
-1.14521    -1.28682   0.657096  -0.982022  -0.686422 -0.625326   0.388695  0.725183   -0.435496   -0.284743  0.441266   -0.703073  -1.81287  0.174724   0.376715   -0.7423      -0.33305    -0.435406  -0.673649  1.00302 

-1.28682    0.515296   1.28579   -1.19067   0.410598  -0.721533   -0.4753   -0.788971  1.77794     -0.147236  -0.416159  -0.11239   0.224613  -0.0865943 -0.95794   0.362536     -1.1245     -1.05487   0.174931   -0.315663 

0.657096    1.28579    1.13431   -0.324216  0.24064   0.0575694   0.146681  1.91859    -0.731109   0.557265   -0.403914  0.0533962  0.899949  0.161839   0.440809   1.3285       1.24069     -0.178793 -0.343091  0.216262 

-0.982022   -1.19067   -0.324216 -0.96468   0.378692  -1.18208    0.300143  0.225715   0.218007    -0.223062  0.926272   0.287944   0.179152  -0.0307281 -0.624478  -0.265225    -0.0308187  -0.44938   -0.952877  -0.430937 

-0.686422   0.410598   0.24064   0.378692   -0.103991 -0.419362   0.937391  0.748624   0.507609    0.677444   0.193707   -1.62539   0.16026   -0.895278  -0.719338  -0.257898    0.490269    0.255928  -0.696338  -1.30598 

-0.625326   -0.721533  0.0575694 -1.18208   -0.419362 0.412801    2.19664   -0.327258  0.402701    0.194333   -0.0166005 -0.30655   0.0834214 0.891482   -1.71165   0.086339     -0.00288365 -0.0240941 -0.395013  0.780503 

0.388695    -0.4753    0.146681  0.300143   0.937391  2.19664     1.53936   1.08512    0.881242    -0.433485  0.152387   0.431389   0.0852677 -0.128068  -0.820668  -0.304242    -0.4512     -1.11298   0.154371   -0.455712 

0.725183    -0.788971  1.91859   0.225715   0.748624  -0.327258   1.08512   -0.567067  0.029981    -0.285557  -1.19525   0.801032   0.617278  -0.70306   -0.0831902 0.862791     -0.453785   -0.149288  0.809763   -0.481125 

-0.435496   1.77794    -0.731109 0.218007   0.507609  0.402701    0.881242  0.029981   2.02411     0.750177   1.70319    0.870841   -0.518383 0.33911    -1.19107   -0.792506    -2.01083    -0.19598   0.265425   -0.345991 

-0.284743   -0.147236  0.557265  -0.223062  0.677444  0.194333    -0.433485 -0.285557  0.750177    -1.73125   -0.149913  -0.909022  -0.71407  0.695514   -0.304745  -0.32915     -0.0673173  0.553877   -0.121615  -0.321876 

0.441266    -0.416159  -0.403914 0.926272   0.193707  -0.0166005  0.152387  -1.19525   1.70319     -0.149913  -2.02586   0.594787   0.586647  0.506233   0.0587701  -0.967462    -0.0269315  0.223118   -0.30208   0.438355 

-0.703073   -0.11239   0.0533962 0.287944   -1.62539  -0.30655    0.431389  0.801032   0.870841    -0.909022  0.594787   0.678305   -0.679562 -1.63909   -1.24843   -0.647099    0.258892    -1.24505  -2.2369    -1.23919 

-1.81287    0.224613   0.899949  0.179152   0.16026   0.0834214   0.0852677 0.617278   -0.518383   -0.71407   0.586647   -0.679562  0.587351  0.177662   -0.607146  0.404704     1.4831      0.924882  1.028      -0.50155 

0.174724    -0.0865943 0.161839  -0.0307281 -0.895278 0.891482    -0.128068 -0.70306   0.33911     0.695514   0.506233   -1.63909   0.177662  1.10868    1.01265    0.0272733    -0.119186   1.39192    -0.28448   -0.70527 

0.376715    -0.95794   0.440809  -0.624478  -0.719338 -1.71165    -0.820668 -0.0831902 -1.19107    -0.304745  0.0587701  -1.24843   -0.607146 1.01265    2.56763    0.733232     0.305563    0.289955  -1.10004   0.378441 

-0.7423     0.362536   1.3285    -0.265225  -0.257898 0.086339    -0.304242 0.862791   -0.792506   -0.32915   -0.967462  -0.647099  0.404704  0.0272733  0.733232   -1.05645     -0.39056    0.909237   -0.292291  -0.592351 

-0.33305    -1.1245    1.24069   -0.0308187 0.490269  -0.00288365 -0.4512   -0.453785  -2.01083    -0.0673173 -0.0269315 0.258892   1.4831    -0.119186  0.305563   -0.39056     1.37704     2.04753   0.209172   0.28929 

-0.435406   -1.05487   -0.178793 -0.44938   0.255928  -0.0240941  -1.11298  -0.149288  -0.19598    0.553877   0.223118   -1.24505   0.924882  1.39192    0.289955   0.909237     2.04753     1.1963    0.874026   -0.349302 

-0.673649   0.174931   -0.343091 -0.952877  -0.696338 -0.395013   0.154371  0.809763   0.265425    -0.121615  -0.30208   -2.2369    1.028     -0.28448   -1.10004   -0.292291    0.209172    0.874026  0.707516   -0.0580229 

1.00302     -0.315663  0.216262  -0.430937  -1.30598  0.780503    -0.455712 -0.481125  -0.345991   -0.321876  0.438355   -1.23919   -0.50155  -0.70527   0.378441   -0.592351    0.28929     -0.349302 -0.0580229 0.451363 

-0.13663    -0.798084  -0.583162 1.11371    0.349082  -0.608271   -0.251213 0.968532   -0.620088   -1.0253    0.565435   -0.0677432 0.526337  -0.164239  0.48776    0.797334     -0.370234   -0.913542  1.15769    0.466034 

-0.156884   0.0303585  1.0137    1.34759    0.112543  0.406745    -0.1948   0.377266   -0.165552   -0.565908  0.139145   -0.650428  0.601938  0.357834   -1.63965   0.0406903    1.21326     1.15151   -0.774616  -0.139792 

1.02709     -0.507612  -0.761622 0.313532   0.151349  -0.435313   0.0012759 -1.38932   -0.564117   0.182285   0.656071   -0.86504   0.638108  0.070372   0.145133   -0.489161    0.219254    -0.614009 1.19639    1.01406 

-0.186985   0.101279   0.989053  -0.345424  -0.919486 -1.65871    0.346262  0.637474   -0.028574   -0.973065  -0.145497  0.740657   -0.895471 -0.346488  0.205793   -0.564087    -1.46805    -1.02411   -0.227107  1.00905 

-0.553071   0.190856   0.169558  -0.497688  -1.0737   0.228972    0.461347  0.265434   0.134092    -0.534462  1.30767    -0.549296  0.0023883 -0.377645  1.04821    -0.579336    1.15383     -0.572597 -1.11      -0.749347 

0.273329    0.349086   -1.17978  -0.702147  0.876224  -0.593708   -0.616916 -0.29617   -0.140329   0.0579597  0.103387   -0.068821  -0.712302 0.0967788  0.199493   0.421776     -0.446053   0.548781   -0.707501  -0.237192 

1.11244     -0.562872  -0.265341 -0.450323  0.683261  0.859595    -0.759557 -0.761983  0.367932    1.41075    0.112965   0.579478   0.275626  -0.0524631 -0.881892  -0.154922    1.37631     -0.608097 0.565836   -0.42193 

-0.29808    0.23321    0.149628  -0.372992  0.012668  0.130586    0.503184  -0.608561  -0.266417   0.561803   0.139233   -0.213129  0.109277  0.776142   0.727721   -0.313135    -0.0928817  0.242478   -0.7982    0.502206 

-0.398827   -1.24338   0.891883  0.771402   -0.760483 0.438634    -0.598741 0.261118   0.384487    1.1713     -0.224444  1.02576    -0.101649 -0.923349  0.295019   0.04526      -1.07015    0.309999   -0.488909  0.0343793 

0.0355334   0.197901   0.348038  0.375635   -2.16487  -0.542811   0.470653  -0.283627  0.304519    0.0647608  -0.786254  -0.08046   0.166896  0.841085   -0.444452  0.259888     0.910553    -0.975463 0.52667    -0.233913 

0.890827    -0.209244  0.0509675 -0.762894  -0.130242 0.0894665   -0.044603 -1.35711   -0.619816   -0.454219  1.2642     -1.1935    0.252564  -0.784254  -0.538443  -0.000381676 -0.71248    -0.158408  -0.523453  0.108284 

0.0558664   1.10098    -0.47032  0.665395   -0.160329 -0.286462   -0.314294 -1.39198   0.362821    0.102105   -0.610265  -0.837231  0.548745  -1.29027   0.226945   -0.503976    -0.361979   -0.0362145 -0.926096  -0.697252 

-1.10031    0.384366   1.10164   -0.535007  -0.386807 0.163133    0.500397  0.304606   -1.0073     -0.0903699 0.401315   -0.554864  0.747251  0.466938   0.22147    -0.928773    -1.29462    -0.600823  -1.28851   -0.979763 

0.733912    -0.700648  1.31453   -0.547134  -0.676048 0.185287    -0.482911 -0.463741  -0.110102   -0.772697  -0.53021   -0.136122  0.534911  0.713692   -0.548135  0.166549     -1.05497    -0.121445  0.561618   1.42328 

-0.597527   0.299555   -0.748177 -0.826005  -0.421482 0.0350838   -0.525285 -0.730834  -0.708476   -1.47722   -0.971622  0.543284   1.80368   -0.25017   -1.17844   -0.544043    0.781451    -0.306562 0.420658   0.0179352 

0.284087    0.727199   0.0306869 0.531269   -0.130866 1.02267     0.320662  0.362019   -0.524936   0.88234    -0.510212  1.12333    -0.872799 -0.0961914 -0.516817  0.0875909    0.801612    0.729619  0.268097   -0.446231 

-0.784109   0.621386   0.528543  -0.197717  0.282808  0.011635    -0.332186 -0.912173  -0.847171   -0.610026  -0.518194  0.0738876  1.62972   0.590134   0.4941     -0.861761    0.252315    0.127759  0.250418   1.03951 

0.116754    0.226957   0.0217443 -0.931981  -0.485852 0.35075     0.0777182 -0.31022   -0.0902972  0.327926   0.017076   0.0502547  -0.925325 0.653415   -0.224566  -0.00191449  -0.101753   -0.898741  0.41179    -0.0993027 

-0.00957027 0.829099   0.512559  0.0887155  0.996206  1.35932     -0.124764 -0.555427  -0.00636569 -0.5216    0.366106   0.711883   1.09202   0.739793   -0.446315  0.301361     -0.516129   -0.335036  0.065839   -0.222048 

-1.24567    -1.09771   -0.463645 0.692859   0.338907  -0.620894   0.830348  0.559918   -0.127886   0.157359   -0.584772  1.27132    -0.435262 -0.870459  1.08293    -0.191268    0.0983298   -1.51994  0.344007   0.41369 

-1.23566    -0.665371  -0.405683 -0.4844    1.32429   0.11528     0.28689   0.527465   -0.396565   0.479631   -1.06498   -0.97755   0.207414  1.17755    -0.470965  -0.098264    0.927909    0.131346  0.0477902  -0.124768 

-0.276069   0.169518   -0.752353 -0.289335  -0.763807 -0.646886   -0.102303 0.171974   0.274248    -0.868667  -0.321227  -0.253315  0.585568  0.627482   1.00852    0.971126     0.123007    -0.678491 -0.212864  0.589145 

0.575876    0.335758   -0.324659 0.960884   0.396305  1.18377     0.145664  0.0084101  -0.0508627  0.931008   -0.215509  0.553416   0.250741  -0.276556  0.852956   -0.0819878   -0.372774   0.141705   -0.315408  -0.118511 

0.783248    -0.30221   -0.114869 -0.256273  -0.75969  -1.1422     1.19952   0.464979   -0.367616   -0.204175  -0.659721  0.462426   0.0927839 0.189315   -0.476288  0.475506     -0.525078   -0.57183   0.166352   -0.264008-30 -20 -10 0 10 20 30
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Remarks
• These are notes for the graduate course MATH 8380 

Random Matrices at University of Virginia. 

• Exercises on the green background are expected to be 
turned in after 2.5 or 3 weeks of the corresponding lecture 
(see details in the syllabus). 

• All images (unless otherwise specified with a link to the 
source) are generated by the author.

Books on random matrices 

I. Mehta, M.L. Random Matrices 

II. Anderson, G.W., Guionnet, A. and Zeitouni, O.  
An Introduction to Random Matrices 

III. Pastur, L. and Shcherbina, M. Eigenvalue Distribution of 
Large Random Matrices 

IV. Tao, T. Topics in random matrix theory 

V. Forrester, P. Log-gases and random matrices



Random matrix theory is a rich and lively subject with connections 
to many areas of pure mathematics, mathematical physics, statistics 
(within mathematical sciences), and numerous applications. 
Examples of applications include biology, neuroscience, machine 
learning, and others. New applications are discovered weekly. This 
makes random matrices one of the frontiers of modern probability 
theory. Because of the diverse nature of the subject, purely 
probabilistic methods are not enough in the study of random 
matrices, and one has to learn other tools from algebra, 
combinatorics, representation theory, and classical analysis. 

There is a rich toolbox to study random matrices, too. In the first 
lecture I will discuss origins of random matrix theory which 
motivate some of the tools. 

Early on, random matrices and related objects were rediscovered / 
revitalized at least three times - first by Hurwitz in the study of 
compact classical groups around 1900, then by Wishart in statistics 
in the 1920s, and then in physics by Wigner and others since the 
1950s. Shortly after the third, a boost in the development of 
random matrix theory came from connections to number theory 
(namely, to zeroes of the Riemann Zeta Functions).  

Since mid-20th century, random matrix theory entered into pure 
mathematics in full, and continues to be its vital part.

• Volumes of compact classical 
groups 

• Statistics 

• Nuclear physics 

• Number theory 

• Back to statistics

Some 
History

Chapter 1



Volumes of compact 
classical groups
Compact classical groups are the Lie groups such as the 
orthogonal , unitary , or symplectic , or 
their special subgroups, etc. These are generally defined as 
groups of transformations of linear spaces (over ) 
which preserve certain bilinear forms.  

Each of the groups  is compact, and has 
a manifold structure (whose tangent space has a structure 
of the corresponding Lie algebra). As such, one can define 
natural invariant measures on these groups - called Haar 
measures (a Haar measure — name is from the 1930s —  
exists and is unique on any separable compact topological 
group). The “volume” of a group is then the total mass of 
this measure (which is finite because the group is 
compact).  

The “initial” normalization of the Haar measure is taken in 
certain coordinates on the groups — Euler angles. 

O(N ) U(N ) Sp(N )

ℝ, ℂ, ℍ

O(N ), U(N ), Sp(N )

Euler angles  

(by Lionel Brits https://commons.wikimedia.org/
wiki/File:Eulerangles.svg)

https://commons.wikimedia.org/wiki/File:Eulerangles.svg
https://commons.wikimedia.org/wiki/File:Eulerangles.svg
https://commons.wikimedia.org/wiki/File:Eulerangles.svg
https://commons.wikimedia.org/wiki/File:Eulerangles.svg
https://commons.wikimedia.org/wiki/File:Eulerangles.svg
https://commons.wikimedia.org/wiki/File:Eulerangles.svg


Recall that  is the group of matrices with determinant 

one such that . 

Let us discuss the invariant measure on , that is, 

which satisfies  and  for 

each fixed .  

First, consider the toy example of the multiplicative group 
of positive real numbers. The invariant measure on this 
group must satisfy , and has the form 

.  

So, for  we need to mimic this, so let’s consider 

something like . However,  is not an 

independent differential, so we need to let  be the 

product of independent differentials of .  

Note that  implies , so  

is anti-symmetric. For an antisymmetric real matrix , 
its independent entries are all entries above the diagonal. 
So, the product of the differentials is .  

Therefore, we conclude that the invariant measure is 
, where  is antisymmetric. 

The fact that   is clear from the definition. 

To check , use the next exercise. 

Then we have 
, because 

the determinant of  is one. This completes the proof.

SO(N )
VVT = VTV = Id

SO(N )
dμ(V0V ) = dμ(V ) dμ(VV0) = dμ(V )

V0 ∈ SO(N )

dμ(cx) = dμ(x)

dμ(x) =
dx
x

SO(N )
V−1dV = VTdV dV

dμ
VTdV

VTV = Id d(VT)V + VT(dV ) = 0 VTdV
A = [Aij]

const∏
i<j

dAij

dμ(V ) = const∏
i<j

dAij A = VTdV

dμ(V0V ) = dμ(V )
dμ(VV0) = dμ(V )

dμ(VV0) = (VV0)Td(VV0) = VT
0 (VTdV )V0 = VTdV

VT
0 V0

Invariant Volume Element on SO(N)

Exercise 1.1. Show that for  antisymmetric and  real, we 

have .  
Hint: represent  as a product of elementary 
transformation matrices: (1) row transpositions, (2) row 
multiplications by real numbers, and (3) adding one row to 
another. Check what happens to the determinant in front, 
too.

A X
(XT dA X ) = (det XT X )(N−1)/2dA

X



Define   

(where  means the  identity matrix), and 

 

Hurwitz in the 1890s proved that any generic matrix 
 (by “generic” we mean Haar-almost-every) can 

be represented uniquely as a product . 
The amount of Euler angles is 

.  

A general  has the decomposition 

where . Geometrically, this 
corresponds to rotations about the z-axis, the transformed 
x-axis, then the transformed z-axis, as first identified by 
Euler (1770).  

For general , Hurwitz computed that the invariant 
measure has the following density with respect to the 
Lebesgue measure in the Euler angles coorinates: 

Then Hurwitz 

computed the volume of the group, which is the integral of 
this density over the group. It is given by 

.  

The same computation can be performed for other 
compact classical groups. For the unitary group, we get 

. 

(Recall that unitary matrices are complex matrices with 
, where star means conjugate transpose.)

Rj(θ) =

Ij−1

cos θ sin θ
−sin θ cos θ

IN−j−1

Ik k × k
Ej = Rj(θj, j+1)Rj−1(θj−1, j+1)⋯R1(θ1, j+1) .

VN ∈ SO(N )
VN = E1E2…EN−1

0 ≤ θ1, j+1 < 2π, 0 ≤ θi, j+1 ≤ π (2 ≤ i ≤ j ≤ N − 1)

V3 ∈ SO(3)

V3 =
cos ϕ sin ϕ 0

−sin ϕ cos ϕ 0
0 0 1

1 0 0
0 cos θ sin θ
0 −sin θ cos θ

cos ψ sin ψ 0
−sin ψ cos ψ 0

0 0 1

0 ≤ θ ≤ π, 0 ≤ ϕ, ψ < 2π

N

dμ = 2N(N−1)/4 ∏
1≤ j<k≤N

(sin θj,k) j−1dθj,k .

vol(SO(N )) =
1
2

2N(N+3)/4
N

∏
k=1

πk/2

Γ(k /2)

vol(U(N )) = 2N(N+1)/2
N

∏
k=1

πk

Γ(k)

UU* = U*U = Id

Euler angles on . volumeSO(N)

Exercise 1.2. Using this formula, write down the volume 
of .O(N )



In statistics, Wishart distribution is a probability distribution 
on nonnegative-definite matrices which is a 
multidimensional analogue of the Gamma distribution. 
This arises as the distribution of the sample covariance 
matrix for a sample from a multivariate normal distribution. 
It occurs frequently in likelihood-ratio tests in multivariate 
statistical analysis. This distribution was introduced by 
Wishart in 1928.  

To define a Wishart random matrix, take  to be a  
matrix of iid standard normal random variables. Define 

. This is the Wishart random matrix. 

Note that if , then the matrix  is almost surely 
degenerate, and we do not want that. So we assume that 

.

X p × n

W = XXT

n < p W

n ≥ p

Random Covariance 
Matrices

0.2 0.4 0.6 0.8 1.0
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Exercise 1.3. Do matrix elements  and  have the 

same distribution? How about  and ?

W11 W12

W11 W22

-2 -1 1 2

-2

-1

1

2

3



Wishart matrices. Simulations

0 5000 10000 15000 20000 25000 30000
0

500

1000

1500

2000

Sample of the eigenvalue distribution for 
. In this case the matrix is 

highly degenerate, so has many zero eigenvalues
n = 6,000, p = 10,000

0 10000 20000 30000 40000
0

200

400

600

800

Sample of the eigenvalue distribution for 
. In this case the matrix is 

nondegenerate, but has many small eigenvalues
n = 10,000, p = 14,000



Nuclear physics

Nuclear physics studies atomic nuclei viewed as quantum 
systems. As such, a quantum system is described by an 
operator in a Hilbert space (a “quantum Hamiltonian”). Of 
great interest are eigenvalues of this operator - they 
describe possible energy levels of the quantum system.  

For example, the eigenvalue equation for the simplest, 
hydrogen, atom is the Schrodinger equation: 

. Here  are the 

possible energy levels. 

Large nuclei are described by much more complicated 
Hamiltonians. In the 1950s, Wigner suggested that instead 
of studying complicated Hamiltonians, one could get  
some information about heavy nuclei from random 
Hamiltonians. In particular, he predicted universality of 
energy spacings. Random Hamiltonians are then 
approximated by random Hermitian matrices.

(−
ℏ2

2μ
∇2 −

e2

4πϵ0r ) ψ (r, θ, ϕ) = Eψ (r, θ, ϕ) E
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In one of the first papers of Wigner, he also obtained the 
Semicircle Law - joint eigenvalue distribution of large 
random Hermitian matrices with independent entries tends 
to the semicircle.  

In particular, let  be real matrices with iid mean 0 
variance 1 entries (and some other moment conditions). 
Define . This is a random 
Hermitian matrix.  

Then the histogram of the eigenvalues of  looks like a 

(normalized) semicircle from  to , where  is the 
size of the matrix. 

This also suggests how the spacing of the eigenvalues in 
the “bulk” of the spectrum should look like. Namely, the 
eigenvalues have typical distance between them of order 

, and on that scale the distance depends on the 
location in the spectrum through the density. 

Later, connections between eigenvalue spacing and 
number theory (spacing of zeroes of the Riemann Zeta 
function on the critical line) have been discovered - see 
note [4] for details.

X, Y

G = ((X + iY ) + (X − iY )T)/2

G
−2 N 2 N N

1/ N

Wigner’s Semicircle Law
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Random matrix theory continues to be widely applicable in 
domains where it was originally discovered. Let me 
mention one statistical application based on a  2004 (fairly 
recent) work of Baik-Ben Arous-Peche.  

Consider the goal of estimating a “spike” in the presence 
of a random matrix. Namely, let  be a Wishart (random 

covariance) matrix, and  be a rank-one matrix (a “spike”) 
of “size” 1.  

Looking at the eigenvalues of , for which values of  

is it possible to recover ? In other words, can we 
statistically detect the null-case (random covariance matrix 
of a mean-0 iid vector) from the “spiked” case? 

Turns out that we should look at the edge of the spectrum. 
The edge is on scale , and there exists a critical value  

(independent of  but depending on  which is 
assumed constant), such that 

• If , the edge of the spectrum of  is 

distributed the same as for , so the “spike is lost in the 

bulk”. This limit is not Gaussian, by the way, but is given 
by the so-called Tracy-Widom (TW) distribution. 

• If , the largest eigenvalue has the Gaussian 
distribution, so we can detect the spike 

• At , there is a phase transition, and the 

distribution of the largest eigenvalue of  tends to 
yet another law called the BBP distribution. Depending 
on the parameter , BBP interpolates between Gaussian 
and TW.

W
X

W + aX a
X

n c
n γ = p/n < 1

a < c W + aX
W

a > c

a = c − ãn−1/3

W + aX

ã

Back to Statistics



1. Diaconis, Forrester, A. Hurwitz and the Origins of 
Random Matrix Theory in Mathematics (2015) gives an 
account of the first matrix integrals (invariant group 
integrals) which appeared over 100 ago. The original 
paper of Hurwitz is Uber die Erzeugung der Invarianten 
durch Integration [Gott. Nachrichten (1897), 71-90]. 

2. The decomposition  of  
matrices as products of rotation matrices is an 
analogue of the fact that every permutation can be 
written as a product of elementary transpositions (in a 
particular order). One can think that in this case all 
Euler angles are  or .  

3. J. Wishart, The generalized product moment 
distribution in samples from a normal multivariate 
population, Biometrika (1928) — one of the first 
appearances of random matrices in statistics. 

4. Wigner’s original work on random matrices in nuclear 
physics: Wigner, E. (1955). Characteristic vectors of 
bordered matrices with infinite dimensions. Annals of 
Mathematics. 62 (3): 548–564. 

5. An account of the meeting of Dyson and Montgomery, 
when the applicability of random matrices to number 
theory was discovered: https://www.ias.edu/ideas/
2013/primes-random-matrices 

6. Phase transition of the largest eigenvalue for non-null 
complex sample covariance matrices - Jinho Baik, 
Gerard Ben Arous, Sandrine Peche. https://arxiv.org/
abs/math/0403022

VN = E1E2…EN−1 SO(N )

0 π
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In this chapter we discuss the most basic ensemble of random 
matrices — the Gaussian Unitary Ensemble. We will obtain its 
spectral distribution. 

We will also connect the GUE to a dynamical model — the Dyson 
Brownian motion (DBM). This connection is a direct analogue of 
the link between the Gaussian (normal) distribution and the usual 
Brownian motion.

• Gaussian distribution and 
Brownian motion  

• Gaussian Unitary Ensemble (GUE) 

• GUE: some properties 

• GUE: distribution of eigenvalues 

• Dyson Brownian Motion (DBM)

GUE and 
DBM

Chapter 2

Exercise 2.1. Prove the equivalency between these two 
definitions of the GUE



Let us recall basic facts about the Gaussian distribution and 
the Brownian motion. 

This was the real Gaussian. We will also need the complex 
Gaussian.  

The standard complex Gaussian random variable is given 
by , where  and  are independent 

mean  normal random variables with variance . Here we 

need variance  and not  because the variance of a 

complex random variable is , which 

is  in our case.

Z = X + iY i = −1 X, Y

0
1
2

1
2

1

Var(Z ) = E(Z − EZ |2 )
E( |Z |2 ) = E(X2) + E(Y2)

Gaussian (=normal) distribution

-4 -2 2 4

0.2

0.4

0.6

0.8

Exercise 2.2. For  a standard complex Gaussian random 

variable, let  be its representation in terms of 
absolute value and argument. What are the distributions of 
the random variables  and ?

Z
Z = ReiΘ

R Θ



Let  be independent identically distributed 

random variables with mean  and variance . Denote 

. Then  as  (this is the Law of 

Large Numbers, LLN). The convergence is almost sure, that 
is, .  

The next order approximation to the Law of Large 
Numbers is given by the Central Limit Theorem (CLT): 

, where  has the standard normal distribution. The 

convergence here is in distribution, that is, for each  

we have .  

Note. In general, the convergence in distribution is valid 
only for  being points of continuity of the cumulative 
distribution function (cdf) fo the limiting random variable. 
However, as for the standard normal random variable the 
cdf is continuous everywhere, the convergence holds for 
all . 

In fact, there is a much more detailed CLT which was 
established in the mid-20th century (Donsker invariance 
principle). In a relatively weak form it states:  

The convergence here is in distribution, in Skorokhod 
space (space of cadlag functions). The metric in Skorokhod 
space is defined as 

, where the 

infimum is taken over all strictly increasing continuous 

mappings , and 

X1, X2, …
0 1

Sn = X1 + … + Xn
Sn

n
→ 0 n → ∞

P(ω : Sn(ω)/n ↛ 0) = 0

Sn

n
→ ξ ξ

r ∈ ℝ
P(Sn ≤ r n) → P(ξ ≤ r)

r

r
d( f, g) = inf

λ
(∥λ∥ + sup

0≤t≤1
| f (t) − g(λ(t)) | )

[0,1] → [0,1] ∥λ∥ = sup
s<t

log
λ(t) − λ(s)

t − s
.

Central Limit Theorem



Let us discuss the limiting object — the Brownian motion (= 
Wiener process) — in detail.

Brownian Motion

Exercise 2.3. For  Brownian motion, 

show that  is also a Brownian 
motion. Hint: use the fact that the 
covariance function  
uniquely determines a mean zero 
Gaussian process. (A process is 
Gaussian if all of its multitime joint 
distributions are Gaussian.)

Wt

Xt = tW1/t

ρ(t, s) = Cov(Yt, Ys)



If instead of  we take a diffusion process , then 
we obtain the full Ito’s formula: 

 .

Wt dXt = μtdt + σtdWt

df(Xt) = ( ∂f
∂t

+ μt
∂f
∂x

+
σ2

t

2
∂2f
∂x2 ) dt + σt

∂f
∂x

dWt

Brownian motion is also a Markov process, in the sense 
that the future location of the moving particle is 
determined only by its present location, and not by the 
past history. Mathematically this is expressed as follows.  

There is a transition function 
, for all . 

The Brownian motion is time-homogeneous, i.e., its 
transition function does not depend on . The Markov 
property is then 

, for 

all  and all previous time moments .  

For the Brownian motion the transition function has a 
very simple density: 

  . 

The transition function satisfies the heat equation 

    

and is also known as the heat kernel.

Pt(x, y) = P(Ws+t = y ∣ Ws = x) s ≥ 0, x, y ∈ ℝ

s

P(Ws+t = y ∣ Ws = x Ws1
= x1, …, Wsk

= xk) = Pt(x, y)

xi si < s

Pt(x, y) dy =
1

2π t
e−(x−y)2/(2t) dy

∂
∂t

Pt(x, y) =
1
2

∂2

∂x2
Pt(x, y)



A diffusion is a process satisfying  

(where  are functions of time). This means in integral 

form that . The second 

integral is a stochastic integral (such as Ito integral).  

On the other hand, we can describe processes implicitly, 
requiring that the drift  and diffusion coefficient  

depend not only on time, but on the value of  (e.g., 
location of the particle at a given time). This dependence 
still leads to a Markov process, and is called a stochastic 
differential equation (SDE): . 
This equation is also understood in integral form.  

Under mild conditions on  a solution to the SDE exists 
and it unique.  

One should be careful with stochastic integrals. For 

example, for the Ito integral, . 

We will use SDEs to write down PDEs for probability 
distributions of their solutions.

dXt = μtdt + σtdWt

μt, σt

Xt − X0 = ∫
t

0
μudu + ∫

t

0
σudWu

μ σ
Xt

dXt = μ(t, Xt)dt + σ(t, Xt)dWt

μ, σ

∫
t

0
WsdWs =

1
2

W2
t −

1
2

t

Idea of Stochastic differential equations

Exercise 2.5. (1) In example 2, check that this  is indeed the 
solution of the SDE. 

(2) Write the general solution of , 

where  are constants.

Xt

dXt = aXtdt + bXtdWt, X0 = x
a, b

Examples.



Let us obtain some basic properties of the GUE. First, 
compute the joint density of the matrix elements with 
respect to the Lebesgue measure on the space of  
Hermitian matrices. The Lebesgue measure itself is  

  , 

Here there are  real parameters in the 

space. In other words, the space of  Hermitian 

matrices can be identified with the Euclidean space . 

Therefore, we see that the GUE density of matrix entries 
has the form 

  , 

which is the (simplest) random matrix analogue of the 
Gaussian distribution. 

N × N

dX =
N

∏
i=1

dXii ∏
1≤i<j≤N

d(ℜXij)d(ℑXij)

N + 2
N(N − 1)

2
= N2

N × N
ℝN 2

dGUE(X) = const e− 1
2 Tr(X2)dX

Gaussian Unitary Ensemble (GUE)

Exercise 2.6. Show that the GUE distribution is invariant under 
conjugations by arbitrary unitary matrices (i.e., under the action

, where  is fixed).X ↦ UXU* U ∈ U(N )



When we have a normal distribution, we also have a 
Brownian motion. GUE is a Gaussian measure on the 
space of  Hermitian matrices. This space is identified 

with , and the coordinates , ,  ( ) become 
independent random variables. Taking independent 
Brownian motions in these coordinates, we get a 
Brownian motion on the space of Hermitian matrices. We 
call is the matrix Brownian motion . 

More precisely, for  the variance of the motion should 

be , and for ,  ( ) the variance is .  

In one dimension, the Brownian motion does not have to 
start from . A Brownian motion starting from any  

simply has the form , where  is the standard 

Brownian motion starting from . 

N × N
ℝN 2 Xii ℜXij ℑXij i < j

Xt

Xii

1 ℜXij ℑXij i < j
1
2

0 x ∈ ℝ
x + Wt Wt

0

Matrix Brownian Motion
In the matrix case, we can start the matrix Brownian 
motion from any fixed (or even random) matrix , and it 

has the form .  

If  is diagonalized, , where  is diagonal 

(with eigenvalues  of  on the diagonal), 

then we have . But since  has the GUE 

distribution, it is unitary invariant, so  has the 

same distribution as .  

In other words, all unitary invariant properties of  

(such as eigenvalues of ) depend on  only through 

its eigenvalues .  

This implies the following result: 

Theorem. On eigenvalues, the matrix Brownian motion 
(started from any fixed matrix) reduces to a Markov 
process on the space  of ordered 
-tuples of reals. 

This Markov process is called the Dyson Brownian Motion. 
We will study some of its properties.

A
A + Xt

A A = VDaV* Da

a = (a1, …, aN) A
VDaV* + Xt Xt

VDaV* + Xt

V(Da + Xt)V*

A + Xt

A + Xt A
a

{λ1 ≥ … ≥ λN : λi ∈ ℝ} N

Exercise 2.7. Write down the transition function 
 of the matrix Brownian 

motion.
Pt(X, Y ) = Prob(Xs+t = Y ∣ Xs = X )

Exercise 2.8. Show that the matrix Brownian motion is unitary 
invariant (you also need to define what this means exactly).



Dyson Brownian 
MOtion
Let  be the eigenvalues of the matrix , where 

 is the matrix Brownian motion started at zero (also,  has 

GUE distribution with variance ).  

Theorem. These eigenvalues satisfy an SDE  

  ,  , 

where  are independent standard Brownian motions. 

This result is essentially due to Dyson (1962). We will prove 
it by following T. Tao’s notes, which in a sense repeat 
Dyson’s argument in a more modern language. The 
argument is based on understanding how eigenvalues and 
eigenvectors change (in first order) if we change the 
matrix. 

λi = λi(t) A + Xt

Xt Xt

t

dλi = dBi + ∑
j≠i

dt
λi − λj

i = 1,…, N

Bi

https://terrytao.wordpress.com/2010/01/18/254a-notes-3b-brownian-motion-and-dyson-brownian-motion/
https://terrytao.wordpress.com/2010/01/18/254a-notes-3b-brownian-motion-and-dyson-brownian-motion/


(here we assume that  is Hermitian and has simple spectrum)A

Exercise 2.9. Why here we have ?u*i A ·ui = λiu*i
·ui

Hadamard Variations



Now, back to the Dyson Brownian motion. Modulo 
technicalities (related to non-simple eigenvalues) which 
can be resolved, the derivation of the SDE looks as 
follows. 

Let the matrix Brownian motion at time  be in state . 

Then, taking  to be the standard GUE random matrix, we 

see that the matrix Brownian motion at time  is in 

state .  

We have by the Ito’s formula that  equals the first 

derivative times , plus  of the second derivative times 

. The first derivative is , and the second is 

 (the “ ” from the Hadamard variational 

formula disappears because of  in Ito’s formula).

t A
G

t + dt
A + (dt)1/2G

dλi

dWt
1
2

dt u*i Gui

∑
j≠i

|u*j Gui |
2

λi − λj
2

1
2

SDE for DBM
Since  is unitary invariant, we may assume that  form an 

orthonormal basis of the -dimensional space, and so 

 simply corresponds to independent real Brownian 

motions , while each term  has mean  and 

small variance (and the variance is small even after 
summing over ).  

This completes the sketch of the proof of the SDE for the 
Dyson Brownian Motion.

G ui

N
u*i Gui

dBi |u*j Gui |
2 1

j

Exercise 2.10. Instead of the matrix Brownian motion we can 
take the matrix Ornstein-Uhlenbeck process  which 

satisfies the SDE . Then the motion of 
eigenvalues is also Markovian. Repeat the previous argument 
and write down an SDE for the eigenvalues under the matrix 
Ornstein-Uhlenbeck process.

e−tWe2t

dXt = − Xt dt + dWt



1. Freeman J. Dyson, A Brownian-Motion Model for the 
Eigenvalues of a Random Matrix, Journal of 
Mathematical Physics 3, 1191 (1962). This paper 
contains a derivation of the equations of motion of 
eigenvalues under the matrix Brownian motion. 

2. One of the (many) interviews of Dyson https://
www.youtube.com/playlist?
list=PLVV0r6CmEsFzDA6mtmKQEgWfcIu49J4nN 

3. The GUE is extended in at least two directions. One can 
either keep the unitary invariance (invariant ensembles 
with density ), or keep the independence of 
the entries (Wigner matrices). The unitary symmetry / 
complex field can also be replaced by orthogonal 
symmetry / reals (the Gaussian ensemble is called 
GOE), or by symplectic symmetry / quaternions 
(leading to GSE).  

4. At the level of eigenvalue distribution, the symmetry 
classes can be unified by including an interpolation 
parameter , which is equal to , , or  for real, 
complex, or quaternionic ensembles.

∝ eTr(V(X))

β 1 2 4

Notes and references
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On a finite state space , a time-homogeneous Markov chain with 

discrete time corresponds to a stochastic transition matrix , 
whose elements are nonnegative and sum to one along each row: 

 for all . In diffusion setting, an SDE is an analogue 

of this transition matrix . 

When  is random with some distribution , and we apply 
to it one step of a Markov chain, then the distribution becomes 

. In other words, in finite setting probability 

distributions are modeled by row vectors. Multiplication by 
transition matrices corresponds to time evolution of measures 
under Markov chains.  

On the other hand, if  is a function on  viewed as a column 

vector, and we consider the function , then 

 is the expectation of , where  is the location of the 

Markov chain started at  after one step. 

Thus, we see that the Markov chain transition matrix  describes 
both the evolution of measures and the evolution of functions. An 
SDE does essentially the same.

X
P(x, y)

∑
y∈X

P(x, y) = 1 x

P(x, y)

x ∈ X μ(x)

(μP)(y) = ∑
x∈X

μ(x)P(x, y)

f X
(Pf )(x) = ∑

y∈X

P(x, y)f (y)

(Pf )(x) f (ξ) ξ
x

P

Markov 
Chains and 
SDE

Interlude 



Our goal now is to mimic the finite Markov chain setting 
for the Bronian motion. 

 
This observation allows to obtain a PDE for the density for 

. Namely, if the density of  is , then 

. From the previous exercise, 

integrating by parts, one checks that 

The fact that the transition 

density of the Brownian motion satisfies this PDE was 
mentioned earlier. In fact, combined with the initial 

condition , the solution  is 

unique. This is the density of the normal distribution with 
mean  and variance .

Wt Wt ρ(t, x)

EF(Wt) = ∫
∞

−∞
F(x)ρ(t, x)dx

∂
∂t

ρ(t, x) =
1
2

∂2

∂x2
ρ(t, x) .

ρ(0,x) = δx ρ(t, x) =
1

2π t
e−x2/(2t)

0 t

Equations for the Brownian motion

Exercise 2.11. Let  be the standard Brownian motion. 

Show that  for any smooth 

function, where  is the second derivative. (You can take 
expectation in Ito’s formula.)

Wt
d
dt

E (F(Wt)) =
1
2

E (Fxx(Wt))
Fxx

Exercise 2.12. Let  be a real random variable with 

mean  and variance . Define for , 

, where  is the usual Brownian 
motion.  

• Show that  has mean  and variance  

• Show that  converges in distribution to the standard 

normal random variable as  

• If  is smooth with all bounded derivatives, then show 

that , where  is the differential 

operator .  

• Show that the density function  of  satisfies PDE 

, where the adjoint operator is 

.

X1

0 1 t ≥ 0
Xt := e−t(X1 + We2t−1) Wt

Xt 0 1

Xt

t → + ∞

F
d
dt

EF(Xt) = E (LF(Xt)) L

LF := Fxx − xFx

ρ(t, x) Xt

∂t ρ = L*ρ
L*ρ = ρxx + ∂x(xρ)



In this chapter we present two derivations of the joint eigenvalue 
density of the GUE: 

• A stochastic processes computation involving the Dyson 
Brownian motion 

• A more classical computation of the joint density of eigenvalues 
of the GUE random matrix,  

We will also discuss extensions of the eigenvalue density formula 
which relates to other random matrix ensembles.  

• Eigenvalue density of GUE 

• Possible extensions 

• Derivation via Dyson Brownian 
motion 

• Derivation by computing Jacobian 
of A ↦ λ(A)

GUE 
Eigenvalue 
distribution

Chapter 3



Let , , be the eigenvalues of the GUE. 
We want to show that their joint density is given by 

Here  is the normalizing 
constant. 

Interestingly, the eigenvalue density is generalized in at 
least two different directions 

Beta ensembles. The GUE comes from unitarily invariant 
Gaussian complex matrices. If we consider real symmetric 
Gaussian matrices (GOE), then the eigenvalue density has 
a similar form, except for the factor . For GSE, 

the factor is . These ensembles are unified in 

the Gaussian beta ensemble, G E, which for  
becomes the GOE/GUE/GSE. 

λ1 ≥ … ≥ λN λi ∈ ℝ

Z2 = (2π)N/20!1!2!…(N − 1)!

∏
j<k

|λj − λk |

∏
j<k

(λj − λk)4

β β = 1,2,4

GUE eigenvalue density and generalizations
The G E does not have a similar invariant matrix model, 
but has a tridiagonal model [Forrester, (1.159)]: 

Here  is the square root of the chi square random 

variable, with density . 

Invariant ensembles. The GUE is unitary-invariant and 
Gaussian, and the matrix has density . If instead 

of  we take an even polynomial which decays at 
infinity, then we obtain an invariant ensemble with matrix 
density . The eigenvalue density will be 

replaced by .

β

χ̃k
2

Γ(k /2)
uk−1e−u2, u > 0

∝ e− 1
2 Tr(X2)

−X2 /2

∝ e− 1
2 Tr(V(X))

∝ ∏
i

e−V(λi)∏
j<k

(λj − λk)2



First, we know that .  

Then, taking a smooth function  and applying 
the multivariable Ito formula 

, 

we get a formula for . Because the vector  
involves only independent Brownian motions, we see that 
in the second term we get . Recall that the 

expectation of the Brownian motion (or of ) is zero, so 
we have, averaging the SDE, 

.  

Therefore, the density of the eigenvalues  of the 

GUE at time  (where ) should satisfy the 
PDE with the adjoint of the above operator that acted on 
functions. 

dλi = dBi + ∑
j≠i

dt
λi − λj

F(λ1, …, λN)

dF(Xt)k = ∑
i

∂iFdXt,i +
1
2 ∑

i, j

∂i∂jF dXi,tdXj,t

dF(λ1, …, λN) dλ

dλi,tdλj,t = δijdt

dBi

∂tEF(λ) = E
1
2

ΔF + ∑
i, j : i≠j

∂iF
λi − λj

ρ = ρ(t, x)
t x = (x1 ≥ … ≥ xN)

From DBM to eigenvalue density

Namely, we obtain , where 

. 

Let us now check that the density , 

where  is the Vandermonde 

determinant, satisfies this PDE. 

∂t ρ = Dρ

D =
1
2

Δρ − ∑
i≠j

∂i ( ρ
λi − λj )

∝ ∏e−λ2
i /(2t)V(λ)2

V(λ) = ∏
i<j

(λi − λj)

Exercise 3.1. Obtain the multivariable Ito formula for 
, where  is the multivariable Brownian motion, by 

using Taylor expansions.
dF(Wt) Wt

Exercise 3.2. Show that .∂iV = V ∑
j : j≠i

1
λi − λj

Exercise 3.3. Show that  is harmonic, that is, . V ΔV = 0

Exercise 3.4. Define , where  solves the above 

PDE. Then  solves the heat equation . 

u = ρ/V ρ

u ∂tu =
1
2

Δu



Now, extend  to the whole space  in a symmetric way 

(from the Weyl chamber ). This means that  

extends antisymmetrically to .  

Assume that the initial eigenvalues for the DBM are distinct 
. Then, by antisymmetric extension,  

. The solution to the heat 

equation with this initial data is immediate: 

, 

which equals the determinant 

. 

This leads to the formula for the transition density of DBM, 
which is due to Brezin-Hikami-Johansson (around 2000): 

.  

Taking limit  gives the desired eigenvalue density of 
the GUE.

ρ ℝN

λ1 ≥ … ≥ λN u
ℝN

ν = (ν1 ≥ … ≥ νN)

u(0,λ) =
1

V(ν) ∑
σ

(−1)σδλ−σ(ν)

u(t, λ) =
1

V(ν)
1

(2π t)N/2 ∑
σ

(−1)σexp( − |λ − σ(ν) |2 /(2t))

u(t, λ) =
1

V(ν)
1

(2π t)N/2
det [e−(λi−νj)2/(2t)]

Pt(ν → λ) =
1

(2π t)N/2

V(λ)
V(ν)

det [e−(λi−νj)2/(2t)]
ν → 0

Exercise 3.5. Finish the proof of the eigenvalue density 
formula of the GUE by taking  limit of the transition 

density. Hint: consider the case when  is an arithmetic 

progression, and express  as another 

Vandermonde determinant.

ν → 0
ν

det [e−(λi−νj)2/(2t)]



“Jacobian” proof of 
the eigenvalue 
density
Here we prove again that the joint density of eigenvalues 
of the GUE of size  is given by N

-2 -1 0 1 2

-2

-1

0

1

2





The normalization constant  in the GUE eigenvalue density is equal to 

, if the integral is taken over the ordered set (Weyl chamber) 

.  

Such multidimensional integrals are quite interesting and important. A more general (but by far not in the full generality of known 
results) integral is known as the Selberg integral: 

. 

The Selberg integral itself has several proofs (e.g., see [Forrester, Ch. 4]).  

The Gaussian version (in fact, limit) of the Selberg integral is  

. 

The way we will compute the  integral as above would follow from representation theory plus a simple limit. The general 
Selberg integral follows from more involved representation theory around Macdonald symmetric functions.

CN
1

(2π)N/20!1!…(N − 1)!
{λ1 ≥ … ≥ λN}

∫
1

0
⋯∫

1

0

n

∏
i=1

tα−1
i (1 − ti)β−1 ∏

1≤i<j≤n

| ti − tj |
2γ dt1⋯dtn =

n−1

∏
j=0

Γ(α + jγ)Γ(β + jγ)Γ(1 + ( j + 1)γ)
Γ(α + β + (n + j − 1)γ)Γ(1 + γ)

∫ℝN

|V(x) |2c
∏

i

e−x2
i /2dxi = N!(2π)N/2

N−1

∏
j=0

Γ(c( j + 1))
Γ(c)

c = 1

Evaluation of the normalization constant

Exercise 3.6. (you can volunteer for a 
talk) 

Read on and present (any) proof of the 
Selberg integral formula.



1. Tridiagonal model for G E was discovered by Dumitriu 
and Edelman (https://arxiv.org/abs/math-ph/0206043) 

2. Most of the discussion of the proof of the GUE 
eigenvalue density using DBM is taken from this post 
by T. Tao. 

3. The second derivation of the GUE eigenvalue density 
(not using DBM) is more classical, and follows the idea 
around volume elements on orthogonal or unitary 
groups. This proof is present in many notes on random 
matrix theory.

β

Notes and references 

https://arxiv.org/abs/math-ph/0206043
http://www.apple.com
https://arxiv.org/abs/math-ph/0206043
http://www.apple.com


We discussed two generalizations of GUE with explicit eigenvalue 
densities - G E and invariant ensembles.  

We can also consider random real (or Hermitian, or quaternionic) 
matrices with independent entries. There is no explicit eigenvalue 
density in this case, but the limiting density of eigenvalues (as size 
of the matrix grows) obeys a universal law - the Wigner Semicircle 
Law. This chapter proves this law for real Wigner matrices, under 
the condition that all moments of the elements are finite.  

The notes on Wigner Semicircle Law follow my previous 
incomplete notes (https://github.com/lenis2000/
RMT_Spring_2016/blob/master/Random_Matrices_Notes.pdf)

β

Semicircle 
Law

Chapter 4
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https://github.com/lenis2000/RMT_Spring_2016/blob/master/Random_Matrices_Notes.pdf
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https://github.com/lenis2000/RMT_Spring_2016/blob/master/Random_Matrices_Notes.pdf
https://github.com/lenis2000/RMT_Spring_2016/blob/master/Random_Matrices_Notes.pdf


Real Wigner matrices



Formulation of the sC law



First, computing the moments of the semicircle 
distribution, we have 

.  

This is done by change the variables as , and 

computing recursively the integral of .  

These quantities are the well-known Catalan numbers. 
Catalan numbers enumerate many interesting families of 
objects, including Dyck paths and trees. Many of the 
counting facts follows from the recurrence relation

m2k = ∫
2

−2
x2k(

1
2π

4 − x2)dx =
1

k + 1 (2k
k )

x = 2 sin θ
sin2k θ

Combinatorics of the semicircle distribution

Exercise 4.1. Prove the formula for the moments of the 
semicircle distribution

Exercise 4.3. Prove that the number Dyck paths satisfies 
the Catalan recurrence

Exercise 4.2. Prove that the Catalan recurrence (plus 

obvious initial values) leads to . Hint: 

from recurrence, get a quadratic equation for the 
generating function of . Solve this quadratic equation, 
and expand the answer in a Taylor series.

Catk =
1

k + 1 (2k
k )

Catk



Trees

Exercise 4.5. Find and justify a bijection 
between rooted ordered trees and Dyck 
paths.

Exercise 4.4. Prove that the number of 
rooted ordered trees with  vertices 
(including the root) is equal to the Catalan 
number . Hint: use recurrence.

n + 1

Catn



convergence in expectation





Exercise 4.6. There is a unique way of choosing 

representatives in the tree counting ➡



Exercise 4.7. Use the tree counting to explicitly show that 
. 

(see also section 2.8 in these 2016 notes)

lim
N→∞

𝔼(tr(A6)) = 5 = Cat3

https://github.com/lenis2000/RMT_Spring_2016/blob/master/Random_Matrices_Notes.pdf
https://github.com/lenis2000/RMT_Spring_2016/blob/master/Random_Matrices_Notes.pdf


Variances





Estimates and last steps







1. Catalan numbers count over 200 various families of 
objects (http://www-math.mit.edu/~rstan/ec/
catadd.pdf) 

2. My incomplete 2016 lecture notes are available at 
https://github.com/lenis2000/RMT_Spring_2016/blob/
master/Random_Matrices_Notes.pdf

Notes and references 

http://www-math.mit.edu/~rstan/ec/catadd.pdf
http://www-math.mit.edu/~rstan/ec/catadd.pdf
http://www-math.mit.edu/~rstan/ec/catadd.pdf
https://github.com/lenis2000/RMT_Spring_2016/blob/master/Random_Matrices_Notes.pdf
https://github.com/lenis2000/RMT_Spring_2016/blob/master/Random_Matrices_Notes.pdf
http://www-math.mit.edu/~rstan/ec/catadd.pdf
http://www-math.mit.edu/~rstan/ec/catadd.pdf
http://www-math.mit.edu/~rstan/ec/catadd.pdf
https://github.com/lenis2000/RMT_Spring_2016/blob/master/Random_Matrices_Notes.pdf
https://github.com/lenis2000/RMT_Spring_2016/blob/master/Random_Matrices_Notes.pdf


The Wigner semicircle law can be applied to GUE matrices, too. 
(Well, we proved it for real matrices, but it also holds for complex 
ones.) Moreover, we know that GUE is infinitely divisible:

, where  has normalized variance , and 

each  is an independent GUE, and has normalized variance  (  

is assumed finite). (“Normalized variance” is normalized by  
since we want the matrices themselves to have a limiting spectral 
density.) 

In fact, this relation for GUE determines the limiting spectral 
distribution. Because all the ’s are unitary invariant, the limiting 

spectrum of  “should not” depend on the eigenbases of these 
pieces, and only depend on their limiting spectra (which are the 
same, up to scale).  

Therefore, it should be , where  is a 

yet mysterious operation on spectra (“free convolution”), and  

are the rescaled copies of . The identity should hold for every , 
and this determines the semicircle distribution.  

This is a roundabout way of proving the semicircle law for the GUE 
(which we already almost established, modulo real/complex 
analogy), but the operation  is very nice in its own right. This 
chapter discusses free convolution and related operations on 
random matrix spectra.

G ∼ G1 + G2 + … + Gk G 1
Gi 1/k k

1/N

Gj

G

𝖲𝖢 = 𝖲𝖢1 ⊞ 𝖲𝖢2 ⊞ … ⊞ 𝖲𝖢k ⊞
𝖲𝖢j

𝖲𝖢 k

⊞

• Limiting spectral distribution 

• Operations on random matrices  

• Orbital measures 

• Moments and limiting spectral 
distribution 

• Freeness 

• Free convolution and related 
operations

Orbital 
measures and 
Free operations

Chapter 5



Let  be a family of Hermitian random matrices. 

We say that  has a limiting spectral distribution  if 

, where the convergence is weak 

convergence in probability (like in the semicircle law).  

We will only consider the compact case, i.e., when the 
limiting spectral distribution is supported on a compact 
interval. Then  is a probability distribution on this 
compact interval. 

Examples of existence of limiting spectral distributions 
include 

• GUE matrices, properly normalized 

• Complex Wigner matrices (Hermitian matrices with iid 
entries with all moments finite), properly normalized 

These examples have  as the limiting spectral 
distribution. Are there any other examples?

A = {AN}
A μ

1
N

N

∑
i=1

δλi(AN) → μ

μ

𝖲𝖢

Spectral distribution. Orbital measures

Let  be a fixed Hermitian matrix of size . Define 

, where  is uniformly random 
(that is, distributed according to the Haar measure). We 
call the distribution of  the orbital measure.  

The name comes from the fact that the unitary group 
 acts on the space  of  Hermitian matrices 

by conjugation, and orbital measures are precisely the 
“uniform” measures on orbits of this action.  

Clearly, the spectrum of  is the same as that of 

. However, the conjugation by a random unitary matrix 
rotates the eigenbasis of the Hermitian matrix at random, 
while keeping the eigenvalues. 

Call  the family of random matrices  

constructed from  in this way.

AN N × N
OrbN(AN) = UANU* U ∈ U(N )

OrbN(AN)

U(N ) ℋN N × N

OrbN(AN)
AN

Orb(A) {OrbN}
A = AN

Exercise 5.1. Let  be any probability distribution on a 
compact interval. Give an example of a family of random 
matrices which have  as the limiting spectral distribution. 

μ

μ



Let  be two families of random matrices, such that 

entries of  are independent from those of . Let  

have the limiting spectral distributions , respectively.  

The basic operation which we will consider is the addition. 
One can also multiply matrices and look at their spectra, 
or take one family  and look at “projections” - eigenvalue 

distributions of corners of  (usually of size proportional 

to ):

A, B
A B A, B

μ, ν

A
A

N

Operations on random matrices
If we take arbitrary families of random matrices  as 
above (i.e., with entries independent from each other, and 
possessing limiting spectral densities), and consider sum, 
product, or projection of  and , then it turns out 
that the limiting spectral distributions of the resulting 
family depends only on , and can be described from 
them efficiently.  

The idea is that  forgets all the information about 

relative positions of the eigenvectors of , and only 
looks at eigenvalues. 

Before we proceed to describing this in detail, let us 
discuss finite orbital measures (they are nice objects). This 
will open a direct path to the projection question. 

In short, what can we say about the random matrix from 
the orbital measure?

A, B

Orb(A) B

μ, ν

Orb(A)
A, B

Exercise 5.2.  Give examples of families  and families 

 as above, such that the limiting spectral 

distributions of  and 

 are different.

A, B
A′�, B′�

A + B = {AN + BN}
A′�+ B′� = {A′�N + B′�N}



Fourier transform of probability measures
Here we take the Euclidean 
space . ℝn

Exercise 5.3. Show that the space 
 of  Hermitian matrices is a  

real Euclidean space with the inner 
product . 

ℋN N × N

⟨A, B⟩ = tr(AB)

Exercise 5.4. Show that the 
Fourier transform of a 
probability measure on  is 
nonnegative definite.

ℝn



Let  be fixed real numbers, and let  
be the (nonrandom) diagonal matrix with these 
eigenvalues. The orbital random matrix corresponding to 

, denoted by , where  is 

random Haar, defines a probability distribution on . 
The goal is to compute its Fourier transform: 

where the integral is over the normalized 
(probability) distribution  on . 

Theorem (Harish-Chandra, Itsykson, Zuber, HCIZ). For 
each  we have 

Here  is the Vandermonde determinant, 

and same for . 

The proof of HCIZ will be given later in the course.

λ = (λ1 ≥ … ≥ λN) Dλ

Dλ Orb(Dλ) = UDλU* U ∈ U(N )
ℋN

dU U(N )

λ, a ∈ ℂn

V(a) = ∏
i<j

(ai − aj)

V(λ)

Orbital measures, hCIZ integral
This formula is valid if all the  and  are distinct. 
Otherwise, the value of the right-hand side should be 
defined by continuity. 

How does this relate to projection? 

So, asymptotics of projections would follow from analysis 
of HCIZ integral with a proportion of ’s set to zero, and 

when the size of  goes to infinity. Sounds hard.

ai λj

ai

det

Exercise 5.5. The 
integral  
depends only on the 
eigenvalues of .

fλ(A)

A



• The proof of HCIZ integral can be deduced from the 
Dyson Brownian motion formulas considered earlier - if 
done carefully enough. 

• There is one more computational proof of HCIZ using 
Schur symmetric functions and a couple of facts about 
them (this would be in the “discrete analogues” part) 

• For a completely different proof using Duistermaat-
Heckman theorem see this post by T. Tao.  

• The right-hand side of HCIZ integral satisfies a 
“branching rule”, which allows to split off the last  and 

expand  as an integral over the smaller space of 

eigenvalues of  matrices. This is 
checked by expanding the determinants. 

• Thus,  is related to the volume of the space of 
corners eigenvalues 

• Corners eigenvalues interlace 

aN

fλ(A)
(N − 1) × (N − 1)

fλ(1)

HCIZ integral and related statements
• From this, we can obtain the following fundamental 

property: the corners eigenvalues of  are 
distributed uniformly over all possible configurations 
(satisfying the interlacing). 

• This space of allowed corners eigenvalues is called the 
Gelfand-Tsetlin polytope, and HCIZ allows to compute 
its volume. 

UDλU−1

Exercise 5.6. Obtain the “branching rule”, that is, 

, where the integral is 

taken over the Lebesgue measure on all configurations  of size 

 interlacing with . The interlacing means

. 

Use the right-hand side of HCIZ formula for  and .

fλ(a1, …, aN−1,0) = cN ∫μ
fμ(a1, …, aN−1)dμ

μ
N − 1 λ
λN ≤ μN−1 ≤ λN−1 ≤ … ≤ λ2 ≤ μ1 ≤ λ1

fλ fμ

https://terrytao.wordpress.com/2013/02/08/the-harish-chandra-itzykson-zuber-integral-formula/
https://terrytao.wordpress.com/2013/02/08/the-harish-chandra-itzykson-zuber-integral-formula/


Let us set all , and keep only . Then 

 is a Fourier transform of a probability measure on , 

which depends on the ’s. There are not many “good” 

measures on  depending on a large number  of 
parameters, and the one coming out of orbital measures 
has some very nice properties. 

First, let us understand what happens when we set all 
these variables to zero. It turns out that there are better 
ways of going to zero: first take an arithmetic progression, 
and then send the difference to zero. 

Then one can see a connection to splines. 

Here is a definition of a B-spline, and a formula for its 
density. 

A (fundamental, or B-) spline with knots  is a 

unique function  such that 

• The function is  everywhere 

• The function vanishes outside 

a2 = … = aN = 0 a1 = a
fλ(A) ℝ

λi

ℝ N

y1 < … < yN

x ↦ M(x)

CN−3

(y1, yN)

Connection to splines
• The function is equal to a polynomial of degree at most 

 on each  

• . 

The formula for the density is 

. 

Define divided differences by  

 

and so on.  

Then for any function whose derivative is piecewise  
we have 

.  

In the exercises 5.7-5.10 below you can use these two 
properties of B-splines (explicit formula and connection to 
the derivative), but you can also prove them yourself 
beforehand.

N − 2 [yi, yi+1]

∫ M(x) dx = 1

M(x) = (N − 1) ∑
i : yi>x

(yi − x)N−2

∏r : r≠i (yi − yr)

f [y1, y2] =
f (y2) − f (y1)

y2 − y1
, f [y1, y2, y3] =

f [y2, y3] − f [y1, y2]
y3 − y1

,

CN−1

f [y1, …, yN] =
1

(N − 1)! ∫ M(x) f (N−1)(x) da



In particular, for an orbital random matrix , the distribution of any of its diagonal elements  contains all 

the information about the eigenvalues  (as knots of the spline which is the density of ).

UDλU* aii

λi aii

Connection to splines. Exercises

Next, we get back to the original questions of moments, 
and leave the detailed study of corners spectra for later.

Exercise 5.7. Let  denote the HCIZ integral (you can use the determinantal formula for it). Compute 

the value  by setting  and noting a Vandermonde determinant on top. 

(Note: there is a much easier way of computing , but suppose we didn’t know that the determinantal 
formula represents an orbital integral.) 

Exercise 5.8. Setting , , , …,  and using an expansion of the determinant along 

the first row or column, compute . 

Exercise 5.9. Show that the divided difference can alternatively be written as  

 

Exercise 5.10. Apply this to get the formula for the Fourier transform of a B-spline. Match this to . 

ϕλ(a1, …, aN)
ϕλ(0,0,…,0) a1 = 0,a2 = ξ, …, aN = ξ(N − 1)

ϕλ(0)

a1 = a a2 = 0 a3 = ξ aN = ξ(N − 2)
ϕλ(a,0,0,…,0)

f [y1, …, yN] = ∑
j

f (yj)
∏i : i≠j (yj − yi)

.

ϕλ(ia,0,0,…,0)



Using the explicit HCIZ integral turns out to be an “overkill” 
for dealing with the projection problem. It also does not 
help much for the other two problems, addition and 
multiplication of the matrices with limiting spectral 
distributions (and how to characterize the spectrum of the 
result). 

First, let us take moments as characterizations of the 
eigenvalue distribution. We did this for the semicircle law. 
We also saw there that the variance goes to zero. So, to 
understand the limiting eigenvalue distribution, it is 
enough to look at 

, where 

 is the empirical spectral distribution of . 

Theorem (Cauchy-Stieltjes transform). Suppose that 
 is a sequence of  Hermitian matrices which 

have a compactly supported spectral distribution  with 
density with respect to the Lebesgue measure. Let 

. Then we have the following connection 

between  and the sequence : 

• , where  does not belong to the 

support of . 

• In another direction, the density has the form 

. 

The first is obvious. For the second, note that 

So,  is a convolution of  with this  

sequence, and hence in the limit  we get the 
density.

1
N

𝔼(tr(Ak)) =
1
N

(λk
1 + … + λk

N) = 𝔼∫ xk dLN

LN =
1
N

N

∑
i=1

δλi(A) A

A = (AN) N × N
μ

αk := lim
N

1
N

𝔼tr(Ak)

μ {αk}

∞

∑
k=0

αk

zk+1
= ∫ℝ

μ(dx)
z − x

z

μ

μ(x) = lim
ϵ→0+

G(x − iϵ) − G(x + iϵ)
2πi

G(x − iϵ) − G(x + iϵ)
2πi

μ δ

ϵ → 0+

Back to spectra. Cauchy-stieltjes



Cauchy-Stieltjes transform allows to reconstruct the limiting 
spectral density of matrices from their moments, and the 

moments are the limits of . For example, in the 

first step of the proof of Wigner’s semicircle law, we 

showed that for ,  converges to either 

 for  even, or  if  is odd (same holds for GUE, which 
we accept without proof).  

From now on, we will ignore technical questions which 
were the other steps of the proof of Wigner’s semicircle 
law, and focus on the “main computation” of the 
expectations of traces of powers.  

Consider the question of adding random matrices, whose 
eigenspaces are in a “generic position” - i.e., , 

where  are families of (deterministic or random) 

matrices with limiting spectral distributions , 

respectively, and  is unitary invariant (to ensure generic 
position of the eigenspaces).  

To understand moments, we need to study , 

which expands into a sum of noncommutative monomials.  

Definition. A mixed moment is an expression of the form 

, or (depending on the context) its 

limit as .  

The goal is to describe the situation in which mixed 
moments are determined by the “pure” moments 

 and . The way how they are 

determined is also nontrivial and interesting.  

We start with the simple example, when  are two 
independent copies of GUE (or GOE, the analysis is 
basically the same), whose elements have variance  (so 

that we do not need to normalize , and  has the 
semicircle limit). In this case we know that their sum 

 is also Gaussian, and so has the same semicircle 
density. However, the underlying combinatorics is going to 
be illuminating.

1
N

𝔼tr(Ak)

A ∼ GOE
1
N

𝔼tr(Ak)

Catk/2 k 0 k

AN + BN

AN, BN

μ, ν
BN

1
N

𝔼tr((A + B)k)

1
N

𝔼tr(An1Bm1…AnlBnl)

N → ∞

lim
N

1
N

𝔼tr(Ak) lim
N

1
N

𝔼tr(Bk)

AN, BN

1/N
LN LN

AN + BN

Mixed moments



Theorem. Let  be families of independent Gaussian 
(GOE/GUE) random matrices. Then 

 is equal to the number of 

noncrossing pairings in the word, without edges pairing an 
 to a . 

In particular, for words only with one letter (say, ), the 
number of noncrossing pairings is 
equal to the corresponding 
Catalan number. 

The proof is very similar to the first step in the Wigner 
semicircle law’s proof. Namely, to avoid expectations of 
odd powers, each matrix element must have a “twin”. They 
together have expectation . To avoid convergence to 
zero, we need to have the maximal possible number of free 
indices. This is in bijection with noncrossing pairings. 
Finally, pairings cannot connect  to  as due to 
independence, they cannot be “twins”. 

A, B

lim
N

1
N

𝔼tr(An1Bm1…AnlBml)

A B

A

1/N

A B

Mixed Gaussian moments

Exercise 5.11. Finish 
the proof of the 
theorem about mixed 
Gaussian moments.



For words with one letter (i.e., ), the number of 
noncrossing pairings (the Catalan number) is also equal to 

the limit . Denote  

Clearly, , where  is the identity matrix. 

Since there are no such noncrossing pairings which 
connect between groups, we have 

 
for all possible words.  

Turns out that the vanishing of “mixed centered moments” 
is more powerful than the noncrossing pairing 
interpretation of the mixed moments. This lies at the center 
of the definition of asymptotic freeness. 

Definition. Two sequences of matrices  are called 
asymptotically free if 

 
for all  and all . 

• The previous computation shows that the pair of 
independent GUE sequences is asymptotically free. 

• Voiculescu showed that if  have asymptotic spectral 

densities and  is unitary invariant, then these are 
asymptotically free. 

• Let  be a real or complex Wigner matrix (iid entries), 

with mean zero and all moments, and  be a random 

matrix independent of . Let  have an asymptotic 

spectral distribution, and . Then  
are asymptotically free. (Thus, unitary invariance is not 
necessary for freeness.)

Ak

lim
N

1
N

𝔼tr(Ak) τ(M ) := lim
N

1
N

𝔼tr(M ) .

τ(1) = 1 1

τ[(An1 − τ(An1))(Bm1 − τ(Bm1))…(Anl − τ(Anl))(Bml − τ(Bml))] = 0

A, B

τ[(An1 − τ(An1))(Bm1 − τ(Bm1))…(Anl − τ(Anl))(Bml − τ(Bml))] = 0

l ≥ 1 ni, mi ≥ 1

A, B
B

XN

AN

XN AN

supN ∥AN∥ < ∞ AN, XN

Mixed Gaussian moments

Exercise 5.12. Show that the previous theorem implies that 
 is 

equal to the number of noncrossing pairings of the same 
word, in which each group of 's and ’s is connected to 

some other group. Here by subtracting  we mean 
subtracting the corresponding multiple of the identity matrix.

τ[(An1 − τ(An1))(Bm1 − τ(Bm1))…(Anl − τ(Anl))(Bml − τ(Bml))]

A B
τ( ⋅ )



If we have two asymptotically free sequences of matrices, 
then 

where  is the limit of the expected normalized trace. 

Therefore, we in principle can reconstruct  from 

 and . This is done by means of the free 
convolution — an operation that linearizes summation of 
asymptotically free random matrices.  

Naive computations of moments  using freeness 
are tedious, and we need a certain toolbox to tackle them. 

So, before discussing free convolution, let us focus on how 
the usual convolution works in terms of moments, and what 
is our toolbox in the usual situation. 

τ[(An1 − τ(An1))(Bm1 − τ(Bm1))…(Anl − τ(Anl))(Bml − τ(Bml))] = 0,

τ
τ((A + B)k)

τ(Ak) τ(Bk)

τ((A + B)k)

Free and usual convolution



(usual) Cumulants

Theorem. If  denotes the cumulant 

generating function of the variable , then for 
adding independent random variables we 
have: . In other words, 
for independent r.v.’s cumulants simply add up.  

We say that cumulants linearize addition of 
independent random variables. 

For compactly supported r.v., convergence of 
cumulants clearly implies convergence of r.v.’s.

CX(z)
X

CX+Y(z) = CX(z) + CY(z)

Exercise 5.14. Prove the Central Limit Theorem 
by cumulants. That is, if  are 
independent identically distributed random 
variables with all moments, and 

, then 
show using the previous theorem that the 
cumulant sequence of  converges to that of 
the standard normal random variable.

X1, X2, …

Zn = (X1 + … + Xn − n𝔼(X1))/( nVar(X1))

Zn

Exercise 5.13. For the standard Gaussian 
random variable, we have , so only 

the second cumulant is nonzero (it is equal to ).

C(z) = z2 /2
1



Combinatorics of usual Cumulants

Exercise 5.15. For independent random variables, all joint 
cumulants  vanishcn(X, X, Y, X, . . . , Y )

This exercise implies that for independent random 
variables, we have , as it 
should be. (Mixed cumulants appear in the expansion of 
the left-hand side, but only the pure cumulants survive.) 

Thus, passing from moments to cumulants (via taking the 
log of the moment generating function) encodes the usual 
convolution (= addition of independent r.v.).

cn((X + Y )n) = cn(Xn) + cn(Yn)

Combinatorially, this vanishing also means that we can 
compute any joint moments, for example:  

(This implies .)𝔼(X2Y2) = 𝔼(X2)𝔼(Y2)

Both  and  are clearly multilinear functions.m c



Here are examples of noncrossing partitions for : 

Theorem (Speicher 1994). All free joint mixed cumulants 
, , vanish if and only if  are free 

as in the random matrix definition.  

[To describe this in general we would need an algebra with 
a trace , but let us not go there.] 

Therefore, free cumulants linearize addition of freely 
independent random variables (in particular, 
asymptotically free random matrices). 

That is, for  asymptotically free, we have 

. 

The remaining goal is to turn this 
observation into a basis for 
computations with limiting spectral 
distributions. The main problem is to turn 
the definition of  into a connection 

between free cumulants and moments. 

n = 3,4

κn(A, A, B, A, …, B) n ≥ 2 A, B

τ

A, B
κn(A + B) = κn(A) + κn(B)

κn

Free cumulants

Exercise 5.16. Find the “free Gaussian” distribution - a random 
variable  whose all pure free cumulants  vanish 

except .

X κn(X, X, …, X )
n = 2



We need a power series identity equivalent to the 
identities . In fact, this identity is 

equivalent to the fact that the two power series 

  

satisfy the relation . This is a formal power 

series identity which is an analytic identity if  is small, 
and the random variables involved are compactly 
supported. 

The function  linearizes free convolution (addition of 
free independent random matrices), that is, 

.  

Recall the Cauchy transform .  

We have from the relation: .  

Denote , we have . Therefore,  is 

an inverse function of the Cauchy transform of .  

Finally, define the Voiculescu R-transform by 

 

Then we have  

Note that the last problem is equivalent to computing the 
limiting spectrum of , where  is Haar, and  

are matrices with half of the eigenvalues  and the other 

half .

mn = ∑
π∈NC(n)

κπ1
…κπℓ(π)

L(z) = 1 +
∞

∑
n=1

mnzn, K(z) = 1 +
∞

∑
n=1

κnzn

L(z) = K(z L(z))
|z |

K − 1

KX⊞Y − 1 = KX − 1 + KY − 1

G(z) = ∫
dμ(x)
z − x

=
1
z

L(1/z)

K(G(z))/G(z) = z

V(z) = K(z)/z V(G(z)) = z V
μ

R(z) := V(z) −
1
z

= G(−1)(z) −
1
z

.

RX⊞Y(z) = RX(z) + RY(z) .

A + UBU* U A, B
1

−1

R transform

Exercise 5.17. Compute the R-transform of the semicircle 
distribution.

Exercise 5.18. Let  be free independent random 

variables, each of which takes values  with probabilities . 

Compute the free convolution .

X, Y

±1
1
2

X ⊞ Y



1. Free probability for random matrices and beyond is 
discussed in surveys:  

1. “Free Probability Theory” by Roland Speicher (arXiv:
0911.0087) 

2. “Three Lectures on Free Probability” by Jon Novak 
(arXiv:1205.2097) 

3. “Free probability and random matrices” by Roland 
Speicher (arXiv:1404.3393) 

2. Freeness (vanishing of mixed centrered moments) is 
equivalent to vanishing of mixed free cumulants, see 
this paper by Speicher.

Notes and references 

https://link.springer.com/article/10.1007/BF01459754
https://link.springer.com/article/10.1007/BF01459754


A lot of formulas in unitary invariant random matrix theory (around 
GUE) follows from certain classical and natural representation 
theoretic constructions. The goal of this chapter is to explain how 
to use this connection to evaluate the normalization constant in the 
GUE eigenvalue density (which most commonly is derived from 
the Selberg integral). 

The alternative derivation presented here could seem somewhat 
cumbersome to some, but it is very natural to others - likely this is a 
matter of taste.

• Representation theory 
background 

• Schur-Weyl duality 

• Counting dimensions in Schur-
Weyl duality 

• Robinson-Schensted-Knuth 

• Joint distribution 

• Limit of the joint distribution to 
GUE

Discrete 
analogues

Chapter 6



Necessary Background in rep. theory

Exercise 6.1. (Burnside lemma) Show that if  is 

irreducible, then . 

𝔞
𝔞 = End(E )



 Then we see that the whole space  decomposes as  
  .

E
E = ⨁

i

End(Vi) ⊗ End(Wi)

Necessary Background in rep. theory

Exercise 6.2. For a semisimple , its commutant has the form 

. (Hint: consider one summand: 

 and  and use the description of matrices which 

commute with the whole .)

𝔞

𝔞′� = {⨁
i

IVi
⊗ Bi : Bi ∈ End(Wi)}

𝔞 = End(V ) E = V ⊗ W
End(V )

Exercise 6.3. For a semisimple , we have .𝔞 (𝔞′�)′� = 𝔞



Schur-weyl duality

           ∎

Exercise 6.4. Show polarization, that is, 
 for any finite-dimensional .Sn(W ) = span{X⊗n : X ∈ W} W

Exercise 6.5. Show the last assertion in the proof, that it 
suffices to only take matrices from , i.e., invertible 

matrices for .

GL(N )
X



The Schur-Weyl duality leads to the following identity 
between dimensions: . Here the 

sum is over labels of irreducible representations of 
symmetric/linear groups, and  are their 
respective dimensions (the first one for symmetric group,  
the second - for ).  

It turns out that the labels are partitions of  with at most 

 parts. These objects are discrete analogues of random 
matrix spectra. Partitions are represented by Young 
diagrams. Notation: .

Nn = ∑
λ

dim λ ⋅ dimN λ

dim λ, dimN λ

GL(N )

n
N

λ = (λ1 ≥ … ≥ λN)

Dimension counting
We will not prove this identification of labels.  

On the other hand, will provide combinatorial 
interpretations of  which will imply the 
following formulas: 

where  is arbitrary number greater than the number of 

nonzero parts in  (the formula does not depend on ). 

In other words, we will work with the formulas, without 
connecting them to dimensions of irreducible 
representations.

dim λ, dimN λ

N
λ N



The dimension counting identity  

implies the definition of a probability distribution which is 
called the Schur-Weyl measure: 

 

Because dimensions are nonnegative, this is indeed a 
probability distribution. 

From the previous formulas for  we see that 

the probability weight  contains a square of the 
Vandermonde in the shifted partition coordinates 

. Thus, it is very natural to view 

 as a discrete analogue of a random matrix 
spectrum. 

There is one obstacle in getting a complete analogy, 
though. The GUE distribution has the form 

 (where  are the 

eigenvalues and  is the Gaussian weight). There is no 

parameter  in the GUE

Nn = ∑
λ

dim λ ⋅ dimN λ

PN,n(λ) =
dim λ ⋅ dimN λ

Nn
.

dim λ, DimN λ
PN,n(λ)

li = λi + N − i, i = 1,…, N
PN,n

const(N )∏
i<j

(xi − xj)2
N

∏
i=1

w(xi) xi

w
n

Schur-weyl measures on partitions

This problem can be addressed by slightly modifying the 
measure  by means of randomizing the parameter , 
and this leads to better formulas in the end.

PN,n n

Exercise 6.6.  cannot be written in the form 

, where the constant and the 

function  do not depend on .

PN,n(λ)

const(N )∏
i<j

(li − lj)2
N

∏
i=1

wN(li)

wN(l) n



The aim now is to give a combinatorial proof of the 
dimension counting formula , after 

which the quantities  will take their 
combinatorial meaning. 

(Again, let me emphasize that we’re not going to connect 
them to dimensions of irreducible representations.) 

Consider a word  of length  from the 

alphabet  (that is, each ). 

An increasing subsequence in this word is a subword 
, where , and . The length 

of the longest increasing subsequence in , , is 
defined as the maximum over the lengths of all increasing 
subsequences in . Note that this maximum can be 
achieved on more than one subwords. 

For example, in the word , each of 

 forms a longest increasing 

subsequence, and . 

How to compute  in general?

Nn = ∑
λ

dim λ ⋅ dimN λ

dim λ, dimN λ

w = w1…wn n
{1,…, N} wi ∈ {1,…, N}

wi1…wik i1 < … < ik wi1 ≤ … ≤ wik

w LIS(w)

w

w = 2133215454
13345,13355,13344

LIS(w) = 5

LIS(w)

Robinson-Schensted-Knuth
Note that we’re not interested in the subsequence itself - 
only its length .  

There are algorithms for finding the subsequence, too, 
but we will present a linear time algorithm for getting 

.  

The algorithm has one buffer. A new letter  is read from 
the word at each step. Then: 

1. If  is  than everything in the buffer (or if ), then 

put  at the end of the buffer 

2. Otherwise,  bumps the smallest element that is , 
out from the buffer, and stands into its place. 

The final length of the buffer is . 

Example of the buffer’s evolution for the 
word :

LIS(w) ∈ {1,…, n}

LIS(w)

wi

wi ≥ i = 1
wi

wi > wi

LIS(w)

w = 2133215454

Exercise 6.7. Prove the last statement.



Robinson-Schensted-Knuth
The RSK (Robinson-Schensted-Knuth) correspondence is a 
refinement of the above “ ” algorithm. Namely, 

consider several buffers . Each new letter arrives 
into the first buffer and follows the rules as before. 
However, when a letter is bumped from some buffer , it is 
not discarded as before, but rather it is inserted in the 
next buffer .  

Here is the example:

LIS
1,2,3,…

j

j + 1

This collection of buffers is referred to as the P-tableau. It 
is a filling of a Young diagram (  in the example) 

by numbers from  such that the numbers weakly 
increase in the horizontal direction and strictly increase in 
the vertical direction. Such a filling is called a 
semistandard Young tableau of shape . 

To record the full information about the word , let us also 
encode the place where the last letter settles in the 
construction of the P-tableau, at each step. This can be 
encoded by placing the step’s number into the 
corresponding box. The result is a so-called Q-tableau - a 
semistandard filling of boxes of  by distinct numbers 

from  to  (where  is the number of boxes). This 

filling is called a standard Young tableau of shape . 

In the example we get:

λ = (5,4,1)
{1,…, N}

λ

w

λ
1 |λ | |λ |

λ

Exercise 6.8. Show that the map P-tableau is not one-
to-one.

w ↦



Robinson-Schensted-Knuth
By definition, RSK is a map from the set of words to the set 
of pairs of Young tableaux  of same shape, where  

is semistandard with entries , and  is 
standard. 

Comparing the sizes of the sets, we have 

. 

The sum is over all Young diagrams  with  boxes and 

 rows. Thus, we have combinatorially (bijectively!) 
proven a formula corresponding to dimension counting in 
the Schur-Weyl duality.

(P, Q) P
{1,2,…, N} Q

Nn = ∑
λ

#SYT(λ) ⋅ #SSYTN(λ)

λ n
≤ N

Exercise 6.9. Show that the RSK map  is one-to-
one. (Hint: construct its inverse, which can be done 
inductively step-by-step).

w ↦ (P, Q)

In fact, , and .  

From now on we will use the notations  to 
denote these combinatorial quantities, the numbers of 
standard / semistandard tableaux. We will proceed to 
compute them. 

To summarize,  is a probability 

distribution on the set of Young diagrams  with  boxes 

and  rows, which is obtained by taking a uniformly 

random word of length  from the alphabet , 
applying RSK to it, and reading off the shape of the 
tableaux.  

In the next two steps we will generalize the input of the 
RSK to a certain Poisson random input, which will have 
random (and not fixed) length of the word. This 
generalization is convenient for the connection to random 
matrices.

#SYT(λ) = dim λ #SSYTN(λ) = DimN λ

dim λ, DimN λ

PN,n(λ) =
dim λ ⋅ dimN λ

Nn

λ n
≤ N

n {1,2,…, N}



Poissonization
Let us recall the Poisson process (on , but this 
construction works on any measurable space with a 
Radon measure).  

The Poisson random variable of rate  is 

. 

Poisson process is uniquely determined by:

ℝ

μ

P(X = k) =
μk

k!
e−μ

We assume basic familiarity with Poisson processes. 

Now take  independent 

Poisson processes of rate , 
located one under another. Start 
at  and fix “time” . Then the 
configuration of the points in the 
Poisson processes can be read a 
word from the alphabet 

. The length of this word is random, and has 

Poisson distribution with rate .  

(Because there are only finitely many Poisson processes, 
the probability that there is a point in two or more of them 
at the same time is zero.) 

Proposition. Applying RSK to the Poisson random word 

we get measure .

N
1

0 t

{1,…, N}
Nt

PN,t(λ) := e−Nt (Nt)|λ|

|λ | !
dim λ ⋅ dimN λ

N|λ|

Exercise 6.10. Find the distribution of the distance 
between two consecutive points in a Poisson process on  

of rate . 

ℝ
λ

Exercise 6.11. Conditioned on the length, the distribution 
of the word is uniform among all words of this length.



Generalization. Parametric model
Now, let us generalize the distribution of the input word, 
and the measure . Fix arbitrary parameters 

. Consider 
independent Poisson 
point processes of rates 

, and fix a “time” 

parameter . View the 
points of these Poisson 
processes as producing 
a random word from the alphabet . The goal is 
to understand what is the distribution of the Young 
diagram obtained by applying the RSK to this random 
word. 

The difference with  is that now the random word will 
have different proportions of different letters. Let us fix 
these proportions, that is, the numbers  of letters 

 in a random word. Because these numbers are 
point-counts in independent Poisson processes, their joint 

distribution is simply .

PN,t

a1, …, aN > 0

ai

t

{1,2,…, N}

PN,t

k1, …, kN

1,…, N

e−(a1+…+aN)t ak1
1 …akN

N tk1+…+kN

k1!…kN!

Using RSK, we see that the distribution of the standard 
tableau  is still uniform (conditioned on the shape ), 

while the distribution of the semistandard tableaux  

depends on the parameters . Namely, fix  and set  

.  

 is called the Schur polynomial.  

We have  (where  appears  times).

Q λ
P

ai λ

sλ( ⃗a ) = sλ(a1, …, aN) := ∑
P : sh(P)=λ

ak1
1 …akN

N

sλ

sλ(1,…,1) = DimN λ 1 N

Exercise 6.12. Show that: 

1. Conditioned on the number , the 

distribution of the random letter counts  is 

multinomial  

2. Conditioned on all letter counts , the 
distribution of the word is uniform.

n = k1 + … + kN

k1, …, kN

( n
k1, …, kN)

ak1
1 …akN

N

(a1 + … + aN)n

k1, …, kN

Exercise 6.13. Show that the distribution of  is λ

PN, ⃗a (λ) = e−t(a1+…+aN)t|λ|sλ( ⃗a )
dim λ
|λ | !

.



Schur polynomials

The next goal is to show that the determinantal formula 
satisfies the recurrence, too.

Exercise 6.14. Show that the Schur polynomial defined as 
the sum over semistandard tableaux (in the previous page) 
satisfies the recurrence.

Exercise 6.15. Show that to prove the recurrence formula 
for general , it suffices to prove it for .x1, …, xN xN = 1



Schur polynomials. Recurrence for determ’s
Let us take  for simplicity. Set 

, and 

. 

 We will perform the following operations with the 
determinant in the numerator: 

• Subtract row  from row  for all . 

• The resulting determinant’s last column contains only 
one  and all other elements are zero, so we can reduce 

order of the determinant by . 

• The -th column then is divisible by , this is how the 
Vandermonde drops in order, too. 

• After the division, use the multilinearity of the 
determinant to get the desired recurrence. 

 

 

N = 4
ℓi = λi + N − i = λi + 4 − i
mi = μi + N − 1 − i = μi + 3 − i

j j − 1 j = 2,…, N

1
1

i xi − 1

1
V4(x1, x2, x3,1)

det

xℓ1
1 x ℓ1

2 xℓ1
3 1

xℓ2
1 x ℓ2

2 xℓ2
3 1

xℓ3
1 x ℓ3

2 xℓ3
3 1

xℓ4
1 x ℓ4

2 xℓ4
3 1

=
1

V3(x1, x2, x3)(x1 − 1)(x2 − 1)(x3 − 1)
det

xℓ1
1 − xℓ2

1 x ℓ1
2 − x ℓ2

2 xℓ1
3 − xℓ2

3

xℓ2
1 − xℓ3

1 x ℓ2
2 − x ℓ3

2 xℓ2
3 − xℓ3

3

xℓ3
1 − xℓ4

1 x ℓ3
2 − x ℓ4

2 xℓ3
3 − xℓ4

3

=
1

V3(x1, x2, x3)
det

∑ℓ2≤m1<ℓ1
xm1

1 ∑ℓ2≤m1<ℓ1
x m1

2 ∑ℓ2≤m1<ℓ1
xm1

3

∑ℓ3≤m2<ℓ2
xm2

1 ∑ℓ3≤m2<ℓ2
x m2

2 ∑ℓ3≤m2<ℓ2
xm2

3

∑ℓ4≤m3<ℓ3
xm3

1 ∑ℓ4≤m3<ℓ3
x m3

2 ∑ℓ4≤m3<ℓ3
xm3

3

∎



Dimension formulas
This computes the dimension , which is the number 

of semistandard Young tableaux of shape . To compute 
the number of standard Young tableaux, we “just need to 
take  very large”. In other words, if  is fixed and  is very 
large, then most of the diagrams will have distinct entries. 
Namely: 

We would like to show that (here , and  is 
arbitrary):

DimN λ
λ

N λ N

n = |λ | N ≥ ℓ(λ)

Exercise 6.16. Show that lim
N→∞

DimN λ
N|λ|

=
dim λ
|λ | !

.



The first of the factors has a limit, and so we need to 
consider the second factor. Actually, the product over  is 

finite, so it suffices to take a single . 

The first factor is not growing, and for the Gamma 
function there is a lemma:

i
i

Dimension formulas 
Lemma. For all  we have , 

where  is complex of argument .  

Using this lemma, we see that the ratio of the Gamma 
functions produces , which cancels the factor  in 
Exercise 6.16.  

Putting all together, we obtain the desired formula for 
. We proved the following representation, where 

: 

 where , 

and  is the Poisson distribution.

α ∈ ℂ lim
|z|→∞

Γ(z + α)
Γ(z)

z−α = 1

z ≠ π

Nλi N−|λ|

dim λ
⃗ℓ = (λ1 + N − 1,λ2 + N − 2,…, λN)

PN,t(λ) = cNV( ⃗ℓ )2
N

∏
i=1

w(ℓi), cN =
t−(N

2 )
0!1!…(N − 1)!

w(ℓ) =
e−ttℓ

ℓ!
, ℓ ∈ ℤ≥0

Exercise 6.17. Prove this lemma.



The distribution  looks very similar to GUE. The latter 

has the density of eigenvalues : 

. Let us obtain 

the GUE as a limit of the Schur-Weyl measures , which 
will also bring us the proof of the value of the constant 

. We begin with : 

The division by the square root of  is not surprising - it 
corresponds to the scaling of the discrete space to 
continuous. 

PN,t

⃗x = (x1 ≥ … ≥ xN)

PGUE(x1, …, xN) = cGUE
N V( ⃗x )2

N

∏
i=1

1

2π
e−x2

i /2

PN,t

cGUE
N N = 1

t

Limit to GUE, and Selberg Integral again

That is, .cGUE
N =

1
0!1!…(N − 1)!Exercise 6.18. Using Stirling’s formula, show the local 

central limit theorem for the Poisson random variable: 

 as e−t tk

k!
∼

1

t

1

2π
e−z2/2 t → ∞, k = ⌊t + z t⌋

Exercise 6.19. Show that for general , we have 

, where  

and . 

N
PN,t(λ1, …, λN) ∼ t−N/2PGUE(x1, …, xN) λi = t + xi t

t → + ∞



1. There are many good books on representation theory, 
including H. Weyl, “The Classical Groups: Their 
Invariants and Representations” (1946, reprinted many 
times). 

2. Combinatorics of Young tableaux is discussed in 
several books, including 

1. R. Stanley “Enumerative Combinatorics” 

2. B. Sagan “The Symmetric Group: Representations, 
Combinatorial Algorithms, and Symmetric Functions” 

3. W. Fulton “Young tableaux” 

3. Exercise 6.7 is the first case of the Greene’s Theorem. 
For one of its proofs see, for example, these video 
lectures by X. Viennot (at the mark “increasing and 
decreasing subsequences f maximal size”).  

4. On algorithms for finding the longest increasing 
subsequence itself see, for example, 

1. https://stackoverflow.com/questions/2631726/how-
to-determine-the-longest-increasing-subsequence-
using-dynamic-programming/2631810 

2. https://en.wikipedia.org/wiki/
Longest_increasing_subsequence 

5.

Notes and references 

http://www.viennot.org/abjc3-ch1.html
http://www.viennot.org/abjc3-ch1.html
https://stackoverflow.com/questions/2631726/how-to-determine-the-longest-increasing-subsequence-using-dynamic-programming/2631810
https://stackoverflow.com/questions/2631726/how-to-determine-the-longest-increasing-subsequence-using-dynamic-programming/2631810
https://stackoverflow.com/questions/2631726/how-to-determine-the-longest-increasing-subsequence-using-dynamic-programming/2631810
https://en.wikipedia.org/wiki/Longest_increasing_subsequence
https://en.wikipedia.org/wiki/Longest_increasing_subsequence
http://www.viennot.org/abjc3-ch1.html
http://www.viennot.org/abjc3-ch1.html
https://stackoverflow.com/questions/2631726/how-to-determine-the-longest-increasing-subsequence-using-dynamic-programming/2631810
https://stackoverflow.com/questions/2631726/how-to-determine-the-longest-increasing-subsequence-using-dynamic-programming/2631810
https://stackoverflow.com/questions/2631726/how-to-determine-the-longest-increasing-subsequence-using-dynamic-programming/2631810
https://en.wikipedia.org/wiki/Longest_increasing_subsequence
https://en.wikipedia.org/wiki/Longest_increasing_subsequence


• Definitions 

• Biorthogonal and orthogonal 
ensembles 

• Determinantal structure of GUE 
and Schur-Weyl measures

Determinantal 
point 
processes

Chapter 7

Our next goal is to describe local Asymptotics fo the GUE 
eigenvalue distribution. This can be done using determinantal 
point processes - a powerful algebraic framework for studying 
random point configurations featuring “free fermionic” structure. 
We will discuss basic definitions, certain interesting subclasses 
of determinantal processes, and then apply this theory to Schur-
Weyl measures and the GUE eigenvalue distribution.



7.1 Point processes

Let X be a locally compact separable topological space. A point configuration
X in X is a locally finite collection of points of the space X. Any such point con-
figuration is either finite or infinite. For our purposes it su�ces to assume that
the points of X are always pairwise distinct. The set of all point configurations
in X will be denoted as Conf(X).

A relatively compact Borel subset A ⇢ X is called a window. For a window A

and X 2 Conf(X), set NA(X) = |A\X| (number of points of X in the window).
Thus, NA can be viewed as a function on Conf(X). We equip Conf(X) with the
Borel structure generated by functions NA for all windows A. That is, all these
functions NA are assumed measurable.

A random point process on X is a probability measure on Conf(X).
For algebraic purposes it is always enough to assume that the space X is

finite, and then Conf(X) = 2X is simply the space of all subsets of X. The same
space of configurations Conf(X) = 2X may be taken for countable discrete X,
then Conf(X) is compact.

3



7.2 Correlation measures and correlation functions

Given a random point process, one can usually define a sequence {⇢n}1n=1, where
⇢n is a symmetric measure on Xn called the nth correlation measure. Under mild
conditions on the point process, the correlation measures exist and determine
the process uniquely, cf. [Len73].

The correlation measures are characterized by the following property: For
any n � 1 and a compactly supported bounded Borel function f on Xn one has

Z

Xn

f⇢n =

*
X

xi1 ,...,xin2X

f(xi1 , . . . , xin)

+

X2Conf(X)

(7.1)

where the sum on the right is taken over all n-tuples of pairwise distinct points
of the random point configuration X.

Often one has a natural measure µ on X (called the reference measure) such
that the correlation measures have densities with respect to µ

⌦n, n = 1, 2, ... .
Then the density of ⇢n is called the nth correlation function and it is usually
denoted by the same symbol “⇢n”.

Often one has a natural measure µ on X (called the reference measure) such
that the correlation measures have densities with respect to µ

⌦n, n = 1, 2, ... .
Then the density of ⇢n is called the nth correlation function and it is usually
denoted by the same symbol “⇢n”.

If X ⇢ R and µ is absolutely continuous with respect to the Lebesgue mea-
sure, then the probabilistic meaning of the nth correlation function is that of the
density of probability to find an eigenvalue in each of the infinitesimal intervals
around points x1, x2, . . . xn:

⇢n(x1, x2, . . . xn)µ(dx1) · · ·µ(dxn)

= P {there is a particle in each interval (xi, xi + dxi)}.

On the other hand, if µ is supported by a discrete set of points, then

⇢n(x1, x2, . . . xn)µ(x1) · · ·µ(xn)

= P{there is a particle at each of the points xi}.
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• Kernel is not unique. For example,  is also a 

kernel for the same process. 

f (x)
f (y)

K(x, y)

Exercise 7.1. Prove this proposition







Exercise 7.2. ⬅   Prove this identity



Exercise 7.3. Formulate and prove the Cauchy-Binet theorem.



Exercise 7.4. Prove Proposition 7.7



Schur measures

Exercise 7.5. 1. Find the inverse of the  matrix 

. Hint: use the cofactor formula for the inverse 
matrix, and note that the cofactors are matrices of the same form 
as .  

2. Use the inverse of  to find the correlation kernel for the 
Schur measures. (Hint: See the links at the end of the chapter 
where you can check your answer.)

N × N
Gij = 1/(1 − xiyj)

Gij

Gij



Exercise 7.6. Show that the system 
of orthogonal polynomials is indeed 
defined uniquely.



Exercise 7.7. Finish this first proof 
the Christoffel-Darboux formula.





We will discuss basic properties of Hermite and Charlier 
polynomials, and derive their properties which will be 
useful for asymptotic analysis of the Christoffel-Darboux 
kernel.  

 

Schur-Weyl and GUE: polynomials

 

Exercise 7.8. Prove the hypergeometric formulas ➡  for the 
Charlier and Hermite polynomials. You may use all the 
statements proven later in this chapter.



Rodrigues-type formulas and norms

Exercise 7.9. Prove this proposition.  

Hint: it is enough to show that the right-hand sides are monic 
and orthogonal with respect to the corresponding weight. To 
show orthogonality, use the summation/integration by parts.

Exercise 7.10. Prove this proposition. Hint: again use 
integration/summation by parts.



Integral representations for Hermite



Integral representations for Charlier
Exercise 7.11. Find a function whose Fourier 
coefficients are .̂f (n) = tn /n!

Exercise 7.12. Using the previous exercise, show that 
the generating function for the Charlier polynomials 

is .
∞

∑
n=0

zn Cn(x)
n!

= e−zt(1 + z)x



Integral representations for Charlier

Here we need to use the symmetry (“bispectrality”) of the 
Charlier polynomials, which follows from their 

hypergeometric representation: . This, 

together with the previous integral formula, leads to the 
second integral representation for the Charlier 
polynomials: 

Cn(x)
Cx(n)

= (−t)n−x



In both Schur-Weyl and GUE ensembles, we can use the 
integral representations for the orthogonal polynomials to 
obtain integral formulas for the kernels which are suitable 
for asymptotic analysis. We use the formula 

 for the kernel. In the 

sum, we in both cases extend the summation to 
 because one of the integrals vanishes 

for negative .  

Putting this all together, we get the following formulas for 
the GUE and the Schur-Weyl kernels. 

In the first kernel, , while in the second one 

.

K(x, y) =
N−1

∑
n=0

pn(x)pn(y)
hn

w(x)w(y)

n = − ∞, …, N − 1
n

x, y ∈ ℝ
x, y ∈ ℤ≥0

Kernels
Exercise 7.13. Prove the formula for .KGUE

N

Exercise 7.14. Prove the formula for .KSW
N
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Chapter 8

Here we discuss asymptotics of the GUE spectrum and its 
discrete analogue (the Schur-Weyl measure) using 
determinantal point processes. The steepest descent method is 
the key to our proofs.  

In the limit, we discover the universal objects: the continuous 
and discrete sine processes, and the Airy kernel/point process.





1. Steepest descent method for determinantal point 
processes related to the Plancherel measure on 
partitions is outlined in “Symmetric functions and 
random partitions” by Andrei Okounkov. 

2.

Notes and references 

https://arxiv.org/abs/math/0309074v1
https://arxiv.org/abs/math/0309074v1
https://arxiv.org/abs/math/0309074v1
https://arxiv.org/abs/math/0309074v1
https://arxiv.org/abs/math/0309074v1
https://arxiv.org/abs/math/0309074v1
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