [ 2 ] [ —\2
, if the integral is taken over the ordered set (Weyl chamber) CN |)\@ — )\] ’ (& )\% /2
QmoN20!1!...(N = 1)!

Such multidimensional integrals are quite interesting and important. A more general (but by far not in the full generality of known

results) integral is known as the Selberg integral:

N . = D@ +jnTB+jnTA + (j + Lyy)
J' ...J' th 1(1_tl)ﬂ 1 H |ti_tj|2}’dl‘1...dl‘n=H F(a+ﬂ+(n+]_1)y)r(1+y) .

0 0 j=1 1<i<j<n j=0
The Selberg integral itself has several proofs (e.g., see [Forrester, Ch. 4]). Exercise 3.6. (you can volunteer for a
The Gaussian version (in fact, limit) of the Selberg integral is talk)
N—1 . Read on and present (any) proof of the
) F C + 1 .
[ | V(X) |2€ I I e i /zdxi — N!(zﬂ)N/z I I ( (‘] )) . Selberg integral formula.
RN I'(c)

i =0

The way we will compute the ¢ = 1 integral as above would follow from representation theory plus a simple limit. The general

Selberg integral follows from more involved representation theory around Macdonald symmetric functions.



NOTES AND REFERENCES

1. Tridiagonal model for GBE was discovered by Dumitriu
and Edelman (https://arxiv.org/abs/math-ph/0206043)

2. Most of the discussion of the proof of the GUE

eigenvalue density using DBM is taken from this post
by T. Tao.

3. The second derivation of the GUE eigenvalue density
(not using DBM) is more classical, and follows the idea
around volume elements on orthogonal or unitary
groups. This proof is present in many notes on random

matrix theory.


https://arxiv.org/abs/math-ph/0206043
http://www.apple.com
https://arxiv.org/abs/math-ph/0206043
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Chapter 4

SEMICIRCLE
LAW

We discussed two generalizations of GUE with explicit eigenvalue

densities - GFE and invariant ensembles.

We can also consider random real (or Hermitian, or quaternionic)
matrices with independent entries. There is no explicit eigenvalue
density in this case, but the limiting density of eigenvalues (as size
of the matrix grows) obeys a universal law - the Wigner Semicircle
Law. This chapter proves this law for real Wigner matrices, under

the condition that all moments of the elements are finite.

The notes on Wigner Semicircle Law follow my previous
incomplete notes (https://github.com/lenis2000/
RMT_Spring_2016/blob/master/Random_Matrices_Notes.pdf)

-30 -20 -10 0 10 20

30
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REAL WIGNER MATRIGES

2.1. Real Wigner matrices. A particular ensemble of random matrices is the
real Wigner matrices. Let A € Mat(N x N,R) with A = (aij)gjzl such that
a;j = aj;. To describe the distribution of the random matrix A we only need to
describe the upper triangular portion of A.

Definition 2.1. The law of the real Wigner N x N matrix is described as follows:

e {a;j}i<j is an independent collection of random variables

L4 {a”}i\il 18 ii and {ai]—}iq is 1id.

e Ea;; =0 for all 7, j; Eafj = 2 for i = j; and Eafj =1 for 7 # j.

e all moments of a;; are finite.
The last condition greatly simplifies technicalities of the proofs, but most results
on real Wigner matrices hold under weaker assumptions.

Example 2.2. A large class of Wigner random matrices (which helps justify why
in A the variances on the diagonal must be twice the off-diagonal variances) can
be constructed as follows. Suppose the collection of random variables x;; for
1 <4,j < Nisiid with Ezj; = 0 and Ex}; = 1. Let X = (24;) be an N x N
matrix. Define

X+ X7
fom 2R
V2
One readily sees that A is real Wigner. Namely, for example, a1, = L\ﬁ“’“ =

V2z11, so Ea;; = 0 and Ea%l = 2Ex%1 = 2. If N > 2 then a1 = ay; with
ajp = 1124220 and we have Eajp = 0 and Varajy = 3 Var(zio 4+ 291) = 1 because

V2

xr12 and x2; are independent.

2.3. Formulation of the Wigner Semicircle Law. For a real Wigner matrix
An € Mat(N x N) let /\SN) > e > )\%V) be the eigenvalues of Ay. The empirical
distribution of the eigenvalues is

N
1
Ly = NZcSN_I/zAgN). (2.1)
i=1
That is, we put delta masses of size 1/N into the N positions of rescaled eigenval-

ues )\z(.N) /v N. This rescaling will turn out to be appropriate for the law of large
numbers. Note that Ly is a probability measure on R.

Remark 2.4. For the purposes of asymptotic statements, we will always assume
that the off-diagonal entries of real Wigner matrices A = Ay have the same fixed
distribution independent of N, and similarly the diagonal entries have the same
fixed (but different) distribution.

Definition 2.5. The semicircle distribution SC is a fixed probability distribution
on R supported on [—2,2] which is absolutely continuous with respect to the

Lebesgue measure and has the density

SC(xz) : ! V4 — x2,

R —2 < x <2
2T =T

See Figure|1.

Note that slightly abusing the notation, by SC we will denote both the semi-

circle distribution and its probability density (2.2).

(2.2)

FIGURE 1. Semicircle density SC(z).




FORMULATION OF THE SC LAW

Theorem 2.6 (Wigner’s Semicircle Law). As N — 0o, the empirical distributions
Ly converge weakly, in probability to the semicircle distribution SC.

Let us explain what we mean by convergence “weakly in probability”. Formally
this means that for any bounded continuous function f on R (f € Cg(R)) and

each € > 0 we have
lim IP’(/deN—/deC >5) =0. (2.3)
N —o00 R R

That is, “in probability” means the usual convergence in probability of random
elements L to a (nonrandom) element SC. On the other hand, “weakly” specifies
the metric on the space of probability measures on R (to which all Ly and SC
belong). Convergence of probability measures in this metric simply means weak
convergence of probability measures on R.

In other words, let us use a convenient notation for the pairing (f, u) =
Jp fdp = [g f(x) p(dz) for a given function f and measure p. If p is a ran-
dom measure (such as Ly, since Ly depends on Ay which is random), then
(f,n) is a random element of R (usually we say random variable). Since SC is
not random, the pairing (f,SC) is a fixed number for a given function f. The
Semicircle Law thus states that for any given f € Cpg(R) the random variable
(f, Ln) converges in probability to the constant (f, SC) which may be written as

Ve > 0, ]\}l_r)n P(|(f,Ln)— (f,SC)| >¢) =0, (2.4)

which is the same as (2.3).

Remark 2.7. This type of convergence is reminiscent of the classical weak law

of large numbers: for {X;}:°, iid random variables with E | X;| < oo, the random
1

variables N Zf\; | X; converge to the constant £ X; in probability as N — oo.




COMBINATORICS OF THE SEMIGIRGLE DISTRIBUTION

Definition 2.9. A Dyck path of length 2n is a sequence dy, dq, ..., ds, such
distributi h that dy = do,, = 0, djx1 — d; = +1 for all 7, and that d; > 0 for all 7.
Istribution, we have Graphically Dyck paths can be represented as in Figure [3.

> ] . 1 (2
My = X (2—7[\/4—x)dx=— .

) k+1 k

This is done by change the variables as x = 2sin 6, and

First, computing the moments of the semicircle

dk A

computing recursively the integral of sin?* 6.

o F1GURE 3. A Dyck path of length 2n = 10.
These quantities are the well-known Catalan numbers.

Catalan numbers enumerate many interesting families of

objects, including Dyck paths and trees. Many of the AN : (_ :

counting facts follows from the recurrence relation
n —AA—}
Catg =1, Cat,, = Z Cat;_1Cat,—;.
"~ AL A

FI1GURE 4. All five Dyck paths of length 2n = 6. The first
two paths first return to zero at time 25 = 2, the third path
first returns to zero at time 25 = 4, and the last two paths
first return to zero at time 25 = 6.




TREES

2.6.3. Trees. As was mentioned before, the Catalan numbers enumerate nu-
merous families of combinatorial objects. We will need one more family of
such objects — rooted ordered trees. An ordered tree is a rooted tree (i.e., a
tree with a distinguished vertex R called the root) in which children of every
vertex are linearly ordered. On pictures this ordering will be represented
from left to right (see Figure 5).

FIGURE 5. These trees are isomorphic as rooted trees, but
are different as rooted ordered trees. A beginning of the walk

of Exercise |2.14 is displayed for the second tree.




CONVERGENGCE IN EXPECTATION

2.7. Convergence of expectations E(z*, Ly) — mj. With the Catalan
preparations in place, let us return to the semicircle law. We would like to
show that

lim E(z* Ly) =my = 0, k odd; (2.9)
N—o0 Caty /o, k even.

First, observe that the left-hand side has the form

E(z*, Ly) = E/x Ly(dzx)

= / 25 1/2)\ dZC

=

==

1
N

NE IIMZ

1

N—l k/2 E Z )\k
1=1

~.
I

/ 93k5N—1/2,\i(d33)
R

(N_1/2)\i)k

Since A is diagonalizable (as an N x N real symmetric matrix), we have

ZZ 1 )\f tr(A¥). We may express the trace of the kth power of a matrix
by a k-fold sum of cyclic products

N
k
tr(A ) - E , QiyigQigig " * * Qg iy Aigiy -

01,020 ip=1

So we have
N
E<xkv LN> = N1k Z E(ai1i2ai2i3 e aik—lika’ikil)' (2'10)
11,82,y 0p =1
Our goal now is to understand the combinatorial structure of the above big
sum.



Definition 2.15. Each term of the sum can be encoded by a closed word
i1 ...1,01 of length k+1 (“closed” in the sense that the word starts and ends
with the same letter). For example, 123241 is a closed word of length 6. The
support of a closed word is the set of all letters participating in this word.
The support of 123241 is {1,2,3,4}.

To each closed word w we associate an undirected graph G, with vertices
labeled by the support of the word, edges (i1,12), (i2,%3), ..., (1%, 71) connect-
ing each consecutive pair of letters in the word. For example, if w = 123241,
then G, has four vertices {1, 2, 3,4} and five edges {(1, 2), (2, 3), (3,2),(2,4), (4,1)}
(see Figure 7). Notice each graph G,, is connected. These (and similar)
graphs are sometimes referred to as Feynman diagrams.

FiGURE 7. Graph G,, corresponding to the word w = 123241.

Let N;/;, be the number of distinct edges connecting 71 to i in Gy,. In

our running example we have N5 = 1 and N5 = 2. Each edge may be a self
edge such as (1,1), or it can be an edge connecting distinct vertices such as

(2,3).
- N N
K aiyinQigig -+ - Qi i, Qigiy = H Eayy H Eayy,
self e connecting e
eEGil...ikil 66Gi1---iki1




In order for the expectation (2.11) to be nonzero, we must have the fol-
lowing properties:

e Since Ea;; = 0, each edge in G;, _;,;, must have N, > 2..
e The graph Gj;, i i, has k+1 edges, and so it can have at most 1+k/2
vertices.

Now let us look at the sum (2.10) as a whole. Call two graphs equivalent
if they differ only by relabeling the vertices. Note that the expectations of
the form (2.11) coming from equivalent graphs are the same. If a graph has
t vertices, then there are N+ := N(N —1)...(N —t+1) ways to relabel the
vertices to get an equivalent graph. This implies that the sum (2.10) can be
rewritten as

14| k/2]

It
E(z*,Ly) = ) N]1V+k/2 > I] Ealy ][] Eay, (212

t=0 Gw€eEqClass; self e connecting e

NS 7
~"

(%)
where by EqClass, we have denoted the set of equivalence classes of graphs
G, corresponding to closed word, having ¢ vertices and £+ 1 edges, and also

having N, > 2 for each edge.

Clearly, for fixed ¢t and k, the expression (x) above does not depend on N
and is finite. Also, since N¥ = O(N?), the sum (2.12) vanishes as N — oo
unless t = 1+ k/2. Because t < |k/2], this is possible only for k even.
Therefore, E(z*, L) converges to zero if k is odd.

Now consider the case when k is even and ¢t = 1 + k/2. Then the graph
corresponding to each word i; .. .44 has k + 1 edges, 1 + k/2 vertices, and
N, > 2 for each edge. Hence, gluing together pairs of edges connecting the
same vertices, we see that the graph G;, ;,;, must be a tree (see Figure @
In particular, there are no self edges and N, = 2 for each connecting edge.
This implies that

lim E(z*, Ly) = }Equassl+k/2|.

N—o0
To count the number of trees Gy, € EqClass; /5, let us choose representa-
tives w = vy ... vgs1, such that for each i = 1,... k+1, the set {1,2,...,v;}
is an interval in {1,2,..., N} beginning at 1 (thus, v = vi1 = 1).




O=0ORR0O==0==0O R0

FI1GURE 8. A graph G, corresponding to a Wigner word

the expansion (2.12|). Here k = 10.

FIGURE 9. A representative graph G, € EqClass; /, cor-
responding to the graph as in Figure @ (left), and its repre-
sentation as a rooted ordered tree (right).

Let the vertex 1 be the root R, and clearly the order coming from the
word defines an order on this rooted tree (see Figure |_[) This implies that
|Equass1 ik /2| = Caty, and finally proves the desired convergence (2.9).



https://github.com/lenis2000/RMT_Spring_2016/blob/master/Random_Matrices_Notes.pdf
https://github.com/lenis2000/RMT_Spring_2016/blob/master/Random_Matrices_Notes.pdf

VARIANCES

2.9. Variances of (z*, Ly). Let us now show that the variances vanish in the limit:

E((e*, Ln)?) — (E({z*, Ly)) )2 — o (2.13)

N—=o00

Recall that

n

k —1-k/2
(%, Ly) = N~'7H Y i G

B

i=i1,.ip=1
Now, writing a; for a;, ;, - - - @i, i,, we have

E((z*, Ly)?) — (IE( (@* L)) )2 — N‘2‘k; (IE (a;-aj) — E(a) -E(a;)) .

If the graphs G and G;. (corresponding to the words iy ...ixi1 and ji ... jkJj1, respectively) do not share
common edges, then the corresponding random variables a; and az are independent, and so E(a;-a>) =

j
E(a;) -E(a;). Thus we are only interested in the terms for which edges of the graphs G'> and G;. overlap.

Example 2.18. For instance, if i = (1,2,3,2,1) and j= (1,2, 1,1, 1) then

E(af) = E(iy iy * Qiig * Qigyin * Qigyiy) = E(“%,Q)z
E(ay) = E(ai iy * Qg iy * Giy iy * Giryin) = E(ai,) - (01 1) =2
4 2 2 4
E(ail’ii’ " Qg izt Qigig " Aigyiy * Qiyjig " Aigyiy * Qiq iy ° ai1,i1) = E(an,zz) ( zz,is) ' ]E(ail,il) - 2E(a1,2)°

The corresponding graphs are given in Figure 10\

\d - - ~§
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FIGURE 10. Graphs G~ (solid lines) and G (dashed lines) in Example 2.18,




We now argue similarly to the proof given in Section 2.7 (for the convergence of the first moments).

Namely, in order for E(a; - az) — E(a;) E(az) to be nonzero we must have the following:

e Since E(a;;) = 0, the graphs need to have N, > 2;
e The graphs G and G; need to share some edges.

If the combined graph has t vertices, there are N¥ = N(N —1)--- (N —t + 1) equivalent classes of
graphs. Thus, the variance takes the form

) 2k
E( (z*, Ly)?) — (IE( (z¥, Ln)) ) = N2k Z NH Z (finite products of finite moments)

t=1 equiv. classes
of graphs with
| 2k vertices -

N s
-~

finite and independent of N

Thus, we must have ¢ > k4 2 in order to have a nonzero contribution as NV — oo. The associated graphs
have N, > 2 and are connected (since G'> and G;. are connected and overlap). There are totally 2k edges
with multiplicities, thus < k double edges. We conclude that there are no such graphs, and so there are
no nonzero contributions to the variance in the limit as N — oo. This completes the proof of (2.13).

Remark 2.19. Remark: by a similar argument, ¢ = £+ 1 also cannot contribute. Indeed, the combined
graph of G- and G]v has < k double edges and k + 1 vertices so it must be a tree (in the same sense

of gluing edges as in Section 2.7/ above). However, as G and Gjr must also overlap (i.e., share common

edges), there are no such trees. This implies a better estimate on the variance:
2
E ( (x"’,LN)2) _E ((xk, LN>) —O(N7?), N - o

This estimate can in fact be used to show almost-sure convergence to the semi-circular law.



ESTIMATES AND LAST STEPS

2.10. Estimates and completing the proof. We want to show that for
any continuous bounded function f € Cg(R), the random variables (f, Ly)
converge in probability to (f,SC) (this is further detailed in (2.4)). We have

already shown that

e The moments converge: E(z*, Ly) — (2, SC).
e The variances vanish: E((z*, Ly)?) — (E(z*, Ly))? — 0.
We will also need the following a priori estimate that the empirical distri-
butions L are concentrated around zero:
Lemma 2.20. For all € > 0 there exists B > 0 so that

P ( < |£U‘k1|x|>B,LN> > 6) — 0.

N —o00




We will use the Markov (sometimes also called Chebyshev)
inequality:

E|X
P(|X| >a) < |a, |

Note that for x| > B > 1, 2?f = |z|*|z|* > B¥|z|*, hence
lz|F < 22 /B¥. Now we have by the Markov inequality:

for any a > 0.

E ((z**,Ln)) |

(<t ix) > ) < LB ({lttm 1)) < U2
We know that
E (@:%, LN>) S E ( (22*, sc>) — Caty,.

An easy (and in fact exact in the exponential order) estimate
for the Catalan numbers is

2k
1 /2k 2%k
Cat), = —— <§; — 92k _ gk
Ak k+1(k)_. (])
7=0
Thus

Cat 4k
. k k
limsup P ( (Jo*1js> 5, Lv) >€) < TpE <

As k grows, the left hand side grows. However, for B > 4 the
right hand side decays to zero. Thus if we set

ap = limsup P ( <|x|k1|x|>B,LN> > 6) :

N—o00

then
4k

D<o <a<...<——=0.
Sasms. S Ty

Thus, all the ay, are zero. Since the probabilities are nonneg-
ative, the desired result follows.



Now, fix B > 4 (say, B = 5), and uniformly approximate the function f 1, <B (a continuous function
on a compact interval) by a polynomial. That is, by the Weierstrass Approximation Theorem, for every
0 > 0 there is a polynomial Qs(z) such that

sup |f(z) — Qs(x)| <o.

lz|<B
Therefore, we can estimate
[(f, Ln) — (SO < [{f, Ln) — (Qs,SC)| + [(Qs,SC) — (f, SC)|
(flizj<p, L) — (Q5,SC)| + | (f1jz> 5 Ln)| + [(Q5,SC) — (f,SC)|
(Qs1iz1<p, L) — (Qs,SC)|
+ | (flz1<Bs Ln) — (Qs1izj<p: Ln)| + [ (fLjz>8, Ln)| + [(Qs,SC) — (f,SC)|
(Qs, Ln) — (Qs5,SC)| + |(Qs1j2)> 5, LN)
+ | {(f11z<, Ln) = (Qs1ipj<p L) | + [(F 12>, L) | + [(Qs,SC) — (f,SC)|

< (Qs, Ln) —E(Qs, Ln)| + [E(Qs, LN) — (Qs,SC)| + [(Qs1jz)> 5. LN)]|

+ |(flz1<Bs Ln) — (Qslizj<p Ln)| + [ (fLjz>5, Ln)| + [(Qs,SC) — (f,SC)|
< [(Qs, Ln) — E(Qs, Ln)| + [E(Qs, Ln) — (Qs,SC)|

+ (Qs1jzj>5, Ln) | + |(f 1>, LN)| + 26.

Therefore, we can estimate the probabilities as follows (given that ¢ is sufficiently small):

P(I(f.Ln) = (£,5C)| > ) <P (1(Qs, L) — E(@s, Ln)| > ¢/5) + P ( [E(Qs, Lx) — (Q5,5C)| > ¢/5)

+ P ( (Qs1z>5, LN)| > 5/5) + P ( |(f1)z> 8 Ln)| > 5/5)-

The first summand above convergences to zero by Chebyshev inequality:

2\ 2
P (|<Q6, Ly) —E(Qs,Ln)| > 5/5> < E ((Qs, L) ()5/5)(2E<Q5’LN>) |

which goes to zero because variances go to zero (Section 2.9). The second summand convergences to zero

IA A

IA

because the moments converge (Section 2.7). The last two summands converge to zero by Lemma 2.20

(note that f is bounded and so can be bounded by a polynomial). This completes our first proof of the
Wigner’s semicircle law (formulated above as Theorem 2.6)).




NOTES AND REFERENCES

1. Catalan numbers count over 200 various families of

objects (http://www-math.mit.edu/~rstan/ec/
catadd.pdf)

2. My incomplete 2016 lecture notes are available at
https://github.com/lenis2000/RMT_Spring_2016/blob/

master/Random_Matrices_Notes.pdf
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Chapter 5

ORBITAL
MEASURES AND
FREE OPERATIONS

e Limiting spectral distribution
e Operations on random matrices
¢ Orbital measures

e Moments and limiting spectral
distribution

e Freeness

e Free convolution and related
operations

The Wigner semicircle law can be applied to GUE matrices, too.
(Well, we proved it for real matrices, but it also holds for complex
ones.) Moreover, we know that GUE is infinitely divisible:

G ~ G+ G, + ... + G, where G has normalized variance 1, and
each G; is an independent GUE, and has normalized variance 1/k (k
is assumed finite). (“Normalized variance” is normalized by 1/N
since we want the matrices themselves to have a limiting spectral

density.)

In fact, this relation for GUE determines the limiting spectral
distribution. Because all the Gj's are unitary invariant, the limiting
spectrum of G “should not” depend on the eigenbases of these

pieces, and only depend on their limiting spectra (which are the

same, up to scale).

Therefore, it should be SC = SC;HHSC, H ... FHSCy, where H is a
yet mysterious operation on spectra (“free convolution”), and SC;
are the rescaled copies of SC. The identity should hold for every k,

and this determines the semicircle distribution.

This is a roundabout way of proving the semicircle law for the GUE
(which we already almost established, modulo real/complex
analogy), but the operation | is very nice in its own right. This
chapter discusses free convolution and related operations on

random matrix spectra.



SPECTRAL DISTRIBUTION. ORBITAL MEASURES

Let A = {Ay} be a family of Hermitian random matrices.

We say that A has a limiting spectral distribution p if
1 &
~ Z 8,4y = M. Where the convergence is weak

i=1

convergence in probability (like in the semicircle law).

We will only consider the compact case, i.e., when the
limiting spectral distribution is supported on a compact
interval. Then p is a probability distribution on this

compact interval.

Examples of existence of limiting spectral distributions

include
® GUE matrices, properly normalized

® Complex Wigner matrices (Hermitian matrices with iid

entries with all moments finite), properly normalized

These examples have SC as the limiting spectral

distribution. Are there any other examples?

Exercise 5.1. Let 4 be any probability distribution on a
compact interval. Give an example of a family of random

matrices which have u as the limiting spectral distribution.

Let Ay be a fixed Hermitian matrix of size N X N. Define
Orby(Ay) = UANU*, where U € U(N) is uniformly random
(that is, distributed according to the Haar measure). We

call the distribution of Orb,(Ay) the orbital measure.

The name comes from the fact that the unitary group
U(N) acts on the space # 'y, of N X N Hermitian matrices
by conjugation, and orbital measures are precisely the

“uniform” measures on orbits of this action.

Clearly, the spectrum of Orby(Ay) is the same as that of
Ay. However, the conjugation by a random unitary matrix
rotates the eigenbasis of the Hermitian matrix at random,

while keeping the eigenvalues.

Call Orb(A) the family of random matrices { Orb,,}

constructed from A = Ay in this way.



OPERATIONS ON RANDOM MATRICES

Let A, B be two families of random matrices, such that
entries of A are independent from those of B. Let A, B

have the limiting spectral distributions y, v, respectively.

The basic operation which we will consider is the addition.

One can also multiply matrices and look at their spectra,
or take one family A and look at “projections” - eigenvalue

distributions of corners of A (usually of size proportional

to N):

A//z_

If we take arbitrary families of random matrices A, B as
above (i.e., with entries independent from each other, and
possessing limiting spectral densities), and consider sum,
product, or projection of Orb(A) and B, then it turns out
that the limiting spectral distributions of the resulting
family depends only on u, v, and can be described from

them efficiently.

The idea is that Orb(A) forgets all the information about

relative positions of the eigenvectors of A, B, and only

looks at eigenvalues.

Before we proceed to describing this in detail, let us
discuss finite orbital measures (they are nice objects). This

will open a direct path to the projection question.

In short, what can we say about the random matrix from

the orbital measure?



FOURIER TRANSFORM OF PROBABILITY MEASURES

Here we take the Euclidean
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ORBITAL MEASURES, HCIZ INTEGRAL

LetA = (4; > ... > 4y) be fixed real numbers, and let D, This formula is valid if all the a; and 4; are distinct.
be the (nonrandom) diagonal matrix with these Otherwise, the value of the right-hand side should be
eigenvalues. The orbital random matrix corresponding to defined by continuity.

D,, denoted by Orb(D,) = UD,U*, where U € U(N) is
. S How does this relate to projection?
random Haar, defines a probability distribution on #Zy.

The goal is to compute its Fourier transform:
Fa(A) = / ot Tr (AUDAU—l)dU7 .ExerCIslt;z:j. The P A 5 0‘\ / N DX u—l o ’/rﬂuﬂtu! e x
integra 0
UEU(N) gralzz = <D 0 >
e

depends only on the

0 ~
where the integral is over the normalized eigenvalues of A. T (D PUudu @
(probability) distribution dU on U(N). = T ( pD, P (/LQD/\ (A—‘>
| US|
l
Theorem (Harish-Chandra, Itsykson, Zuber, HCIZ). For ;i
each 4,a € C" we have < 5a @Q )
Q
aj)\ N . . .
/ T (PUDNU™H) gi7 — 0111 .. (N — 1)!det & k]j’kzl. =) Vo ff\ (a""a’" 0,-0) aa
Vel (N V()\)V(a) /Cmn’er Frows /WW &L Z‘é;@
ceU(N) /7N|/fd&4 Ais by ds eo Of & 1A
Here V(a) = H(ai —a;) is the Vandermonde determinant, "fj e bkl eelher "% (/{Q U f/
i<j
and same for V(1). So, asymptotics of projections would follow from analysis

of HCIZ integral with a proportion of g;'s set to zero, and

The proof of HCIZ will be given later in the course. when the size of det goes to infinity. Sounds hard.



HCIZ INTEGRAL AND RELATED STATEMENTS

® The proof of HCIZ integral can be deduced from the ® From this, we can obtain the following fundamental
Dyson Brownian motion formulas considered earlier - if property: the corners eigenvalues of UD,U! are
done carefully enough. distributed uniformly over all possible configurations

(satisfying the interlacing).
® There is one more computational proof of HCIZ using

Schur symmetric functions and a couple of facts about ® This space of allowed corners eigenvalues is called the
them (this would be in the “discrete analogues” part) Gelfand-Tsetlin polytope, and HCIZ allows to compute
its volume.

® For a completely different proof using Duistermaat-

Heckman theorem see this post by T. Tao.

® The right-hand side of HCIZ integral satisfies a
“branching rule”, which allows to split off the last ay and
expand f;(A) as an integral over the smaller space of
eigenvalues of (N — 1) X (N — 1) matrices. This is
checked by expanding the determinants.

® Thus, f;(1) is related to the volume of the space of

corners eigenvalues

e Corners eigenvalues interlace


https://terrytao.wordpress.com/2013/02/08/the-harish-chandra-itzykson-zuber-integral-formula/
https://terrytao.wordpress.com/2013/02/08/the-harish-chandra-itzykson-zuber-integral-formula/

CONNECTION TO SPLINES

Letussetalla, = ... =ay =0, and keep only a; = a. Then
fi(A) is a Fourier transform of a probability measure on R,
which depends on the 4/'s. There are not many “good”

measures on R depending on a large number N of
parameters, and the one coming out of orbital measures

has some very nice properties.

First, let us understand what happens when we set all
these variables to zero. It turns out that there are better
ways of going to zero: first take an arithmetic progression,

and then send the difference to zero.
Then one can see a connection to splines.

Here is a definition of a B-spline, and a formula for its

density.

A (fundamental, or B-) spline with knots y; < ... < yyis a

unique function x — M(x) such that
e The function is CV=3 everywhere

® The function vanishes outside (y;, yy)

® The function is equal to a polynomial of degree at most

N — 2 on each [y;, y;4]
o JM(x) dx = 1.

The formula for the density is

_ x)N‘
M) = (N —1) Z H
r: r;él

Define divided dlﬁerences by

- [ ’ ] - [ ’ ]
syl = 102 =700, FIy v y3l = TLy2ysl = F I y2l
Y2—=W1 Y3 =W

and so on.

Then for any function whose derivative is piecewise CV~!

we have

S o-onl = [M(x)f(N_l)(x) da.

(N-1)!
In the exercises 5.7-5.10 below you can use these two
properties of B-splines (explicit formula and connection to

the derivative), but you can also prove them yourself
beforehand.



CONNECTION TO SPLINES. EXERCISES

In particular, for an orbital random matrix UD,U*, the distribution of any of its diagonal elements a;; contains all

the information about the eigenvalues 4; (as knots of the spline which is the density of a;)).

Next, we get back to the original questions of moments,

and leave the detailed study of corners spectra for later.



BACK T0 SPECTRA. CAUCHY-STIELTJES

Using the explicit HCIZ integral turns out to be an “overkill”
for dealing with the projection problem. It also does not
help much for the other two problems, addition and
multiplication of the matrices with limiting spectral
distributions (and how to characterize the spectrum of the

result).

First, let us take moments as characterizations of the
eigenvalue distribution. We did this for the semicircle law.
We also saw there that the variance goes to zero. So, to
understand the limiting eigenvalue distribution, it is

enough to look at
l ky) = l k ky — k
E(tr(A")) = —(A{ + ... + 4y) = E [ x" dLy, where
N N
| &
Ly=— Z 5, (4) is the empirical spectral distribution of A.
N3

Theorem (Cauchy-Stieltjes transform). Suppose that
A = (Ay) is a sequence of N X N Hermitian matrices which
have a compactly supported spectral distribution y with

density with respect to the Lebesgue measure. Let

1
a, := lim —FEtr(A%). Then we have the following connection
g N N

between y and the sequence {a,}:

- ¢ dx

o z £ = J i ), where z does not belong to the
k+1 —x

k=0 < R <

support of u.

® |n another direction, the density has the form
. Gx—ie)— G(x+ie)
u(x) = lim - :
e—>0+ 27l

The first is obvious. For the second, note that

{ / ~
L L2~y Lo ="y

AT
@-4) + ¢
) i——ﬂ?z Lsa\w t”‘WQ’Q’Q'
T ()L lual\@ oH e capred ot X
A/\A.J —) Xg( ah £ = Ot

Gx—ie)-G(x+1
So, (x l€)2 . (x + ie) is a convolution of u with this 6
4

sequence, and hence in the limit e - 0+ we get the

density.



MIXED MOMENTS

Cauchy-Stieltjes transform allows to reconstruct the limiting

spectral density of matrices from their moments, and the
1

moments are the limits of NIEtr(Ak). For example, in the

first step of the proof of Wigner's semicircle law, we

1
showed that for A ~ GOE, N[Etr(Ak) converges to either

Cat,, for k even, or 0 if kis odd (same holds for GUE, which

we accept without proof).

From now on, we will ignore technical questions which
were the other steps of the proof of Wigner's semicircle
law, and focus on the “main computation” of the

expectations of traces of powers.

Consider the question of adding random matrices, whose
eigenspaces are in a “generic position” - i.e., Ay + By,
whereAy, By are families of (deterministic or random)
matrices with limiting spectral distributions u, v,

respectively, and By is unitary invariant (to ensure generic

position of the eigenspaces).

1
To understand moments, we need to study N[Etr((A + B)Y,

which expands into a sum of noncommutative monomials.

Definition. A mixed moment is an expression of the form
1
N[Etr(Anlel...A”lB”l), or (depending on the context) its

limitas N = 0.

The goal is to describe the situation in which mixed

moments are determined by the “pure” moments
1 1
lim —Etr(A%) and lim —Etr(B¥). The way how they are
N N N N

determined is also nontrivial and interesting.

We start with the simple example, when Ay, By are two
independent copies of GUE (or GOE, the analysis is
basically the same), whose elements have variance 1/N (so
that we do not need to normalize Ly, and Ly has the
semicircle limit). In this case we know that their sum

Ay + By is also Gaussian, and so has the same semicircle
density. However, the underlying combinatorics is going to

be illuminating.



MIXED GAUSSIAN MOMENTS

Theorem. Let A, B be families of independent Gaussian
(GOE/GUE) random matrices. Then

1
lim N[Etr(A”IBml. ..A"B™) is equal to the number of
N

noncrossing pairings in the word, without edges pairing an
AtoaB.

ABBAABAB =5 O
Bt

Bt ool |

In particular, for words only with one letter (say, A), the
number of noncrossing pairings is
equal to the corresponding Exercise 5.11. Finish
Catalan number. the proof of the
theorem about mixed

Gaussian moments.

The proof is very similar to the first step in the Wigner
semicircle law’s proof. Namely, to avoid expectations of
odd powers, each matrix element must have a “twin". They
together have expectation 1/N. To avoid convergence to
zero, we need to have the maximal possible number of free
indices. This is in bijection with noncrossing pairings.
Finally, pairings cannot connect A to B as due to

independence, they cannot be “twins”,

A BBA :

A B Bre De LJ'”?Q
= Bi, Bg) =2 0%

——\\ v ,l . ® OFCM-(' M6 SM

N (over ©,35.)

ALAL :

AZJ’ Bju f/’}kﬂ gQi

fo ?_é
e NI SN



MIXED GAUSSIAN MOMENTS

For words with one letter (i.e., A¥), the number of

noncrossing pairings (the Catalan number) is also equal to
1 1
the limit lim —Etr(A¥). Denote (M) := lim —Etr(M).
N N N N

Clearly, (1) = 1, where 1 is the identity matrix.

Since there are no such noncrossing pairings which

connect between groups, we have
t[(A™ — 7(A"))(B™ — 7(B™))...(A™ — 7(A"))(B™ — 7(B"))] = 0

for all possible words.

Turns out that the vanishing of “mixed centered moments”
is more powerful than the noncrossing pairing
interpretation of the mixed moments. This lies at the center

of the definition of asymptotic freeness.

Definition. Two sequences of matrices A, B are called
asymptotically free if

T[(A" — z(A")(B™ — 7(B™))...(A" — 1(A")(B™ — 7(B™))] = 0
foralll > 1andalln;,m; > 1.

® The previous computation shows that the pair of

independent GUE sequences is asymptotically free.

® \oiculescu showed that if A, B have asymptotic spectral
densities and B is unitary invariant, then these are

asymptotically free.

® Let Xy be areal or complex Wigner matrix (iid entries),
with mean zero and all moments, and Ay be a random
matrix independent of Xy. Let Ay have an asymptotic
spectral distribution, and supy, [|Ay|| < 00. Then Ay, Xy

are asymptotically free. (Thus, unitary invariance is not

necessary for freeness.)



FREE AND USUAL CONVOLUTION

If we have two asymptotically free sequences of matrices,
then

t[(A™ — 7(A™"))(B™ — 7(B™))...(A" — z(A"))(B™ — ©(B™))] = 0,
where 7 is the limit of the expected normalized trace.
Therefore, we in principle can reconstruct z((A + B)*) from
7(A%) and 7(B*). This is done by means of the free

convolution — an operation that linearizes summation of

asymptotically free random matrices.

Naive computations of moments 7((A + B)k) using freeness

are tedious, and we need a certain toolbox to tackle them.

So, before discussing free convolution, let us focus on how

the usual convolution works in terms of moments, and what

is our toolbox in the usual situation.

Let X, Y be two usual random variables. Assume
they are independent and all their moments are finite:

E(X*) = ay, E(Y") = By

Define Z = X + Y. How to express moments of Z,
v& = E(Z%), through the moments oy, 317

Let us consider the first several moments. We
have

E(X+Y) = + bi;
E(X? +2XY +Y?) = as + 2a181 + Ba;
E(X? +3X%Y +3XY?+Y?)

= a3 + 31 + 3a1 52 + B3,

71
Y2
73

and so on.

We see that these formulas are not so complicated,
but still, v is expressed not only through ay, 8, but
also through all their lower combinations.



(USUAL) GUMULANTS

There is a better approach to the addition of the
usual random variables through moments. The key is
to pass from moments to cumulants. The cumulants
of a random variable X are defined as follows. Let

~ Theorem. If Cx(z) denotes the cumulant

M(z) =E(eX) =)

n=0

My (X)2"

n! adding independent random variables we

generating function of the variable X, then for

have: Cy, y(z) = Cx(2) + Cy(2). In other words,
be the moment generating function of X. Take its for independent r.v.'s cumulants simply add up.

log, and expand:
We say that cumulants linearize addition of

@) . .
cn(X)zn independent random variables.
C(z) :=log(M(z)) = Z 'n,'
n=1 : For compactly supported r.v., convergence of

cumulants clearly implies convergence of r.v.’s.

Cl — My — EX,
co = Var(X) = mgy — m%,
c3 = skewness = m3 — 3maomq + 2m:1)’,

cy = kurtosis = my4 — dmsmq — 3m% -+ 12m2m% — 6mil,




COMBINATORICS OF USUAL CUMULANTS

Define also the joint  moments by
ms(X, X, Y, X,Y) =E(XXYXY), and so on.

The connection between the moment and cumu-
lant generating functions for one random variable

leads to the following definition of the joint cumu-
lants:

ma(X1,....Xn) = Y ] ¢n(Xizi € B).

neP(n) BET

Both m and c are clearly multilinear functions.

Combinatorially, this vanishing also means that we can

compute any joint moments, for example:

This exercise implies that for independent random
variables, we have ¢ (X + Y)") = ¢ (X") + ¢, (Y"), as it
should be. (Mixed cumulants appear in the expansion of

the left-hand side, but only the pure cumulants survive.)

Thus, passing from moments to cumulants (via taking the
log of the moment generating function) encodes the usual

convolution (= addition of independent r.v.).

my(X, X, YY) = co(X, X)eo(YV,Y) + co(X, X)er(Y)er(Y) + oY, Y )er (X)er (X)

+a(X)er(X)er(Y)e(Y),

(This implies E(X?Y?) = E(X?)E(Y?).)



FREE CUMULANTS

The free joint cumulants are defined through the
usual moments by

ma(X1,.... X)) = Y ] sm(Xizi€ B),

meNC(n) Bemn

where the sum goes over the set of noncrossing par-

titions of {1,...,n}. Free cumulants are multilinear,
too.

Here are examples of noncrossing partitions for n = 3,4:

oy o Erh

I I J_I
J I ||

Theorem (Speicher 1994). All free joint mixed cumulants
k(A,A,B,A,...,B),n>2, vanish if and only if A, B are free

as in the random matrix definition.

[To describe this in general we would need an algebra with

a trace 7, but let us not go there.]

Therefore, free cumulants linearize addition of freely
independent random variables (in particular,

asymptotically free random matrices).

That is, for A, B asymptotically free, we have
K, (A + B) =k,(A)+«,(B).

LJ The remaining goal is to turn this

observation into a basis for

| | computations with limiting spectral

distributions. The main problem is to turn

the definition of k, into a connection

between free cumulants and moments.



R TRANSFORM

We need a power series identity equivalent to the

identities m,, = Z KooK, In fact, this identity is

a1 Ty
7eNC(n)

equivalent to the fact that the two power series

L@=1+ )Y mz" K@=1+) K"
n=1 n=1

satisfy the relation L(z) = K(z L(z)). This is a formal power
series identity which is an analytic identity if |z| is small,
and the random variables involved are compactly

supported.

The function K — 1 linearizes free convolution (addition of
free independent random matrices), that is,

d 1
Recall the Cauchy transform G(z) = J ) =—L(1/2).

{—X <

We have from the relation: K(G(2))/G(z) = z.

Denote V(z) = K(z)/z, we have V(G (z)) = z. Therefore, V'is

an inverse function of the Cauchy transform of p.

Finally, define the Voiculescu R-transform by

1 ) 1
RZ)=V(@)——=G"D(p) -—.
Z Z

Then we have Rymy(z) = Ry(z) + Ry(2) .

Note that the last problem is equivalent to computing the
limiting spectrum of A + UBU*, where U is Haar, and A, B
are matrices with half of the eigenvalues 1 and the other
half —1.



NOTES AND REFERENCES

1. Free probability for random matrices and beyond is

discussed in surveys:

1. "Free Probability Theory” by Roland Speicher (arXiv:
0911.0087)

2. "Three Lectures on Free Probability” by Jon Novak
(arXiv:1205.2097)

3. “Free probability and random matrices” by Roland
Speicher (arXiv:1404.3393)

2. Freeness (vanishing of mixed centrered moments) is
equivalent to vanishing of mixed free cumulants, see

this paper by Speicher.


https://link.springer.com/article/10.1007/BF01459754
https://link.springer.com/article/10.1007/BF01459754

Chapter 6

DISCRETE
ANALOGUE

e Representation theory
background

¢ Schur-Weyl duality

e Counting dimensions in Schur-
Weyl duality

¢ Robinson-Schensted-Knuth
e Joint distribution

e Limit of the joint distribution to
GUE

A lot of formulas in unitary invariant random matrix theory (around
GUE) follows from certain classical and natural representation
theoretic constructions. The goal of this chapter is to explain how
to use this connection to evaluate the normalization constant in the
GUE eigenvalue density (which most commonly is derived from

the Selberg integral).

The alternative derivation presented here could seem somewhat
cumbersome to some, but it is very natural to others - likely this is a

matter of taste.




NECESSARY BACKGROUND IN REP. THEORY

Let E be a finite-dimensional space over C, and ( Aq
a C End(FE) be an associative unital algebra (“uni-
tal” means that it contains the identity operator). In
other words, F is a a-module.

A model for such an algebra is an algebra gener- A= O
ated by all operators coming from a representation of
a group in the space E. Ay

Let us give three definitions. \ o )

e The algebra a is semistmple if any submodule
E’ C E is a direct summand. That is, if there is In other words,
a basis of E such that every matrix from a has a
corner of zeroes in this basis, then in fact every 4= @End(%)’
matrix in a has a block-diagonal form (maybe ‘

in some other “compatible” basis). and
E=Pviow,
e The algebra a C End(V) is irreducible if E does ;

not contain nontrivial a-invariant subspaces. where dim W; is equal to the multiplicity of the cor-

. .. . . responding irreducible component. We have
If a is semisimple, then £ = &;F; is a direct sum b 5 P

of spaces, where each E; is a sum of equivalent copies

of some irreducible modules. In other words, for a o {@Al @ Iy, Ai € End(V;)}
semisimple a there exists a basis of F such that each '

of the matrices from a in it has the form Exercise 6.1. (Burnside lemma) Show that if a is

irreducible, then a = End(F).



NECESSARY BACKGROUND IN REP. THEORY

For b C End(F), the commutant b’ is defined as
b = {A € End(F): AB = BA for all B € b}.

Then we see that the whole space E decomposes as

E = @End(Vi) ® End(W)).



SCHUR-WEYL DUALITY
We have (ag)' = ag.

| v d:, E’ | \/Q“’ 9 g(K) GL(A/,(-) To prove this, observe End(V®") = (End(V))®n,

~ andso (ag)’ = S" (End(V)) is the space of symmetric
L tensors of order n over End (V).

We thus have

(ag)’ =span{X®: X € End(V)},

7 but this is the same as if we only took matrices from

O = gpou L X-oprdosss XegLw)j  GLIN.C)

By the above “abstract” theory of matrix alge-

bras, we thus see that the (S(n), GL(NN))-bimodule .
V" decomposes as

where A replaces 7 (it is still some finite set of indices),

and Vy (n) VGL( ) are irreducible representations of
the correspondmg groups.



DIMENSION COUNTING

The Schur-Weyl duality leads to the following identity

between dimensions: N" = Z dim A - dimyA. Here the
p

sum is over labels of irreducible representations of
symmetric/linear groups, and dim 4, dimy 4 are their

respective dimensions (the first one for symmetric group,
the second - for GL(N)).

It turns out that the labels are partitions of n with at most
N parts. These objects are discrete analogues of random
matrix spectra. Partitions are represented by Young

diagrams. Notation: A = (4; > ... > 4y).

A= F 4+ vvqtin

We will not prove this identification of labels.

On the other hand, will provide combinatorial
interpretations of dim 4, dimy A which will imply the

following formulas:

M Lcicjeni — A +5—1)

dim A = N
[iz(Ai + N =)

Y

where N is arbitrary number greater than the number of

nonzero parts in A (the formula does not depend on N).

Dimyr= [ M-tIol

i
1<i<j<N J

In other words, we will work with the formulas, without
connecting them to dimensions of irreducible

representations.



SCHUR-WEYL MEASURES ON PARTITIONS

The dimension counting identity N = Z dim 4 - dimy4
p

implies the definition of a probability distribution which is

called the Schur-Weyl measure:

dim 4 - dimy4
Py, (A) = N7 : This problem can be addressed by slightly modifying the
measure Py, by means of randomizing the parameter n,

Because dimensions are nonnegative, this is indeed a . .
9 and this leads to better formulas in the end.

probability distribution.

From the previous formulas for dim 4, Dimy 4 we see that
the probability weight Py, (4) contains a square of the
Vandermonde in the shifted partition coordinates
L=4+N—1i,i=1,...,N.Thus, itis very natural to view
Py, as a discrete analogue of a random matrix

spectrum.

There is one obstacle in getting a complete analogy,
though. The GUE distribution has the form

N
const(N)H (x; — xj)2H w(x;) (where x; are the
1

i<j i=
eigenvalues and w is the Gaussian weight). There is no

parameter n in the GUE



ROBINSON-SCHENSTED-KNUTH

The aim now is to give a combinatorial proof of the

dimension counting formula N = Z dim A - dimy4, after
p

which the quantities dim 4, dimy4 will take their

combinatorial meaning.

(Again, let me emphasize that we're not going to connect

them to dimensions of irreducible representations.)

Consider a word w = w;...w, of length n from the

alphabet {1,..., N} (thatis, each w; € {1,..., N}).

An increasing subsequence in this word is a subword

Wi ...w;, where i) < ... <i,andw; <... <w,.Thelength
of the longest increasing subsequence in w, LIS(w), is
defined as the maximum over the lengths of all increasing

subsequences in w. Note that this maximum can be

achieved on more than one subwords.

For example, in the word w = 2133215454, each of
13345,13355,13344 forms a longest increasing
subsequence, and LIS(w) = 5.

How to compute LIS(w) in general?

Note that we're not interested in the subsequence itself -

only its length LIS(w) € {1,...,n}.

There are algorithms for finding the subsequence, too,
but we will present a linear time algorithm for getting
LIS(w).

The algorithm has one buffer. A new letter w; is read from

the word at each step. Then:

1. Hw,is > than everything in the buffer (or if i = 1), then
put w; at the end of the buffer

2. Otherwise, w; bumps the smallest element thatis > w;,

out from the buffer, and stands into its place.

The final length of the buffer is LIS(w). 21{3324154s5¢4

Exercise 6.7. Prove the last statement. < 21:
13 o .
131 |
123
443
(435
1434
- 44%458
14 344

Example of the buffer’s evolution for the
word w = 2133215454



ROBINSON-SCHENSTED-KNUTH

The RSK (Robinson-Schensted-Knuth) correspondence is a

refinement of the above "LIS" algorithm. Namely,

consider several buffers 1,2,3,.... Each new letter arrives

into the first buffer and follows the rules as before.

However, when a letter is bumped from some buffer j, it is

not discarded as before, but rather it is inserted in the

next bufferj+ 1.

Here is the example:

2 143
22
3
i
2
143
22
43 3
2
R 1434
ta 225
3
3 -
t% L1348
225
3

14344
225°¢

This collection of buffers is referred to as the P-tableau. It
is a filling of a Young diagram (4 = (5,4,1) in the example)
by numbers from {1,..., N} such that the numbers weakly

increase in the horizontal direction and strictly increase in

the vertical direction. Such a filling is called a

semistandard Young tableau of shape 4.

Exercise 6.8. Show that the map w — P-tableau is not one-

to-one.

To record the full information about the word w, let us also
encode the place where the last letter settles in the
construction of the P-tableau, at each step. This can be
encoded by placing the step’s number into the

corresponding box. The result is a so-called Q-tableau - a
semistandard filling of boxes of 4 by distinct numbers
from 1to |A| (where |A]| is the number of boxes). This

filling is called a standard Young tableau of shape A.

In the example we get: : i

Py R[2

Q = [2FRE




ROBINSON-SCHENSTED-KNUTH

By definition, RSK is a map from the set of words to the set In fact, #SYT(1) = dim 4, and #SSYTy(4) = DimyA.

of pairs of Young tableaux (P, Q) of same shape, where P

. . . . . From now on we will use the notations dim 4, Dimy A to
is semistandard with entries {1,2,...,N},and Q is N

denote these combinatorial quantities, the numbers of
standard.

standard / semistandard tableaux. We will proceed to

Exercise 6.9. Show that the RSK map w — (P, Q) is one-to- compute them.

one. (Hint: construct its inverse, which can be done

inductively step-by-step).

_ dim 4 - dimy4
To summarize, Py (1) = v

distribution on the set of Young diagrams A4 with n boxes

is a probability

Comparing the sizes of the sets, we have and < N rows, which is obtained by taking a uniformly

N = Z 4SYT(A) - #SSYTy(1). random word of length n from the alphabet {1,2,..., N},
p applying RSK to it, and reading off the shape of the

The sum is over all Young diagrams 4 with n boxes and tableaux.

< N rows. Thus, we have combinatorially (bijectively!)
: : : . In the next two steps we will generalize the input of the
proven a formula corresponding to dimension counting in

the Schur-Weyl duality. RSK to a certain Poisson random input, which will have

random (and not fixed) length of the word. This
generalization is convenient for the connection to random

matrices.



POISSONIZATION

Let us recall the Poisson process (on R, but this

construction works on any measurable space with a

Radon measure).

The Poisson random variable of rate u is
k

—j) =t on
PX=k="Tet

Poisson process is uniquely determined by:

Pongw o ecer] (wf. rWJOO)

— KX X X— X 47”%

Mou\ c,o\LatA’ig‘*\ 9’2 (uiuu\_j

@ V A< R MOM\—Q, .
fe (rodow) # of fotwh

TR (AP 3&6(:\)

@ \/ A’i).-) AIL OLC))\Q'\LU\_ w%_)
NA\ > ) NAk o< ’“’L‘—L‘-(”‘ rVv.
(“)M NA = #9/,{ Yu-uwls T A)

We assume basic familiarity with Poisson processes.

Now take N independent

Poisson processes of rate 1,

located one under another. Start

at 0 and fix “time” t. Then the

= NN D>oeA
>k

configuration of the points in the

Poisson processes can be read a (/J: Q.:\‘ 554C 4~3L‘3 S

word from the alphabet
{1,...,N}.The length of this word is random, and has

Poisson distribution with rate Nt.

(Because there are only finitely many Poisson processes,

the probability that there is a point in two or more of them

at the same time is zero.)

Proposition. Applying RSK to the Poisson random word
ﬂ . .
vy (NDW dim 2 - dimy 2
|A]! NI

we get measure Py (1) = e~



GENERALIZATION. PARAMETRIC MODEL

Now, let us generalize the distribution of the input word,
and the measure Py . Fix arbitrary parameters

ai, ..., ay > 0. Consider

independent Poisson Ay A__X—}_-K—%—h

BN
point processes of rates *—x =
a;, and fix a "time” o R .
parameter t. View the Q4 T — >
points of these Poisson 0 é__

processes as producing
a random word from the alphabet {1,2,..., N}. The goal is
to understand what is the distribution of the Young

diagram obtained by applying the RSK to this random

word.

The difference with Py, is that now the random word will
have different proportions of different letters. Let us fix
these proportions, that is, the numbers ki, ..., ky of letters
1,...,Nin arandom word. Because these numbers are

point-counts in independent Poisson processes, their joint
k, ky k4. +k
a'...ayVt" N

k.. k!

distribution is simply e =@+ +av)t

Using RSK, we see that the distribution of the standard
tableau Q is still uniform (conditioned on the shape 4),
while the distribution of the semistandard tableaux P

depends on the parameters a;. Namely, fix 4 and set

koK
s, (@) = s)(ay, ...,ay) = Z a’...a.
P: sh(P)=A

s, is called the Schur polynomial.

We have s,(1,...,1) = DimyA (where 1 appears N times).



SCHUR POLYNOMIALS

To compute Dimy A, dim A, let us first look at the
Schur polynomials sy (@) which arise in the parametric
model. We will prove

+N—j1N
det[a: 7 N =1

Theorem. S)\(CUl,---,ZUN) =

Here V(7) = [ [1<icjen (@i —25) = det[z; =
is the Vandermonde determinant.

Exow?(u(& A= [(1,0)
" o wt n+)
A@L l ‘3 i \_6
"\H u+)
g>(u,o) (X\a)f' a
@ 353T‘~ \l}/\/&--}z\aks

7
% e 9(”4—96”-/ + I—n-L(yi_,,,{—ZCih'/fﬁh

0,

To prove this theorem, we will show that both the
determinantal formula for sy, and the definition of sy
through the sum over semistandard tableaux satisfy
the same recursion.

%.v LML\X >\=(/\1~—->v\/>

= (e o)
/4 '(>\ \
A YA | Az A
N & N ... £ e
s r\\/“\f'lé e
Retorrlock:
al
@ (e . S
//u’ﬂ

The next goal is to show that the determinantal formula

satisfies the recurrence, too.




SCHUR POLYNOMIALS. RECURRENCE FOR DETERM'S

Let us take N = 4 for simplicity. Set

We will perform the following operations with the

determinant in the numerator:
® Subtractrow jfromrowj—1forallj=2,...,N.

® The resulting determinant’s last column contains only
one 1 and all other elements are zero, so we can reduce

order of the determinant by 1.

® The i-th column then is divisible by x; — 1, this is how the

Vandermonde drops in order, too.

e After the division, use the multilinearity of the

determinant to get the desired recurrence.

1

Viy(xy, X9, x3,1)

det

1

_xfl xé’ﬂl
xfz x;2
xf3 x§3
xf“ xf“

£ 1]
X3 1
x5
x"ﬂ3 1

Zy
X3 1_

1

VS(x] s xZa x3)

det

zf2§m1<f1

Zf3§m2<f2

| zf4§m3<f3

X1
X

X1

d
Vi(xy, Xp, x3)(x; — D(xp — (x5 — 1)

my

my

ms

¢

£

¢
1 2
X=X X

4

et | x; —xf3 fo

1T

Zf2§m1<fl
Zf3§m2<f2

2f4§m3<f3

)
)

X2

xzf 3
my

my

ms

—_ f2 I’ﬂl
Xy X3

4 14

ly

Zf2§m1<f1
Zf35m2<f2

Zf4§m3<f3

X3
A3

A3

14

—_ 2
X3

¢
—_ 3 2 3
Xy X3T— Xy

/
_— 4 — 4
Xp" X337 — Xy
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my

ms




DIMENSION FORMULAS

. First, we Compute DimyA = 8)‘(,1’ c51) (Wh‘ere This computes the dimension Dimy4, which is the number
1 is repeated N times). Because sy is a polynomial, .
this substitution is valid. On the other hand, both the of semistandard Young tableaux of shape 1. To compute
. . det[x%‘j”LN_]] the number of standard Young tableaux, we “just need to
numerator and the denominator in L are o .
V(%) take N very large”. In other words, if A is fixed and N is very
singular when the z;’s are equal. We will compute the : . . :
. . , , large, then most of the diagrams will have distinct entries.
limit as & — (1,...,1) of the ratio along a particular

direction. But since the limit exists, this will give us Namely:

the answer.

det [:I:;\j+N_j] = det[q= DN +N=J)]

= det[(¢V V7))

We would like to show that (heren = |A]|,and N > £(1) is

N arbitrary):
= ()G [TV = V),
1< dim A — [ LcicjenOi = A+ —1)
as we recognize the Vandermonde determinant. Hi\; (i + N —i)! ’

qa—qb:a—b

Lemma. lim )
q—1 q¢ — qd c—d

Thus,
DimyA = lim s)(1,q,... ,qN_l)
qg—1
ANi+N—i )\j-i-N—]
SYESHLCIR N | [ S—
iy 9 q



DIMENSION FORMULAS

We have

H /\i—/\j—|—j—’i: H ANi—Aj+J—1

L4 J—1 2 J—
1<i<y<N 1<i<g<l(A)

" H Ai +J—1

| ) J—
i<E(N), j>E(N)

j—i
X
H. J—
UN)<i<j<N

 hicicjceyi = A +7 —1)

0. (¢(\) — 1)!

Ai +J—
< ]l i—i
1<l(A), 7>L(N)

The first of the factors has a limit, and so we need to
consider the second factor. Actually, the product overi is

finite, so it suffices to take a single i.

ﬁ N—itj_ () =il T —i+N)

j—i i + LN — i) T(N —4)

j=L(\)+1

The first factor is not growing, and for the Gamma

function there is a lemma:

'z +
Lemma. For all @ € C we have lim Mz_“ =1,
zl-o0  I'(2)

where z is complex of argument # x.
Exercise 6.17. Prove this lemma.

Using this lemma, we see that the ratio of the Gamma
functions produces N* which cancels the factor N~ in

Exercise 6.16.

Putting all together, we obtain the desired formula for

dim 4. We proved the following representation, where
=M +N=11+N=2,..,4):
~(2)

0On...(N=1D!

N
Py (D) = cyV( f)ZH w(?;), where ¢y =
i=1
14t
and w(?) = ¢

PR ¢ € Z,is the Poisson distribution.



LIMIT TO GUE, AND SELBERG INTEGRAL AGAIN

The distribution Py, looks very similar to GUE. The latter This representation of the GUE eigenvalue density
as a limit of the discrete Schur-Weyl distributions is

has the density of eigenvalues X = (x; > ... > xy): )
useful because it proves the value of the GUE nor-

N malizing constant ¢V, which is the (inverse of) the
Poyp(xys ..oy xy) = cgUEV(7)2H_e—xi2/2, Let us obtain value of the Selberg integral:

-1 V27

N
the GUE as a limit of the Schur-Weyl measures Py, which // H (zi—z;)? H %e—w?ﬂ dry...dxy =01!... (N-1)!
will also bring us the proof of the value of the constant 21> >y 1SIUSN i=1 VT
c]f,;UE. We begin with N = 1:
.« GUE 1
Thatis, ¢y " = .
On'...(N—1)!

The division by the square root of ¢ is not surprising - it
corresponds to the scaling of the discrete space to

continuous.




NOTES AND REFERENCES

1. There are many good books on representation theory, 4. On algorithms for finding the longest increasing
including H. Weyl, “The Classical Groups: Their subsequence itself see, for example,
Invariants and Representations” (1946, reprinted many
times). 1. https://stackoverflow.com/questions/2631726/how-
to-determine-the-longest-increasing-subsequence-
2. Combinatorics of Young tableaux is discussed in using-dynamic-programming/2631810

several books, including
2. https://en.wikipedia.org/wiki/

1. R.Stanley "Enumerative Combinatorics” Longest_increasing_subsequence

2. B.Sagan “The Symmetric Group: Representations, 5.

Combinatorial Algorithms, and Symmetric Functions”
3. W. Fulton “Young tableaux”

3. Exercise 6.7 is the first case of the Greene's Theorem.
For one of its proofs see, for example, these video
lectures by X. Viennot (at the mark “increasing and

decreasing subsequences f maximal size”).


http://www.viennot.org/abjc3-ch1.html
http://www.viennot.org/abjc3-ch1.html
https://stackoverflow.com/questions/2631726/how-to-determine-the-longest-increasing-subsequence-using-dynamic-programming/2631810
https://stackoverflow.com/questions/2631726/how-to-determine-the-longest-increasing-subsequence-using-dynamic-programming/2631810
https://stackoverflow.com/questions/2631726/how-to-determine-the-longest-increasing-subsequence-using-dynamic-programming/2631810
https://en.wikipedia.org/wiki/Longest_increasing_subsequence
https://en.wikipedia.org/wiki/Longest_increasing_subsequence
http://www.viennot.org/abjc3-ch1.html
http://www.viennot.org/abjc3-ch1.html
https://stackoverflow.com/questions/2631726/how-to-determine-the-longest-increasing-subsequence-using-dynamic-programming/2631810
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https://stackoverflow.com/questions/2631726/how-to-determine-the-longest-increasing-subsequence-using-dynamic-programming/2631810
https://en.wikipedia.org/wiki/Longest_increasing_subsequence
https://en.wikipedia.org/wiki/Longest_increasing_subsequence

Chapter 7

DETERMINANT/
POINT
PROCESSES

e Definitions

e Biorthogonal and orthogonal
ensembles

e Determinantal structure of GUE
and Schur-Weyl measures

Our next goal is to describe local Asymptotics fo the GUE
eigenvalue distribution. This can be done using determinantal
point processes - a powerful algebraic framework for studying
random point configurations featuring “free fermionic” structure.
We will discuss basic definitions, certain interesting subclasses
of determinantal processes, and then apply this theory to Schur-

Weyl measures and the GUE eigenvalue distribution.
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7.1 Point processes

Let X be a locally compact separable topological space. A point configuration
X in X is a locally finite collection of points of the space X. Any such point con-
figuration is either finite or infinite. For our purposes it suffices to assume that
the points of X are always pairwise distinct. The set of all point configurations
in X will be denoted as Conf(X).

A relatively compact Borel subset A C X is called a window. For a window A
and X € Conf(X), set Na(X) = |ANX| (number of points of X in the window).
Thus, N4 can be viewed as a function on Conf(X). We equip Conf(X) with the
Borel structure generated by functions N4 for all windows A. That is, all these
functions N4 are assumed measurable.

A random point process on X is a probability measure on Conf(X).

For algebraic purposes it is always enough to assume that the space X is
finite, and then Conf(X) = 2% is simply the space of all subsets of X. The same
space of configurations Conf(X) = 2* may be taken for countable discrete X,
then Conf(X) is compact.



7.2 Correlation measures and correlation functions

Given a random point process, one can usually define a sequence {p,, }°° ;, where
Pn 1s a symmetric measure on X" called the nth correlation measure. Under mild
conditions on the point process, the correlation measures exist and determine
the process uniquely, cf. [Len73].

The correlation measures are characterized by the following property: For
any n > 1 and a compactly supported bounded Borel function f on X" one has

3€nfpn:< > f(:z:x)> (7.1)

aﬁil,...,ZCiHEX XGCODf(%)

where the sum on the right is taken over all n-tuples of pairwise distinct points
of the random point configuration X.

Often one has a natural measure p on X (called the reference measure) such
that the correlation measures have densities with respect to u®*, n = 1,2, ....
Then the density of p,, is called the nth correlation function and it is usually
denoted by the same symbol “p,,”.

Often one has a natural measure p on X (called the reference measure) such
that the correlation measures have densities with respect to u®*, n = 1,2, ....
Then the density of p, is called the nth correlation function and it is usually
denoted by the same symbol “p,,”.

If X C R and u is absolutely continuous with respect to the Lebesgue mea-
sure, then the probabilistic meaning of the nth correlation function is that of the
density of probability to find an eigenvalue in each of the infinitesimal intervals

around points x1,xa,...Ty:

pn(T1, To,. .. xp)pu(dry) - - p(dxy,)
= P {there is a particle in each interval (x;,z; + dx;)}.

On the other hand, if u is supported by a discrete set of points, then

Pn(T1, T2, - Tp)p(1) - pay)
= P{there is a particle at each of the points z;}.



7.3 Determinantal processes

Assume that we are given a point process P and a reference measure such that

all correlation functions exist. The process P is called
exists a function K : X x X — C such that

determinantal if there

pn(T1,. .. 2n) = det[K (zi, 75)]3 =1, n=12,.... (7.2)

The function K is called a correlation kernel of P.

The determinantal form of the correlation functions (

7.2) implies that many

natural observables for P can be expressed via the kernel

K. The determinantal

structure of a point process allows to study its asymptotics in various regimes,

which lead to many interesting results.

. : X .
Kernel is not unique. For example, —K(x, y) is also a

kernel for the same process.

(complementation principle)

If the space X is discrete, there is an important operation on point pro-
cesses which preserves the determinantal structure.

For any subset ) C X one can define an involution on point configurations
X CXby X — XA (here A is the symbol of symmetric difference).
This map leaves intact the “particles” of X outside of ), and inside Q) it
picks the “holes” (points of ) free of particles). This involution is called
the particle-hole involution on %).

Given an arbitrary discrete state space X, a kernel K(z,y) on X x X, and
a subset 2) of X, consider another kernel,

K(z,y), ¢,

K°(z,y) = {5my _K(zy), z€9),

where 0., is the Kronecker symbol.

Proposition 7.1. Let P be a determinantal point process with correlation
kernel K on a discrete space X, and let P° be the image of P under the
particle—hole involution on ) C X. Then P° is also a determinantal point
process with correlation kernel K°(x,y) as defined above:

pm(T1, . x| P°) = det [K°(xi, ;)]

iim1y m=12....



e (processes with Hermitean symmetric kernel)

There exists a characterization of point processes with Hermitean symmet-
ric kernels [Sos00]. Interpret K as an integral operator in L*(X, u) (where
i is the reference measure with respect to which the kernel is defined):

(K f)(x) == L K (2, 9) f () u(dy).

The fact that the correlation functions are nonnegative means that K > 0,
i.e., the operator K is nonnegative definite (all its diagonal minors which
are the correlation functions are nonnegative). In fact, the operator 1 — K
(here and below 1 is the identity operator) is also nonnegative definite.

Hermitian locally trace class& operator K in L*(X,p) defines
a determinantal random point process if and only 0 < K and
0 <1-— K. If the corresponding random point process exists
then it is unique.

A large subclass of processes with Hermitean symmetric kernel is formed
by orthogonal polynomial ensembles whose kernels are finite-dimensional
orthogonal projections. In fact, any Hermitean symmetric operator K
with 0 < K <1 may be approximated by finite-dimensional projections.



7.4 Biorthogonal ensembles

Definition 7.1. Consider a state space X with a reference measure p. An N-
point biorthogonal ensemble on X is an N-point point process (= probability
measure on X%) of the form

Pyn(dzy...dz,) =cN det(‘Pi(xj))z =1 det(¢2($3>)z y=1p(day) - - p(day,)

where ¢y is some constant and ;,1); are arbitrary functions on X.

Proposition 7.2. Any biorthogonal ensemble is a determinantal point process.
Its correlation kernel has the form

N

K(z,y) = Y (G )i ei(x)v;(y)

1,7=1

where G;j = [y pi(x);(z)p(dx) is the Gram matriz. The matric G~ is the
inverse transposed matrix.

This was first considered by F. Dyson in 1962.

Proof. First let us obtain an expression for the normalizing constant.

/xN det(cpi(a:j))” L det (v () ;NJ ydx —/ Z sign(oT HQOU() i)V () (i) da

o,TESN

> H Go (i), (i)

o,7eSN 1=1

N
= N! Z Slgn(p) H Gi,p(z’) = N! det(Gi,j)f\szl.

PESN 1=1



This implies that G is invertible, and we will have ¢y = (N!det(G))~!. Now
we have!|

1

N! N N
\/(mn+1,,,,,xN)€:{N—n det(so'lf(xj))i,jzl det(¢1(x3))i,j:1dx N! det(G) .

pn(IL‘l,...,IL'n) = m

Take matrices A and B such that AGBT = 1. Set

N N
O = Z Apepe, Vi = Z Bioty.
/=1 /=1

The result is that

1 —
Pt das) = O
and
1
pn(T1,. 5 Tn) = N ) /%H, . det(i(z;))5—1 det(¥i(z;)));— dz
1 N
— m/x s Z sign(aT) H(I)U(i) (ZUZ)\IJT(z)(SCZ)dLEz
ntlsees o, TESN i=1
1 n
— m/m _ Z Sign(UT)Hq’a(i)(wi)‘l’r(i)(xi)dwi
ntlse o, TESN 1=1
o(k)=7(k)

for k=n+1,....N

= » det @719 det WIt-In
1<j1 < <jn<N

where ®71:-Jn is the submatrix of [¢;(x;)] with columns ji,...,j, and rows
1 =1,...,n, and smae for WJi»Jn,



Now using the Cauchy-Binet theorem, this last expression becomes
N N
det(@UT)!._; = det (Z Py, (a:i)\Ifk(j)> .
k=1 i,j=1
Now define K (z;,z;) = Z;’:’zl P (i) Wi(x;). We can write this as

CI)k(x)\I!k(y) — Z AkZSOZ(x)Bkm"pm(y)
k.f,m

= 0u(@)m(y) Y ApeBim = ATB =G,
{m k

M-




7.5 Orthogonal polynomial ensembles

Take X = R. Let w(dz) be a positive measure on R with finite moments, i.e.,
Je |z|*w(dz) < oo for all k > 0.

Example 7.4. The natural map C[z]<y — L?*(R,w(dz)) is an embedding if
and only if #supp(w) > N + 1.

We will assume that #supp(w) = oc.
Notation: Vi (1,...,%n) = [[1<;c ;o n (@i — ;) = det(z; 7).

Definition 7.5. The N-particle orthogonal polynomial ensemble with
weight w is the N-point random point process with joint probability density

Pyn(dxy - --dzy) = consty - (Vn (21, ..., 2Hw (dz;).

Example 7.6. The most well-known example is the Gaussian unitary en-
semble (GUE(N)). In this case the space is {H € Maty(C) | H = H*} with

measure ce~ T*(H”) for some constant c¢. The elgenvalues of H form an N-point
orthogonal polynomial ensemble with w(dz) = e~ dz.

An orthogonal polynomial ensemble is a biorthogonal ensemble with ¢;(x) =
Yi(r) = 21 /w(x) where w denotes the density function of the measure w. A
kernel K deﬁnes a hnear operator K: L? — L? by (K f)(z) = [ K(z,y)f(y)dy.

Proposition 7.7. The correlation kernel K(x,y) is the kernel of the orthogonal

projection operator onto span(y/w(x), z /w(z),...,zN "1/ w(z)) in L?*(R,w).



SCHUR MEASURES

A (particular case of a) Schur measure is a prob-
ability distribution on partitions A = (A\; > ... >
AN > 0) depending on parameters z;,y; € [0,1)
whose probability weights are

P(A1,...,AN) =cnsa(zr, ..., zN)salyr, - - -, YN)-

It is a biorthogonal ensemble. Denote £; := A\;+N -7,
then

P(A1,...,AN) =¢N det[zfj] det[yfj],

where we have incorporated the Vandermonde deter-
minants into the constant.

This is a biorthogonal ensemble on Z>p with
mi(€) = z£, ¥;(6) = y_f. The matrix G has the form

Inverting this matrix would produce a correlation ker-
nel for the Schur measure.




Definition 7.8. A system of orthogonal polynomials on R with weight w is
a sequence {p,(z)}n>0 with p,, € Clz] and deg p,, = n, such that p,, L C[z]<,—1
in L?(R, w), i.e.,

] P (@)Pm(2)0(d2) = [[pn [ 26mn.
R

Note that a system of orthogonal polynomials is an orthogonal basis in C|z]
with inner product (f, g fR w(dz), so one can construct such systems
using the Gram—Schmldt orthogonahzatlon algorithm. Note that the degree
constraint deg p,, = n uniquely determines the p,, up to a constant.

Standard notation: Let k, be the leading coefficient of p, and set h, =

||pn||L2(R w)

Proposition 7.9. Let {p,} be the sequence of monic orthogonal polynomials
with weight w. Then the correlation kernel of the N -point orthogonal polynomaial
ensemble has the form

N(z,y) = ij

with respect to the reference measure w(dx) on R.

Proof. Let m;_1 be monic polynomials of degree j — 1. Then

Pn(dz; ---dzy) = cdet(z? ") det(z? ) Hw(dazi)
= det(m;_1(z)) det(m;_1(z)) | [ w(dzs),

where the last equality is via row operations. Then G~T = diag(hg ', ..., hy—)-
O]




Proposition 7.10 (Christoffel-Darboux).

N-1

~ pi(@)pi(y) _ pn(@)pn-1(y) — pn-1(2)pN (Y)

= N hn-1(z —y)

Proof 1. Consider the operator given by multiplication by x in R[z]. This op-
erator is self-adjoint:

(2 f,9) 1) = / f(@)g(@)w(dz) = (.2 9) 12,

The matrix of a self-adjoint operator in any orthonormal basis is symmetric. For
our basis, we will use {p,,/||pn|}n>0. By degree considerations, this matrix must
be 0 below the subdiagonal. By symmetry, it must be 0 above the superdiagonal.
Since the p,, are monic, we have

IPn = An,n+1pn+1 + An,npn + An,n—lpn—l

where A,, ,,+1 = 1. Now multiply the desired identity by (x — y) and use this
recurrence relation and symmetry of the matrix to finish (the left-hand side is
a telescoping sum). O




Proof 2. Consider the average (xy,...,xy distributed as the orthogonal poly-
nomial ensemble). Then

N

N
E(H(u—xz)(v—zz)) = constant-/ H(u—xz)(v—x,) H(:ci—xj)Qw(da;l) cw(dey).

1=1 1<J

(If the z; are eigenvalues of a random matrix X, then [[, (v —z;) = det(u—X).)
In the simpler case, we have

N N
E(H(u — x;)) = constant - / H(u — ;) l_[(a;z —z;)?w(dxy) - - w(dey)
i=1 =1 1<j
= constant - / VNsi(u,z1,...,en)VN (21, ..., 2n)w(dey) - - - w(dey)
[ pn(u) pn (1) pn(TN) ]
pno1 (N pya(@)Y T pvoa(ay )
= constant - / det .
] 1 1 1 |
py-1(zy ) o pyoa(ay )
det w(dry) -+ w(dey)
1 1

= constant - py (u) /VN(LE1, e ,:cN)zw(d:cl) cw(dey) = pN(u).

(In the third equality, we have done row operations.)
Using this, we get

N
]E(H(u — x;)(v — x;)) = constant - /VN+1(u, Ty, N) Vi1 (0,21, . xny)w(dey) - - w(dey)
1=1

constant

- /VN+2(u, v, 2)Vy(x)w(dzy) - w(dey)

u—"v

The first integral expression can be simplified as Zf:;o ckpk(u)pr (v) for some co-
pN+1(u)  pN+1(v)

pn(u)  pn(v)
]

efficients cx. The second integral expression can be simplified as ﬁ det



SCHUR-WEYL AND GUE: POLYNOMIALS

We will discuss basic properties of Hermite and Charlier
polynomials, and derive their properties which will be
useful for asymptotic analysis of the Christoffel-Darboux

kernel.

We will talk about monic orthogonal polynomials
with Poisson and Gaussian weights:

T
—tt_
x!’

e‘”’z/zdw, x € R.

wp(x) :=e , X € ZL>0,

1
wg(z) : Ner

The polynomials will be denoted by C),(x) and Hy,(x),
respectively.

If the weight is “nice” (like a named probability
distribution occurring in a first undergraduate prob-
ability textbook), then the corresponding family of
orthogonal polynomials is also known. Moreover, it
is likely a member of the “Askey scheme” of hyper-
geometric orthogonal polynomials. Basically, these
are polynomials which can be expressed through the
hypergeometric function

oo

rFs[CL1, ceoy @y by, by z] e Z (al)n(az)n ‘e (ar)n n

n=0

where a;, bj, and z are parameters, aand we use the
Pochhammer symbols (a); :=ala+1)...(a+k—1).

I

In particular, we have for the monic Hermite and

Charlier polynomials:

Ch(z) = (—t)"2Fy (—n, — 75— —l) :

t

H,(2) = 2" Fy (—n/z, —(n—1)/2— —%) |

xr



RODRIGUES-TYPE FORMULAS AND NORMS

Proposition. We have Proposition. We have
! t*
Cu(z) = (~t)"Z v (—) , ©
t x! : Ze—t_' (Cn($))2 — ")
Ha(w) = (~1)"e™2 (i) e, =0
—XT
where Vf(z) = f(z)— f(x —1) is the discrete deriva- /_OO(HTL(CU)) \/2_71'6 dx = nl.

tive.




INTEGRAL REPRESENTATIONS FOR HERMITE

Proposition. We have

2

YDEC ISR SR A )

n=0

Proof. This is a statement about the Taylor expan-
sion of f = e=#="/2 gt » = 0. We have e‘x2/2f =
e~(@+2)*/2 and all derivatives of this function at z = 0
are just the same as derivatives of e=’/2 at x. These
derivatives are readily connected to the Hermite poly-
nomials. Therefore,

PR < L B R
‘ _nzzon! (d:c) c ’

which implies the result. []

By Cauchy’s integral theorem, we thus can write

(—1)"77,!7{ _ap—z2/2 A2
Hn -t VA A —,
(z) 2w Jo c Znt+l

where the integration is over a small contour around

0.

Another integral representation for the Hermite
polynomials is obtained using Fourier transform. We
start with the known fact that e=*/2 is essentially
invariant under the Fourier transform. That is,

2 1 2 :
o7 /2 _ _/ e /2+de.
V2T JR

Differentiating n times in z and multiplying by the
prefactors, we get

Hy(z) = (—1)%22/2\/% / (iz)"e™™" /#Hi% dg,
™ JR

Finally, let us change the variables to z = /i, so that

—1)" 100
H,(z) = (z\/2)_7r / /2 et 2y nay,



INTEGRAL REPRESENTATIONS FOR CHARLIER
S

To get integral representations for Charlier, we
employ Fourier series instead of Fourier transform.
The Fourier series associates to a function f(§), £ €
[0,1], a family of coefficients

A 1 .
f(n) = /O FOSTEde, € Loo,

so that the Fourier series
o0
Z Ji-‘(n)e—21ri§n
n=0

converges to f(£) under some conditions (also, there
are different notions of convergence of this series).

We use Fourier series because the function f be-
haves well when we apply discrete derivatives V to f :
Namely,

A 1 . .
V f(n) = /O FE)(1 — e~2mi€)2mien g

so the function f is replaced by f(£)(1 — e=27%).




INTEGRAL REPRESENTATIONS FOR GHARLIER

The generating fucntion for the Charlier polyno-
mials implies that

| d
C, (z) = n—]ge_"‘t(l 42

2 ntl’

where the integration contour is a small counterclock-
wise circle around O.

Changing the variables, we have

= etw-n e 4
Culw) = 5 e s

where now the integration is around 1.

Here we need to use the symmetry ("bispectrality”) of the
Charlier polynomials, which follows from their
C,(x)

hypergeometric representation:
Cy(n)

= (—1t)". This,

together with the previous integral formula, leads to the
second integral representation for the Charlier

polynomials:




KERNELS

In both Schur-Weyl and GUE ensembles, we can use the
integral representations for the orthogonal polynomials to
obtain integral formulas for the kernels which are suitable

for asymptotic analysis. We use the formula

N—1
K(x,y) = Z pn(xl)lpn(y) \/w)w(y) for the kernel. In the
n=0 n

sum, we in both cases extend the summation to

n=-—o00,...,N—1because one of the integrals vanishes

for negative n.

Putting this all together, we get the following formulas for
the GUE and the Schur-Weyl kernels.

2 2

xr

K Pe) = ”3% foo [ e

—6

1

u—z

2 2

u zZ _
g TuyT g AT

(=1)(=w/2)"

SW tw/2 1 —t(z4+w (1+Z)x
KR (oy) = o iz f wetern L2

In the first kernel, x,y € R, while in the second one

X,y € Zyy.

w—+ z
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Chapter 8

ASYMPTOTICS
VIA CONTOUR
INTEGRALS

o Steepest descent
o GUE asymptotics
e Schur-Weyl asymptotics

e From correlations to distributions:
Fredholm determinants

Here we discuss asymptotics of the GUE spectrum and its
discrete analogue (the Schur-Weyl measure) using
determinantal point processes. The steepest descent method is

the key to our proofs.

In the limit, we discover the universal objects: the continuous

and discrete sine processes, and the Airy kernel/point process.
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