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e [Infinite binary seguences

11011111110111010001010010110011110011110010001010. ..



. Gy lenmple)
Exchangeable random binary sequences f

Exchangeability CShm K bt .)("
A random sequence X1, Xo,..., where X; € {0,1}, * S
is called exchangeable if its distribution does not

change under (finitary) permutations of indices.

Trvhine L wder wnitarm resmpling
pven e bdunddr vy endiAiong

Exchangeable distributions form a convex set

N:&M1+(1_a>ﬂ2v Q€ [Ov 1]

Extreme exchangeable distributions are the u©'s which cannot be
decomposed as above with p; 2 # 1 and o # 0,1

. . - e . [de Finetti 1930s,
Classification of extreme exchangeable distributions Hewitt-Savage 1955]

Extreme exchangeable distributions are precisely the Bernoulli
product measures ., indexed by p € [0, 1]

Under 11, the X;'s are independent with P(X; = 1) = p.



Classification of extreme exchangeable distributions

Extreme exchangeable distributions are precisely the Bernoulli
product measures i, indexed by p € [0, 1]

Under i), the X;'s are independent with P(X; = 1) = p.

How to sample
To sample an exchangeable sequence, first pick random p from a mixing
distribution v on |0, 1]

Then, given p, sample independent X;’s according to i,

Example
The uniform mixing distribution v on [0, 1| corresponds to the “Polya urn":

for each n, X1,..., X, has a uniformly random number & € {0,...,n} of
zeroes and ones (homework problem: how to pass from n to n + 17)

clon o eltrome mersures
Parameter recovery: Law of Large Numbers

mndk i the untborm ceample;

X .+ X
lim LT +An = in distribution and a.s.
n——+o00 n

mlds i gonernl, tm




Ergodic approach for describing “boundaries”

1.

Want to classify probability distributions with certain
symmetry and sequential structure

Distributions form a convex set

Classify extreme distributions using the sequential structure
(each infinite-level extreme is a limit of finite-level ones)

Each distribution is a convex combination of extremes
Law of Large Numbers for parameter recovery «—— (4he, first foeus oF the tpndk)

Select non-extreme distributions are very interesting
(won’t discuss this in the talk)

The ergodic approach was employed by Vershik and Kerov in 1970-80s to
apply to representation theory of “big” groups:

e the infinite-dimensional unitary group U(c0)

e the infinite symmetric group S(oc) [Edrei1950s, Thoma 1964]

[Edrei 1950s, Voiculescu 1976],
Vadim’s talk on Monday

Related applications include the study of ergodic central measures on
matrices, both Hermitian/C, and over finite fields



(ditteront "smnbgue” of the Woo )/ SCoo) rep thearyy)
e Infinite triangular random matrices

over a finite field
11011111110111010001010010110011110011110010001010....

LW/ (X,Y) < (X +Y,Y) mod 2

s (1111101101 \
i 0101110001
) 0011110011
0001110111
00001071010
0000071071710
00000O0T1T1O01
Arather smmetriy of the 00000000100
00000O0O0GO0T1 0
V& il cin Hig S%%Y\M/( 000000000 1



Random triangular matrices over finite fields
F, — finite field (q = 2 when Fy = {0, 1} suffices)
U — group of infinite uni upper triangular matrices over [
Each n xn triangular matrix is conjugate to a Jordan form by an element of GL,,(F;)

Jordan forms are encoded by Young diagrams A= (A1 > Ao > ... >0), \; € Z

n

n .

(L (Fy) — group of infinite matrices which finitely differ from the identity

Exchangeability analogue (symmetry of measures)

A probability Borel measure 1 on U is called central if ;1(M) = pu(gMg™')
for all measurable M C U and g € GL(F;) such that gMg~* C U



Exchangeability analogue

A probability Borel measure 1 on U is called central if ;1(M) = pu(gMg™')
for all measurable M C U and g € GLo(Fy) such that gMg~' C U

Example: uniform product measure on U for which X;;, ¢« < j, are independent € [,

g € GL(Fy)
(informnlliy)

(1111101101 \ (1111101101 \
0101110001 0101110001
0011110011 0011110011
0001110111 000T1T110T1T11
0000T10T1O0T10 _1 d 0000T10T1O0T10
0000O0T1O0T1T1O0 _ 0000O0OT1O0T1T1aQ0

90000001101 g — 0000O0O0OT1T1FQ01
0000O0O0OO0OT1O0O0 0000O0O0OO0OT1O0O0
0000O0O0OO0O0T1O0 0000O0O0OO0O0T1O0
0000O0O0OO0GO OO0 1 0000O0O0GO0GO0O0 1
\ ' / \ ' /

Exercise: for X, Y iid from Fs, we have (X,Y) < (X +Y,Y)



Central measures form a convex set. Goal: classify extreme central measures

o Related to representation theory of G L, (F;) as n — oo  [Vershik-Kerov 90s+]
[Gorin-Kerov-Vershik 2012]

e At a level of (some) tools, is a one-parameter deformation of the representation
theory of S(o0) (the latter corresponds to q — o0)

e [he answer was conjectured by Kerov in 1992 and proven by Matveev in 2017
(together with a Macdonald generalization which adds yet one more parameter)

Theorem

Extreme central measures are in one to one correspondence with tuples

ap > ag > ... >0, B12>0B2>...20, v >0

%3( 1—t>:1

t:=1/q (=0 - infinite spmmetrie grug)

such that




Realization of extreme central measures 'cln H'Ws"

I

n .

Central measures are determined by a sequence of ran-
dom Jordan block structures A(n) of n X n corners, with

A(n) =X (n)+X(n)+...+ A \(n),n=1,2,...



— —

Let w = (a; 3;77) where aa = (g > a9 > ... > 0
B=(B1=>2P2>...20),7v>0, and ) / Z: <(y,- | 7 —f> —3 |

wobeoa;,=06;,=0,v=1-1 t:=1/q

Central measures are determined by a sequence of ran-
dom Jordan block structures A(n) of n x n corners, with

A(n)| = A(n)+X(n)+...+X\p(n), n=1,2,...

Realization of extreme central measures

1

Prob (A(n) =v) = 7 P, (wo)Qu(w)

P,. (), — Hall-Littlewood symmetric polynomials

Uniform measure is extreme and corresponds to
a; = (1 — q_l)ql_", 1=1,2,...; Bji=v7=0



Example of a Hall-Littlewood polynomial

e A

P(l())(.l,l..ll)) — .”I?i1 —+ + (1 — f)(lllz -+ Illj) - (1 — t).’lf

Prob (A\(n) =v) = 7 P, (wy)Qy(w)

Couple of useful facts about Hall-Littlewood polynomials

N M 1 tx.yo

1Y)
P,(z1,...,2N)Qu(y1,-- - ym) = | [ 11

E,, | paleirabe Sl 711
=1 9=

| det 7?J+N_'}]5Vj:1

t = 0 — Schur polynomials  s)(z1,...,2y5) = ( | )

Ti— Xj




Matrices over finite fields

Random infinite binary sequences

Exchangeability (invariance under
permutations)

Extremes are parametrized by 1-d space
p € [0,1]

Realization of extremes: iid Bernoulli (coin
tossing)

Reconstruction of parameters:
classical Law of Large Numbers for
Bernoulli trials

Random infinite uni-uppertriangular matrices

Centrality (invariance under conjugations)

Extremes are parametrized by c-d space

a=(a>ay>...20),=(01=>2p=>...20),7v>0
0 Bi '\ _
such that 7 t+;<ai+1_t>_1

Realization of extremes through Hall-Littlewood
polynomials (example: uniform Bernoulli product
measure on uni-uppertriangular matrices)

Reconstruction of parameters:
Law of Large Numbers [Bufetov-P. 2014]



Law of Large Numbers | v b t:=1/g

Theorem [Bufetov-P. 2014]

Take an extreme measure ;. corresponding to w = (a; [3;7).
Let A\(n) be the Jordan block structure of the n x n corner.

)\,‘ /\/' )),'
Then as n — 400, (") >, i(7) > G
n n 1 —t
WS e umMng

A l |
Y K e
——— . o
Theorem describes asymptotic sizes of large
Jordan blocks & asymptotic frequencies of small
,)\f Jordan blocks for matrices from extreme measures
1

Earlier results

* Uniform upper triangular matrices [Borodin 1995], answering a question of A.A.Kirillov

* t =0, asymptotic character theory of S(e) [Vershik-Kerov 1980s]



Law of Large Numbers: idea of proof

/ — 1. Construct a (randomized) algorithm for exact sampling

2 randemization of of A\(n) coming from the extreme measure /i,
SZT]GGESO,EEQ“T?nthh 2. Analyze the algorithm probabilistically to get limiting
[O’Connell-Pei 2012], frequencies of rows and columns

[Borodin-P. 2013]

The Young diagrams A\(n) are sampled by constructing random Young tableaux

Tk+1)=T(k) <+ a 212 |3]|5]01
Insertions are randomized; for t = 0 reduce 3 O > 7 10.34
to the classical Robinson-Schensted-Knuth 5 | 5

ones (with Vershik—Kerov modifications) 5 | &

New letters appear 2

independently using
aj, B, parameters a3y-tableaux (generalize semistandard Young tableaux)

[Vershik-Kerov 1986]



Take random words with independent letters (the sum of probabilities is 1):

Bk Y
1 —¢’ 1 —t

After n steps, the Hall-Littlewood RSK sampling produces a random Young
diagram A(n), the shape of the random tableau

continuous part

P(k) = ap,  P(k) =

Theorem [Borodin-P. 2013], [Bufetov-P. 2014]

The distribution of A(n) coincides with the Jordan block structure of the n x n
corner of the random matrix coming from the extreme measure /i, .

21213 ] 501
3155 |7 (034
515
2 | 5
2




Probabilistic
consequences

N~

T e e g
ey
P

YW e d ~

Typical tableaux:

W~y ~§ i S S ndie
‘“) N )R 3 I PO ~

Mostly letters k in the k-th row, mostly letters L in the k-th column,
"4 plus some “Plancherel dust™ and other lower order errors

This leads to the Law of Large Numbers for the
Jordan blocks structure of extreme central measures

Remark Under additional restrictions (all parameters are distinct and y = 0),

one should also get a Central Limit Theorem with Gaussian
fluctuations of order /n

The fluctuations of each row and column are almost
Independent, modulo that the number of boxes is fixed



owards the six vertex model

: 1
S - Y ,F->




For about 20 years now, Robinson-Schensted-Knuth type combinatorial algorithms
are providing exact observables of 7-dimensional interacting particle systems and

related models through Schur functions

Less than a decade ago, a new wave has started involving deformations of Schur functions.
The Robinson-Schensted-Knuth type constructions are also deformed (randomized)

[Bufetov-P. 2017,
... Mucciconi-Bufetov-P. in prep]

. Higher gpin vertex models, dynamical vertex models, ...

Spin g-Whittaker (q,s) Macdonald (q,t) Spin Hall-Littlewood (t,s)
|
I spstoms are ot

presont LopA)

!

q-TASEPg | g-Whittaker (q) Jack (B) Hall-Littlewood (t)
Caorodnp, AQED «ix vertex model
Matveev-P] [Bufetov-P. 2014]

[Bufetov-Matveeyv,
Borodin-Bufetov-Wheeler]

Schur
Random polymers, Whittaker
geometric RSK TASEDg, longest
[A.N. Kirillov, Noumi-Yamada, O'Connell, morgagmg gubggqugncgg

Corwin-0O'Connell-Seppalainen-Zygouras] [Baik-Deift-Johansson, Johansson, ..]



ice) model [Pauling, 1935], [Lieb,1967]

Six vertex (square
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Spohn 1992, Borodin-
Corwin-Gorin 2014]
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Stochastic six vertex model
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e The system is a Markov process

(= stochastic interacting particle system)

e Partition functions are products, not determinants

e This and many other stochastic vertex models are

exactly solvable to the point of asymptotics
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Marginally Markovian 1d projection
in the Hall-Littlewood Robinson-Schensted insertion

Keep only parameters o, o, ..., and let 3; = v =0
The Young tableau is semistandard

Defects in the first column of the tableau = particles on Z

7
K e X e RSK-insert k < clock rings at site k (rate ay)

19
1} @ e if there is a particle at £, it wakes up and jumps up by one
S N B
3 ¢ @ e if the destination is occupied, the next particle is pushed by
15 A :: one and wakes up, the pusher stops

the active particle moves through the empty space with prob-
ability ¢t per step; stops with probability 1 — ¢

N § e § e
Ql\»N
=

o

N
Lo
S

Called the half-continuous stochastic six vertex model

FIETT:

Asymptotics (homogeneous «) - [Ghosal 2017]



Get a continuous-time Markov chain on particle
configurations. Plot trajectories of particles:




#% Trajectories of particles:

i . 1 \
RSK type il
sampling of s
extreme 'a}FM 5
central Lo _
measure Jw-g Dynamics Z
of the
Bi=7v=0 4l leftmost
% column
3 <

This Is the same as...

_
—

bo — 1, Poisson type limit in the horizontal direction
[)1 — t fixed



Half-continuous stochastic six vertex model

Hez;gﬁt  function

Y :’;,.
S N RN AT AT TN
4’{)

N 'h (/n
.
& [ v m

' N

S

. ( !

.2

Theorem which follows from the constructions:

N — M\ (n), where A comes from w = ((«1,...,an);0;0), is the height function
of the half-continuous stochastic six vertex model at (n, V), where n is the
number of (independent) jumps occurred

The distribution of A(n) is expressed through the Hall-Littlewood sym-
metric polynomials, which allows to write down explicit distributional
formulas for \|(n), and obtain asymptotics



Summary for the fully discrete, inhomogeneous

- - [Borodin-Corwin-Gorin 2014], [Borodin-P. 2016],
StOChaStlc SIX Vertex mOdeI [Bufetov-Matveev 2017], [Bufetov-P. 2017]

+++++++++++ +

1 —tazb, 1—tazby, 1—tazby, 1—tayb,

Theorem

The height function at (z,y) is distributed as y — A,
where )\ has the Hall-Littlewood distribution

X P)\(ala 0 ¢ '7a£13)Q)\(b17 000 7by)

Theorem (t-moment formula) v/=12 . .

X Y

. . (
b ¢(—1) W; — W dw; Ay — W, tw; —
-SL/( h(x,y) — }T 3 % % | I J | | ) ‘ ‘ I | /
. . ’ i (‘. Y. . :_"— ) B 11’,. —— ),.
<rP<4ld. , - .

b,

Contours are around {b;} and 0 (in a certain order)

Hs Mgy W rfs... e A la [Tracy-Widom 2007+] for ASEP based on coordinate Bethe Ansatz
e Yang-Baxter equation and Cauchy identities via g-correlations
e Randomized Robinson-Schensted-Knuth plus Macdonald difference
operators for Hall-Littlewood polynomials
» Randomization of the Yang-Baxter equation + HL polynomials



Asymptotics in the homogeneous stochastic six vertex model

- e e e e - e e _— e = el — — -

1 1 [)1 1)2 1 — ])1 1 — [)2

1
Height function has a limit shape Zh(Lx, Ly) — H(z,y)

V(1 —b1) —/y(1 — by)

The nontrivial part of the limit shape is H(x,y) =

bo — D1

Fluctuations are governed by the GUE Tracy—Widom distribution
(originated about 25 years ago in random matrix theory)

, h(Lx, Ly) — LH(x,
Ll—l>r+r—loop ( UZ?yLl/S ( y) =7~ FGUE(S)
e Higher spin versions + spin Hall-Littlewood polynomials
 Multilayer systems
e Degenerates to ASEP
e Limits to Kardar-Parisi-Zhang equation
 There is also a stochastic telegraph equation




Conclusion: It is worthwhile to connect particle systems
to random partitions associated with symmetric functions...

[Bufetov-P. 2017,
: . . Mucciconi-Bufetov-P. in prep]
- Higher gpin vertex models, dynamical vertex modelg, ...

Spin g-Whittaker (q,s) Macdonald (q,t) Spin Hall-Littlewood (t,s)
|
b spstoms are mot

prosundt fopets)

!

q-TASERg | g-Whittaker (q) Jack (B) Hall-Littlewood (t)
[0823235:[-?., ASED qix vertex model
Matveev-P]

[Bufetov-P. 2014]

[Bufetov-Matveevy,
Borodin-Bufetov-Wheeler]

Schur
Random polymerg, [y ey o
geometric RSK TASER, longest
[A.N. Kirillov, Noumi-Yamada, O'Connell, increaging gubggquenceg

Corwin-O'Connell-Seppalainen-Zygouras] [Baik-Deift-Johansson, Johansson, ..]
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