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Gibbs Measures

Goal. Give an overview of universal asymptotic phenomena in 1 and 2 dimensions
around Gibbs measures and dynamics on them

Definition (Dobrushin 1968, Lanford and Ruelle 1969). Take a probability measure P on

configurations (of particles / lozenges / dominoes / spins) in a space A.
P is called Gibbs if for any finite subset A C A, conditioned on the configuration outside

of A, the distribution inside A depends only on the boundary values.
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Resampling the configuration in a finite volume with fixed boundary and a prescribed
distribution inside does not change the overall distribution P

(the conditional distribution under the resampling does not have to be uniform)



Examples
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Domino tilings

(de Finetti 1931) - classification Lozenge tilings
of translation invariant ergodic K

Gibbs measures

v !

Six vertex model / spin systems

Classification of translation invariant ergodic Gibbs measures

S " N - . .
o , - = !_? —is _J_ ,_%_, ,_,.Fa Sheffield 2005, also Kenyon, Okounkov, and Sheffield 2006
‘Ul ‘o 2 Ca

Alternating sign matrices



Uniformly Random
Lozenge Tilings




Random Lozenge Tilings

* Focus on Gibbs measures on lozenge tilings with uniform conditional distributions
e Their asymptotic behavior is well-understood, in infinite or finite (growing) domains:
- Limit Shape and Arctic curves
~ Global fluctuation behavior
~ Various local limits

* Connections to Combinatorics, Representation Theory, Geometry, Statistical
Mechanics, Random Matrix Theory, interacting particle systems in the Kardar-Parisi-
Zhang universality class, Conformal Field Theory (Imaginary Geometry / SLE), ...

e Many interesting open questions (generalized weights or shapes, higher genera, ...)

[Adler, Ahn, Beresticky, Borodin, Bufetoy, Q
Chhita, Cohn, Duse, Ferrari, Gorin,

Guionnet, Johansson, Kenyon, Larsen, <>
Laslier, Li, Metcalfe, Nordenstam, Novak,

Okounkov, Panova, Petrov, Propp, Rains, Q

Uniformly random tilings = Gibbs measures
in finite (growing) volumes

Reshetikhin, Ray, Sheffield, Toninelli, van
Moerbeke, Young]



Lozenge tilings of polygons

Dimer configuration (perfect matching)
on the dual hexagonal graph

3d shape (2d interface; 3d Young
diagram; plane partition)

“empty” “fu””




Solving lozenge tilings - determinantal method

Theorem 1 (Temperley—Fisher, Kasteleyn, 1960s). The total number of coverings of a
hexagonal graph is (the absolute value of ) the determinant of the incidence matrix K (u,v)

Prob(dimers occupy (u1, v1), ..., (ug, v¢))

det[K]graph without (ul, V1)7 Cee (U£> VE)
det[K]aII graph

—1 14
=|det[K~*(u;, v;)]: ._
1y ¥J )1 j=1 [Johansson, Nordenstam,
Baik-Kriecherbauer-McLaughlin-Miller, Borodin,

Gorin, Rains, Adler-dJohansson-van Moerbeke]

[P. 2012]

For trapezoidal polygons (trapezoids with cuts on one side):
K~1(u,v) can be written in a double contour integral form

—1(,,- L

K~*(u; v) ~ additional summand Asymptotic analysis via
eNIS(w;u)—S(z:v)] steepest descent /

]{ ]{ (w, 2) — dwdz  stationary phase method

S - explicit function; u, v - physical
locations inside the polygon



Limit shape and frozen boundary

Cohn, Larsen, and Propp 1998, Cohn, Kenyon, and Propp 2001, Kenyon and Okounkov 2007
[P. 2012] - most explicit formulas for limit shapes / frozen boundaries in trapezoidal case

(Law of Large Numbers) Fix a polygon
and

Random 3D stepped surfaces
concentrate around a deterministic
limit shape surface which is a solution
to a variational problem

Frozen Facets

|

Frozen Boundary

Liquid Region

The limit shape develops frozen facets

There is a connected liquid
(disordered) region where all three

types of lozenges are present {}L('x,ﬁ)— \\u{\h{, ,Q FPRES sLaM
1S O Unj ( AA Wi 2C0 D:f.

The limit shape surface and the

separating frozen boundary curve are f (,3 ( vc\. ! 7,)) da d’}

algebraic.

The frozen boundary is tangent to all
sides of the polygon

o is the Legendre dual (" (p*) = sup,((p,p*) — f(p))) of the Ronkin function of z+w = 1,

dz dw
(z,y) // 105\7+w—1]——
27TL 2| =e® _ Z oW



Global Gaussian fluctuations (“bulk” asymptotics)

T GFF
.Q_(%ﬂ) I—x 2 >0

g E (<5 6#2(g,6F) =ﬁ o G o) el Jdof
Gl ~ - L 8|22

[P. 2012] for trapezoidal polygons:
hi([zN], [yN]) — E(hn([zN], [yN])) = GFF(Q™(z, y))

GFF fluctuations are common in 2d random
surfaces (including tilings, random matrices,
representation-theoretic models)

Methods

e Determinantal [Kenyon, Borodin-Ferrari, Duits,
Kuan, P, ...]

* Random matrix computations [Borodin, ...]

* Methods of moments [Borodin, Bufetov, Gorin,
Knizel, ...]

.» * Nekrasov (Schwinger-Dyson / loop)

equations), e.g. for not simply connected
[Borodin, Borot, Dimitrov, Gorin, Guionnet, Knizel]

e Connections to SLE [Beresticky, Laslier, Ray]

Tiling of a hexagon with a hole and fluctuations
(complex structure is not in a simply connected
domain as above)



Local limits |

LocaIIy |nS|de the |IC|UId reglon (“ulk”) 1‘

[Balk Krlecherbauer-McLaughIm -Miller ‘07], [Gorin ‘07] [Borodin-Gorin-Rains ’09],
[P. ‘12], [Duse-Johansson—-Metcalfe ’15], [Gorin ‘16]

Locally around every point (x,y) in the liquid
region, the /attice configuration converges to the —,
translation invariant ergodic Gibbs measure

of the corresponding slope

s -
N anﬁ’k\\: 1260 PNGLES
PO + PD T fa"
SMOP (’x—g )> For every given slope, such Gibbs measure is

’X %3 (% —4) unique [sheffield 2003]. Its 1d slice is the discrete
""Je sine process (determinantal)

e _ —_— —— — — |

At the bottom boundary of the trapezmdal domaln |

. i

* Classification of “irreducible” characters of U (oo)

[Edrei-Schoenberg et al 1950s; Voiculescu 1976; Vershik-Kerov 1980s;

Okounkov-Olshanski 1990s; Borodin-Olshanski and P. 2011-12]

e Random matrix behavior [Gorin-Panova and Novak 2013+, Mkrtchyan-P. 2017]



Local limits |i

T — A Q(7,9)
| At the edge of the liquid region | /:/,;fa
- [P. ‘1‘2], [ao-MetcaIfe ‘“15] i \ // /;
At typical points on the arctic curve: I I L o &

i - Lizep PANGLES
fluctuations ~ N?/2 in tangent and NoanALze

.‘-
~ N1/3 in normal direction. Converge PO t Pz ¥ fa
to the Airys line ensemble

Airy, ensemble [Corwin and Hammond 2014] (Brownian Gibbs property)
Marginals — Tracy-Widom distributions [Tracy and Widom 1994]

———

RN =
‘—1\\\ ."\.
n N\

ﬁ There are other local limits:
Pearcey; symmetric Airy; tacnode
[Adler-dJohansson-van Moerbeke 2015+]
]
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Summary and future challenges
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 GFF / discrete sine are universal in many models: Beta random matrices; Noncolliding
random walks; Macdonald-distributed random tilings, Shapes with holes, ...

* Easier to prove in certain Gibbs lozenge ensembles in infinite regions (plane partitions /
3D Young diagrams; Schur processes,...) [Okounkov-Reshetikhin, Borodin, Kuan, Ferrari ~2003-2008]

prior to works in finite (Qrowing) regions % i %

-
5

* Six vertex models, periodic tilings, ...
develop more complex
local Gibbs phases A=
(“antiferromagnet”,“gas”)

A>1 D (1 R A<-1 \ /
K 2 ’ ] 5 {l f | s Six vertex model, [Beffara, Chhita, Johansson,
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DWBC, A < -1 Young 2015+], doubly
periodic domino tilings

Edge effects |
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e Airy line ensemble appears at an interface between two phases

e Fluctuation exponents 1/3, 2/3 follow (1+1)d Kardar-Parisi-Zhang
universality (dynamics of random interfaces)

* Rich interplay between Gibbs measures and Markov dynamics
In 1 or 2 space dimensions



Random Interfaces
and Markov Dynamics
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TASEP - dynamics on 1d Gibbs measures

M\ .
SASA 4 4 4 ASL ASASASA 4 ACA ACACATAS may

-3-2-10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Each particle has an exponential clock with rate 1: P(wait > s) = e °, s > 0, clocks

are independent for each particle.
When the clock rings, the particle jumps to the right by one if the destination is not

occupied.

[Liggett 1976] All nontrivial translation invariant ergodic measures which are
stationary under the TASEP dynamics are the Bernoulli product measures

e —————

e

time
~ const

p(t,z) — limiting density as

Fluy S(f) =0(1-9)
X £ o(t,0) + 2 (plt, ) (1 = p(t,2))) =0

-5-0-O0-0-0-06 00006 - ) .
]P( Fq,—{- cle) = g: ¢(o,1) (+variational representation) p(0,x) = po(x)

space

—ﬁ:

Step initial condition: particles occupy —1,—2, -3, ...
po(x) = lu<o, and p(t,z) = 5(1 — z/t), [z < t.




TASEP fluctuations

Theorem ([Johansson, 2000])
Start TASEP from the step initial configuration z;(0) = —¢, 1 =1,2,....
Let h(t,z) be the height of the interface over = at time ¢. Then

. h(TL,XL) o Lh(Ta X)
i E ( L1/3 z =) = Foun(s),

Cr,x

where Four is the GUE (Gaussian Unitary Ensemble) Tracy—Widom distribution
originated in random matrix theory [Tracy and Widom, 1993]

Step IC is not Gibbs, but
local lattice distributions
fort > 0 are Gibbs

Limit shape [Rost, 1981]
Simulation [Ferrari, 2008]




KPZ equation

KPZ equation [Kardar, Parisi, and Zhang, 1986] — a stochastic PDE model for randomly
growing interface h(t,x), t > 0, x € R:

2

Oh(t, z) — th(t’x) + Ot ) +n(t, ), En(t7x)77(t/7$,) = 0(¢ —t,)5(a?—$/)

ot 02 ox

(the time evolution of the interface is governed by the smoothing and the slope-dependent
growth terms, plus random noise)

e Existence and uniqueness of solutions [Hairer, 2014], etc.

e Approximation of solutions of the KPZ equation by discrete-space interacting
particle systems such as weakly ASEP [Bertini and Giacomin, 1997], etc.

e Exact distributions and limits (e.g. ¢t — +0o0) of h(t,z) for specific and (con-
jecturally) general initial data h(0, x) [Amir, Corwin, and Quastel, 2011, Matetski,
Quastel, and Remenik, 2017], etc. ‘

liquid crystal experiment

surface growth model )
[Takeuchi and Sano, 2010]



TASEP and KPZ

KPZ universality principle / conjecture: models in KPZ class (including the KPZ
equation) at large times and scales behave as TASEP at large times and scales

Starting from Johansson’s theorem, there is a very good understanding of TASEP

asymptotics:
e multipoint distributions
e particle-dependent speeds
e other initial conditions, including general

e extensions to other models such as ASEP

Higher spin six vertex models

VAN

a-TASEPs

/

Random
polymers

Stochastic six
vertex model

Y
ASEP

TASEP

-/

KPZ

[Okounkov, 2001, Its, Tracy, and Widom, 2001, Gravner, Tracy, and Widom, 2002, Prahofer
and Spohn, 2002, Borodin, Ferrari, Prahofer, and Sasamoto, 2007, Matetski, Quastel, and
Remenik, 2017, Borodin, Ferrari, and Sasamoto, 2009, Duits, 2013, Tracy and Widom, 2009]

How to get fluctuation results for discrete KPZ particle systems?
Most common (and so far almost unigue) method - match them to 2d Gibbs systems




Definition. Fields of Young diagrams iutetov-r 2017
Young diagrams (partitions) A= (A1 > ... > Ay > 0), \; € Z

Mo M\ <>
e X 2y

LY

Interlacing

Random field of Young diagrams _ ,
* Interlace along both directions

) /- * Empty boundary conditions
ﬂ ) ) za) ° {AGCIoe, {AL)}%2 | are Gibbs distributed
~ ~/ (as lozenge tilings of the half plane)
i y) x 4}4 e Distributions along down-right (= up-left)
¢ 3\ } paths are Schur processes
ﬂ A“ )l‘ -
——————4t——=
g P 7




. Fields of Young diagrams and dynamics
%,_ ‘ e Taking i or j as (discrete) time, get Markov processes
[} Y 20 . 1=
P ) X on Gibbs measures on 2d lozenge tilings
P TR Y e Does not define the distribution uniquely: at each elemen-
33 ) ~_ tary square, know only marginal distributions of > and v

=~

given \, u — but not the joint distribution of (s, v/)

e Scalar field marginals of {\(#9)}, when they are Markovian,
are interacting particle systems in 1 space dimension

o TASEP arises as z(t) = Agt’j)—j (edge of the Gibbs measure),
in a continuous rescaling ¢ — ¢ [Borodin-Ferrari 2008]

Oh  1sin(rh,)sin(mh,)

[Ferrari 2008-18] or w sin(r(h,, + hn))

http://wt.iam.uni-bonn.de/ferrari/research/jsanimationakpz/



How to solve TASEP with step IC

Each particle has an exponential clock and
jumps to the right by one if can. Lower parti-
cles have priority, higher particles get pushed.

(¢)
>\ /é) ~J S_gAur Iué’ﬁSaf

(o4 S'Acu (:{,--, :()32“) (@/,_L)

TASEP g
.____u_”_‘mo @ @ O 0 9 000 =

\ dzdw \,\/v ¥z-w) -\_2"~
K (u,v) e ( )

Cemv) ¢-w U 4= we




(A sample of) models solvable by Schur measures

corner growth -~

e Homogeneous or particle-inhomogeneous TASEP on Z

directed last passage percolation
e corner growth

e longest increasing subsequences

tandem queues

N F e T ALY W ey ¥ ¥ Ry Uy U

{"‘ ? Plane partitions and other

4y :,¢

L

/ ' 'g.. random tilings (noncolliding
/

"}, ¢ {/ 24 walks; dimer models; etc.)

0} '/9 ',/ /0

//6?/*/’}”;, 4

’ ’ ' ..‘ - - -
Y7 {o/'//fv Tiles or particles along certain

¢
0”/ 7 &,
/] i
g.,f}l.,.é 7

!
.téf.,f.{: {'/v'. Schur measures
=t v

'

{ %“ ;. }ﬁ/),;"ﬁ

# cross-sections are distributed as

=ttt

[ r Also:

e
¥

random matrix

type models, z-measures,
polynuclear growth,

lozenge tilings pictures: [Okounkov and Reshetikhin, 2003,
Borodin and Ferrari, 2014]



Fields for various symmetric functions

e Robinson-Schensted-Knuth correspondence (TASEP)
[Robinson, Schensted, Knuth, Vershik-Kerov, O'Connell, Biane-
Bougerol-O'Connell, Chhaibi, Baik-Deift-Johansson, Johansson]

e Geometric RSK (polymers)

[Kirillov, Noumi-Yamada, Corwin, O’Connell, Seppalainen, Zygouras]

e g-randomized RSK (g-TASEPSs)

[O’Connell-Pei, Borodin-P., Matveev-P]

Hall-Littlewood RSK (ASEP, six vertex model)

[Bufetov-P. 2014, Borodin-Bufetov-Wheeler, Bufetov-Matveev]

e Push-block dynamics (TASEP, q-TASEP)

[Borodin-Ferrari based on Diaconis-Fill]

e Yang-Baxter fields for sHL / sqW (higher spin six vertex models)
[Bufetov-P. 2017, Bufetov-Mucciconi-P. 2019]

Spin g-Whittaker (q,s) Spin Hall-Littlewood (t,s) Higher spin six vertex models
Macdonald (q,t) K
Stochastic six
q-TASEPs vertex mcildel
)
a-Whittaker (q) Jack (B) Hall-Littlewood (t) ASEP
—
Random TASEP
polymers

Schur

Whittak
ittaker KPZ




From Yang-Baxter equation
to Markov dynamics

22 0"' .“~~ 7/2
, ~  forward u y
J2 / J2 /
]‘CQ k’2 kQ @ k 2
/ /
kl jl kl kl @ j/ kl
1
. r. backward - _
11 S -* 11



1. Represent the quadruple step as a lattice spin configuration,
with vertex weights satisfying the Yang-Baxter equation

2. “Bljectivise” the Yang-Baxter equation to get Markov steps
(somewhat like domino shuffling)

g\....(q,q,z,\,o)

e

Vertex weights

llllllll AN
7
N

u

SA/M(U) — ul)‘|_‘ﬂ| — uz

U,(sl;) Yang-Baxter equation

5 > 5. m ...... 7/2 7:2
u M 1 j2 )\ / }u\ jé k,

kQ v k2 kQ 9
Cross vertex weights >< Igl - Igz ><

XNt A .

/o

X1 | Xo Rt

g 9 9
V_) e ...... — _ — _)v
Example: { L. } {\i+1 ...... 9.7
u u,v v, u




Bijectivisation = coupling of terms in the Yang-Baxter equation

Example:

-----------

U,V

1+3=2+2

O |

2

2

\/2

(maximally
dependent)

9
— —
:[ 7N

g
é ...... . ."
'J +h:&4
v,U v,U

P >1x)

Quadruple step 2z — 1/




. Skew Cauchy identity

| M .
\® 1—~»~ -~ T v *u ,_.J ,, _J : @ (new proof)

2, v o,\\
y— U — ——-~¥-——~s — B> S S ]- —1
S V) S U
T}I U ” 1 _ U/u z%: )\/%( ) ,u/%( )
: =D sy s,,(v)
Constructed a Yang-Baxter field v/ v/ 1
 Has a Markovian scalar field marginal: number of ) 4”\
arrows in the leftmost column (=> at the edge of # } V
the Gibbs configuration) i . < ¢
A &k <
e The edge dynamics is a version of TASEP with ¢ :)\ )& ‘M
discrete time and pushing. It converges to the
usual TASEP Pl -)8“ )l' .
e Systematic view of most known matchings | Z Y gt T

between KPZ particle systems and 2d Gibbs
measures. Naturally includes inhomogeneity

* Associated to Schur polynomials, but extends to
many other families. Brings new stochastic models



Yang-Baxter bijectivisation also applies to Gibbs
measures in a finite volume . saenz 2019

New Markov dynamics preserving —
distribution of alternating sign /
matrices / six vertex model with \ J\ Y N
domain wall boundary conditions

(refined with spectral parameters)

Does not typically have Markovian 1d —F—*—’/(——"
marginals, but dependence may be
controllable

Interchanges spectral parameters in a Gibbs tiling

In the bulk / continuous time,
converges to irreversible Markov
dynamics on 2d Gibbs measures

(TASEP is the example in 1d) Macdonald (q,t)

Spin g-Whittaker (q,s) Spin Hall-Littlewood (t,s)

Applies systematically to known
examples [Borodin, Bufetov, Corwin,
Toninelli 2015+] and potentially to any
lattice models possessing the Yang-
Baxter equation

q-Whittaker (q) Hall-Littlewood (t)

Jack (B)

Whittaker Schur




Summary and further development

e Gibbs measures are rich and intriguing. Six vertex model in finite domains
s still largely open

e Used the Yang-Baxter equation in a unified way to match Schur-type
Gibbs ensembles to 1d particle systems

* Applying these ideas in a finite volume to build new Markov dynamics
preserving 2d Gibbs measures. Include known cases in a systematic way

* Can use Yang-Baxter equation or related duality to compute observables in

non-determinantal models beyond Schur
[Corwin-P. 2015], [Borodin-P. 2016]

N

* Elliptic and U, (sl,,) (multispecies) generalizations
[Aggarwal, Borodin, Wheeler 2016-18]

* Bethe ansatz spectral theories for stochastic particle systems of six vertex
type, out of equilibrium  [Borodin, Corwin, P., Sasamoto 2012-14]

 New integrable particle systems in inhomogeneous space solvable by Schur

measures via interesting couplings beyond YB fields. New phase transitions
[Orr-P. 2016], [Borodin-P. 2017], [Knizel-P.-Saenz 2018]



Thank you!

lpetrov.cc/Gibbs2018/



