
Gibbs measures, arctic curves, 
and random interfaces

Leonid Petrov

University of Virginia

lpetrov.cc/Gibbs2018/

December 3, 2018



Gibbs Measures
Goal. Give an overview of universal asymptotic phenomena in 1 and 2 dimensions 
around Gibbs measures and dynamics on them

(the conditional distribution under the resampling does not have to be uniform)



Examplesd = 1

Ising Model

d = 2

Lozenge tilings
Domino tilings

Exchangeable sequences

(de Finetti 1931) - classification 
of translation invariant ergodic 

Gibbs measures

Six vertex model / spin systems
Classification of translation invariant ergodic Gibbs measures 

— Sheffield 2005, also Kenyon, Okounkov, and Sheffield 2006

Alternating sign matrices



Uniformly Random 
Lozenge Tilings



Random Lozenge Tilings
• Focus on Gibbs measures on lozenge tilings with uniform conditional distributions


• Their asymptotic behavior is well-understood, in infinite or finite (growing) domains:


Limit Shape and Arctic curves 

Global fluctuation behavior 

Various local limits 

• Connections to Combinatorics, Representation Theory, Geometry, Statistical 
Mechanics, Random Matrix Theory, interacting particle systems in the Kardar-Parisi-
Zhang universality class, Conformal Field Theory (Imaginary Geometry / SLE), ...


• Many interesting open questions (generalized weights or shapes, higher genera, …)

Uniformly random tilings = Gibbs measures 
in finite (growing) volumes 

[Adler, Ahn, Beresticky, Borodin, Bufetov, 
Chhita, Cohn, Duse, Ferrari, Gorin, 
Guionnet, Johansson, Kenyon, Larsen, 
Laslier, Li, Metcalfe, Nordenstam, Novak, 
Okounkov, Panova, Petrov, Propp, Rains, 
Reshetikhin, Ray, Sheffield, Toninelli, van 
Moerbeke, Young] 



Lozenge tilings of polygons

3d shape (2d interface; 3d Young 
diagram; plane partition)

Dimer configuration (perfect matching)

on the dual hexagonal graph

“empty” “full”



Solving lozenge tilings - determinantal method

[P. 2012]

Asymptotic analysis via 
steepest descent / 

stationary phase method

S - explicit function; u, v - physical 
locations inside the polygon

[Johansson, Nordenstam,  
Baik-Kriecherbauer-McLaughlin-Miller, Borodin, 
Gorin, Rains, Adler-Johansson-van Moerbeke]



Limit shape and frozen boundary
Cohn, Larsen, and Propp 1998, Cohn, Kenyon, and Propp 2001, Kenyon and Okounkov 2007

• (Law of Large Numbers) Fix a polygon 
and scale the lattice mesh to zero. 
Random 3D stepped surfaces 
concentrate around a deterministic 
limit shape surface which is a solution 
to a variational problem


• The limit shape develops frozen facets


• There is a connected liquid 
(disordered) region where all three 
types of lozenges are present


• The limit shape surface and the 
separating frozen boundary curve are 
algebraic. 


• The frozen boundary is tangent to all 
sides of the polygon

[P. 2012] - most explicit formulas for limit shapes / frozen boundaries in trapezoidal case



Global Gaussian fluctuations (“bulk” asymptotics)

GFF fluctuations are common in 2d random 
surfaces (including tilings, random matrices, 

representation-theoretic models)

[P. 2012] for trapezoidal polygons:

Methods 
• Determinantal [Kenyon, Borodin-Ferrari, Duits, 

Kuan, P., ...]

• Random matrix computations [Borodin, ...]

• Methods of moments [Borodin, Bufetov, Gorin, 

Knizel, ...]

• Nekrasov (Schwinger-Dyson / loop) 

equations), e.g. for not simply connected 
[Borodin, Borot, Dimitrov, Gorin, Guionnet, Knizel] 

• Connections to SLE [Beresticky, Laslier, Ray]

Tiling of a hexagon with a hole and fluctuations

(complex structure is not in a simply connected 

domain as above)



Local limits I 
Locally inside the liquid region (“bulk”)

[Baik-Kriecherbauer-McLaughlin-Miller ‘07], [Gorin ‘07], [Borodin-Gorin-Rains ’09], 
[P. ‘12], [Duse–Johansson–Metcalfe ’15], [Gorin ‘16]

Locally around every point (x,y) in the liquid 
region, the lattice configuration converges to the 
translation invariant ergodic Gibbs measure 
of the corresponding slope

For every given slope, such Gibbs measure is 
unique [Sheffield 2003]. Its 1d slice is the discrete 

sine process (determinantal)

At the bottom boundary of the trapezoidal domain

• Classification of “irreducible” characters of
[Edrei-Schoenberg et al 1950s; Voiculescu 1976; Vershik-Kerov 1980s;  

Okounkov-Olshanski 1990s; Borodin-Olshanski and P. 2011-12]

• Random matrix behavior [Gorin-Panova and Novak 2013+, Mkrtchyan-P. 2017]



Local limits II 

There are other local limits: 
Pearcey; symmetric Airy; tacnode 
[Adler-Johansson-van Moerbeke 2015+] 

At the edge of the liquid region
[P. ‘12], [Duse–Johansson–Metcalfe ‘15]

(Brownian Gibbs property)



Summary and future challenges

Six vertex model, 
DWBC, Δ < -1

[Beffara, Chhita, Johansson, 
Young 2015+], doubly 

periodic domino tilings

• GFF / discrete sine are universal in many models: Beta random matrices; Noncolliding 
random walks; Macdonald-distributed random tilings, Shapes with holes, …  

• Easier to prove in certain Gibbs lozenge ensembles in infinite regions (plane partitions / 
3D Young diagrams; Schur processes,…) [Okounkov-Reshetikhin, Borodin, Kuan, Ferrari ~2003-2008] 
prior to works in finite (growing) regions 

• Six vertex models, periodic tilings, … 
develop more complex 
local Gibbs phases  
(“antiferromagnet”,“gas”)

Δ>1 Δ<-1

Bulk effects

Edge effects

• Airy line ensemble appears at an interface between two phases

• Fluctuation exponents 1/3, 2/3 follow (1+1)d Kardar-Parisi-Zhang 

universality (dynamics of random interfaces)

• Rich interplay between Gibbs measures and Markov dynamics 

in 1 or 2 space dimensions



Random Interfaces  
and Markov Dynamics 



TASEP - dynamics on 1d Gibbs measures

�3 �2 �1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Totally Asymmetric Simple Exclusion Process

[Liggett 1976] All nontrivial translation invariant ergodic measures which are 
stationary under the TASEP dynamics are the Bernoulli product measures

(+variational representation)



TASEP fluctuations
Theorem ([Johansson, 2000])
Start TASEP from the step initial configuration xi(0) = ≠i, i = 1, 2, . . ..
Let h(t, x) be the height of the interface over x at time t. Then

lim
Læ+Œ

P
3

h(·L, ‰L) ≠ Lh(·, ‰)
c·,‰L1/3 Ø ≠s

4
= FGUE(s),

where FGUE is the GUE (Gaussian Unitary Ensemble) Tracy–Widom distribution
originated in random matrix theory [Tracy and Widom, 1993]

Limit shape [Rost, 1981]
Simulation [Ferrari, 2008]

Leonid Petrov • Nonequilibrium particle systems in inhomogeneous space

Step IC is not Gibbs, but 
local lattice distributions 

for t > 0 are Gibbs



KPZ equation



TASEP and KPZ

How to get fluctuation results for discrete KPZ particle systems?

Most common (and so far almost unique) method - match them to 2d Gibbs systems

TASEP
ASEP

q-TASEPs

Random 
polymers

Stochastic six 
vertex model

Higher spin six vertex models

KPZ



Definition. Fields of Young diagrams [Bufetov-P. 2017]

Interlacing

Random field of Young diagrams • Interlace along both directions


• Empty boundary conditions 

• And                           are Gibbs distributed 
(as lozenge tilings of the half plane)


• Distributions along down-right (= up-left) 
paths are Schur processes



Fields of Young diagrams and dynamics

http://wt.iam.uni-bonn.de/ferrari/research/jsanimationakpz/
[Ferrari 2008-18]

[Borodin-Ferrari 2008]



How to solve TASEP with step IC



(A sample of) models solvable by Schur measures
mk

TASEP

11

22

33

44

55

x1x2x3x4x5x6

≠6 ≠5 ≠4 ≠3 ≠2 ≠1 0 1 2 3 4 5

corner growth

• Homogeneous or particle-inhomogeneous TASEP on Z

• directed last passage percolation

• corner growth

• longest increasing subsequences

• tandem queues

Plane partitions and other
random tilings (noncolliding
walks; dimer models; etc.)

Tiles or particles along certain
cross-sections are distributed as
Schur measures

Also: random matrix
type models, z-measures,
polynuclear growth, . . .

lozenge tilings pictures: [Okounkov and Reshetikhin, 2003,
Borodin and Ferrari, 2014]
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Fields for various symmetric functions

TASEP

ASEP

q-TASEPs

Random 
polymers

Stochastic six 
vertex model

Higher spin six vertex models

KPZ

Spin Hall-Littlewood (t,s)Spin q-Whittaker (q,s)

Macdonald (q,t)

Hall-Littlewood (t)q-Whittaker (q) Jack (β)

Schur
Whittaker

• Robinson-Schensted-Knuth correspondence (TASEP)  

• Geometric RSK (polymers)  

• q-randomized RSK (q-TASEPs) 

• Hall-Littlewood RSK (ASEP, six vertex model) 

• Push-block dynamics (TASEP, q-TASEP) 

• Yang-Baxter fields for sHL / sqW (higher spin six vertex models) 

[Robinson, Schensted, Knuth, Vershik-Kerov, O'Connell, Biane-
Bougerol-O'Connell, Chhaibi, Baik–Deift–Johansson, Johansson]

[Kirillov, Noumi-Yamada, Corwin, O’Connell, Seppalainen, Zygouras]

[Borodin–Ferrari based on Diaconis–Fill]

[O’Connell–Pei, Borodin-P., Matveev-P.]

[Bufetov-P. 2014, Borodin-Bufetov-Wheeler, Bufetov-Matveev]

[Bufetov-P. 2017, Bufetov-Mucciconi-P. 2019]

Note. Beyond Schur, Gibbs is not locally uniform



From Yang-Baxter equation 
to Markov dynamics



1. Represent the quadruple step as a lattice spin configuration, 
with vertex weights satisfying the Yang-Baxter equation


2. “Bijectivise” the Yang-Baxter equation to get Markov steps  
(somewhat like domino shuffling)

Example:

Yang-Baxter equation

=
1 u u 1

Vertex weights

Cross vertex weights



Bijectivisation = coupling of terms in the Yang-Baxter equation

Example:    1 + 3 = 2 + 2

(independent)

(maximally 
dependent)

Quadruple step



Constructed a Yang-Baxter field

Skew Cauchy identity  
(new proof)

• Has a Markovian scalar field marginal: number of 
arrows in the leftmost column (=> at the edge of 
the Gibbs configuration)


• The edge dynamics is a version of TASEP with 
discrete time and pushing. It converges to the 
usual TASEP


• Systematic view of most known matchings 
between KPZ particle systems and 2d Gibbs 
measures. Naturally includes inhomogeneity


• Associated to Schur polynomials, but extends to 
many other families. Brings new stochastic models



Spin Hall-Littlewood (t,s)Spin q-Whittaker (q,s)

Macdonald (q,t)

Hall-Littlewood (t)q-Whittaker (q) Jack (β)

SchurWhittaker

Yang-Baxter bijectivisation also applies to Gibbs 
measures in a finite volume [P., Saenz 2019]

• New Markov dynamics preserving 
distribution of alternating sign 
matrices / six vertex model with 
domain wall boundary conditions 
(refined with spectral parameters)


• Does not typically have Markovian 1d 
marginals, but dependence may be 
controllable


• In the bulk / continuous time, 
converges to irreversible Markov 
dynamics on 2d Gibbs measures 
(TASEP is the example in 1d)


• Applies systematically to known 
examples [Borodin, Bufetov, Corwin, 
Toninelli 2015+] and potentially to any 
lattice models possessing the Yang-
Baxter equation 

Interchanges spectral parameters in a Gibbs tiling



Summary and further development
• Gibbs measures are rich and intriguing. Six vertex model in finite domains 

is still largely open


• Used the Yang-Baxter equation in a unified way to match Schur-type 
Gibbs ensembles to 1d particle systems


• Applying these ideas in a finite volume to build new Markov dynamics 
preserving 2d Gibbs measures. Include known cases in a systematic way

[Aggarwal, Borodin, Wheeler 2016-18]

• Can use Yang-Baxter equation or related duality to compute observables in 
non-determinantal models beyond Schur


 

• Elliptic and                 (multispecies) generalizations

 

• Bethe ansatz spectral theories for stochastic particle systems of six vertex 
type, out of equilibrium


 

• New integrable particle systems in inhomogeneous space solvable by Schur 
measures via interesting couplings beyond YB fields. New phase transitions

[Corwin-P. 2015], [Borodin-P. 2016]

[Borodin, Corwin, P., Sasamoto 2012-14]

[Orr-P. 2016], [Borodin-P. 2017], [Knizel-P.-Saenz 2018] 



Thank you!
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