Infinite-Dimensional Diffusion Processes Approximated by Finite Markov Chains on Partitions

Leonid Petrov

IPPI — Institute for Information Transmission Problems (Moscow, Russia)

May 20, 2011

- de Finetti's Theorem
- up/down Markov chains and limiting diffusions
- Kingman's exchangeable random partitions
- up/down Markov chains on partitions and limiting infinite-dimensional diffusions

Exchangeable binary sequences

• $\xi_1, \xi_2, \xi_3, \dots$ — random variables $\in \{0, 1\}$

Exchangeable binary sequences

- $\xi_1, \xi_2, \xi_3, \ldots$ random variables $\in \{0, 1\}$
- distribution of the sequence $\xi = (\xi_1, \xi_2, \xi_3, ...)$ is invariant under permutations

Exchangeable binary sequences

- $\xi_1, \xi_2, \xi_3, \ldots$ random variables $\in \{0, 1\}$
- distribution of the sequence $\xi = (\xi_1, \xi_2, \xi_3, \dots)$ is invariant under permutations

de Finetti's Theorem

Exchangeable binary sequences ξ probability measures P on [0,1]

From ξ to P

$$\frac{\#\{\xi_i=1\colon 1\leq i\leq n\}}{n}\xrightarrow[]{Law}P,\qquad n\to\infty$$

distributions on $\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$ approximate the measure P on [0, 1].

From ξ to P

$$\frac{\#\{\xi_i=1\colon 1\leq i\leq n\}}{n}\xrightarrow[]{Law}P,\qquad n\to\infty$$

distributions on $\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$ approximate the measure P on [0, 1].

From P to ξ

1 Sample real number $p \in [0,1]$ according to P

From ξ to P

$$\frac{\#\{\xi_i=1\colon 1\leq i\leq n\}}{n}\xrightarrow[]{Law}P,\qquad n\to\infty$$

distributions on $\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$ approximate the measure P on [0, 1].

From P to ξ

- **1** Sample real number $p \in [0,1]$ according to P
- **2** Sample Bernoulli sequence $\xi = (\xi_1, \xi_2, ...)$ with probability p of success.

$$P_n(k) := \text{Prob}(\#\{\xi_i = 1 \colon 1 \le i \le n\} = k)$$

= $\binom{n}{k} \int_0^1 p^k (1-p)^{n-k} P(dp).$

• Bernoulli sequences are the *extremal* exchangeable binary sequences (P on [0,1] is δ_p)

- Bernoulli sequences are the *extremal* exchangeable binary sequences $(P \text{ on } [0,1] \text{ is } \delta_p)$
- Any exchangeable binary sequence is a mixture of Bernoulli sequences.

• P_n on $\{0,1,2,\ldots,n-1,n\}$ $P_n(k) = \operatorname{Prob}(\#\{\xi_i=1\colon 1\leq i\leq n\}=k).$ (floors of the Pascal triangle)

- P_n on $\{0,1,2,\ldots,n-1,n\}$ $P_n(k) = \operatorname{Prob}(\#\{\xi_i=1\colon 1\leq i\leq n\}=k).$ (floors of the Pascal triangle)
- The distributions $\{P_n\}_{n=1}^{\infty}$ encode the exchangeable binary sequence ξ . The scaling limit of P_n 's is our measure P on [0,1].

- P_n on $\{0,1,2,\ldots,n-1,n\}$ $P_n(k) = \operatorname{Prob}(\#\{\xi_i=1\colon 1\leq i\leq n\}=k).$ (floors of the Pascal triangle)
- The distributions $\{P_n\}_{n=1}^{\infty}$ encode the exchangeable binary sequence ξ . The scaling limit of P_n 's is our measure P on [0,1].
- The P_n 's are *compatible* with each other:

$$P_n(k) = \frac{n+1-k}{n+1} P_{n+1}(k) + \frac{k+1}{n+1} P_{n+1}(k+1)$$
 $\forall k$

- P_n on $\{0,1,2,\ldots,n-1,n\}$ $P_n(k) = \operatorname{Prob}(\#\{\xi_i=1\colon 1\leq i\leq n\}=k).$ (floors of the Pascal triangle)
- The distributions $\{P_n\}_{n=1}^{\infty}$ encode the exchangeable binary sequence ξ . The scaling limit of P_n 's is our measure P on [0,1].
- The P_n 's are *compatible* with each other:

$$P_n(k) = \frac{n+1-k}{n+1} P_{n+1}(k) + \frac{k+1}{n+1} P_{n+1}(k+1)$$
 $\forall k$

Can define down kernel $p_{n+1,n}^{\downarrow}$ from $\{0,\ldots,n+1\}$ to $\{0,\ldots,n\}$ such that

$$P_{n+1} \circ p_{n+1,n}^{\downarrow} = P_n \qquad \forall n$$

$$p_{n+1,n}^{\downarrow}(k,k) = rac{n+k-1}{n+1}, \qquad p_{n+1,n}^{\downarrow}(k,k-1) = rac{k}{n+1}.$$

$$p_{n+1,n}^{\downarrow}(k,k) = \frac{n+k-1}{n+1}, \qquad p_{n+1,n}^{\downarrow}(k,k-1) = \frac{k}{n+1}.$$

1 Markov transition kernel: $\sum_{m} p_{n+1,n}^{\downarrow}(k,m) = 1$ for all k.

$$p_{n+1,n}^{\downarrow}(k,k) = \frac{n+k-1}{n+1}, \qquad p_{n+1,n}^{\downarrow}(k,k-1) = \frac{k}{n+1}.$$

- **1** Markov transition kernel: $\sum_{m} p_{n+1,n}^{\downarrow}(k,m) = 1$ for all k.
- 2 Can define through the Pascal triangle:

$$p_{n+1,n}^{\downarrow}(k,m) = \frac{\# \text{ of paths to } (n,m)}{\# \text{ of paths to } (n+1,k)}.$$

$$p_{n+1,n}^{\downarrow}(k,k) = \frac{n+k-1}{n+1}, \qquad p_{n+1,n}^{\downarrow}(k,k-1) = \frac{k}{n+1}.$$

- **1** Markov transition kernel: $\sum_{m} p_{n+1,n}^{\downarrow}(k,m) = 1$ for all k.
- 2 Can define through the Pascal triangle:

$$p_{n+1,n}^{\downarrow}(k,m) = \frac{\# \text{ of paths to } (n,m)}{\# \text{ of paths to } (n+1,k)}.$$

summarizing

• Binary sequence ξ is exchangeable iff $\{P_n\}$'s are compatible with the down kernel: $P_{n+1} \circ p_{n+1,n}^{\downarrow} = P_n$.

$$p_{n+1,n}^{\downarrow}(k,k) = \frac{n+k-1}{n+1}, \qquad p_{n+1,n}^{\downarrow}(k,k-1) = \frac{k}{n+1}.$$

- **1** Markov transition kernel: $\sum_{m} p_{n+1,n}^{\downarrow}(k,m) = 1$ for all k.
- 2 Can define through the Pascal triangle:

$$p_{n+1,n}^{\downarrow}(k,m) = \frac{\# \text{ of paths to } (n,m)}{\# \text{ of paths to } (n+1,k)}.$$

summarizing

- Binary sequence ξ is exchangeable iff $\{P_n\}$'s are compatible with the down kernel: $P_{n+1} \circ p_{n+1,n}^{\downarrow} = P_n$.
- de Finetti's Theorem = classification of compatible (coherent) sequences of measures $\{P_n\}$ on levels of the Pascal triangle.

• Fix a measure P on $[0,1] \Leftrightarrow$ a system $\{P_n\}$.

- Fix a measure P on $[0,1] \Leftrightarrow$ a system $\{P_n\}$.
- Define

$$p_{n,n+1}^{\uparrow}(m,k) := p_{n+1,n}^{\downarrow}(k,m) \frac{P_{n+1}(k)}{P_n(m)}.$$

- Fix a measure P on $[0,1] \Leftrightarrow$ a system $\{P_n\}$.
- Define

$$p_{n,n+1}^{\uparrow}(m,k) := p_{n+1,n}^{\downarrow}(k,m) \frac{P_{n+1}(k)}{P_n(m)}.$$

Thus

$$P_n \circ p_{n,n+1}^{\uparrow} = P_{n+1} \qquad \forall n.$$

(random growth on the Pascal triangle; depends on P).

- Fix a measure P on $[0,1] \Leftrightarrow$ a system $\{P_n\}$.
- Define

$$p_{n,n+1}^{\uparrow}(m,k) := p_{n+1,n}^{\downarrow}(k,m) \frac{P_{n+1}(k)}{P_n(m)}.$$

Thus

$$P_n \circ p_{n,n+1}^{\uparrow} = P_{n+1} \qquad \forall n$$

(random growth on the Pascal triangle; depends on P).

This is a restatement of the two-step sampling procedure for the exchangeable binary sequence $\xi = (\xi_1, \xi_2, ...)$ corresponding to P.

- de Finetti's Theorem
- up/down Markov chains and limiting diffusions
- Kingman's exchangeable random partitions
- up/down Markov chains on partitions and limiting infinite-dimensional diffusions

• Fix a measure P on [0,1].

- Fix a measure P on [0,1].
- Thus get the up kernel $p_{n,n+1}^{\uparrow}$.

- Fix a measure P on [0,1].
- Thus get the up kernel $p_{n,n+1}^{\uparrow}$.
- Also there is a canonical down kernel $p_{n+1,n}^{\downarrow}$.

- Fix a measure *P* on [0, 1].
- Thus get the up kernel $p_{n,n+1}^{\uparrow}$.
- Also there is a canonical down kernel $p_{n+1,n}^{\downarrow}$.
- Use these kernels to obtain the $up/down\ Markov\ chain$ on $\{0,1,\ldots,n\}$:

$$T_n = p_{n,n+1}^{\uparrow} \circ p_{n+1,n}^{\downarrow}$$

i.e.,

$$T_n(k,\tilde{k}) = \sum_{m=0}^{n+1} p_{n,n+1}^{\uparrow}(k,m) \circ p_{n+1,n}^{\downarrow}(m,\tilde{k}).$$

- Fix a measure *P* on [0, 1].
- Thus get the up kernel $p_{n,n+1}^{\uparrow}$.
- Also there is a canonical down kernel $p_{n+1,n}^{\downarrow}$.
- Use these kernels to obtain the $up/down\ Markov\ chain$ on $\{0,1,\ldots,n\}$:

$$T_n = p_{n,n+1}^{\uparrow} \circ p_{n+1,n}^{\downarrow}$$

i.e.,

$$T_n(k,\tilde{k})=\sum_{m=0}^{n+1}p_{n,n+1}^{\uparrow}(k,m)\circ p_{n+1,n}^{\downarrow}(m,\tilde{k}).$$

• P_n is reversible w.r.t. T_n for all n.

- Fix a measure P on [0, 1].
- Thus get the up kernel $p_{n,n+1}^{\uparrow}$.
- Also there is a canonical down kernel $p_{n+1,n}^{\downarrow}$.
- Use these kernels to obtain the up/down Markov chain on $\{0, 1, ..., n\}$:

$$T_n = p_{n,n+1}^{\uparrow} \circ p_{n+1,n}^{\downarrow}$$

i.e.,

$$T_n(k,\tilde{k})=\sum_{m=0}^{n+1}p_{n,n+1}^{\uparrow}(k,m)\circ p_{n+1,n}^{\downarrow}(m,\tilde{k}).$$

• P_n is reversible w.r.t. T_n for all n.

Is there a (scaling) limit of the chains T_n as $n \to \infty$?

Is there a (scaling) limit of the chains T_n as $n \to \infty$?

Is there a (scaling) limit of the chains T_n as $n \to \infty$?

 \rightarrow Nothing general can be said for arbitrary P on [0,1].

Is there a (scaling) limit of the chains T_n as $n \to \infty$?

 \rightarrow Nothing general can be said for arbitrary P on [0,1].

Beta distributions

Beta distributions $P_{a,b}$ (where a, b > 0):

$$P_{a,b}(dx) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} dx.$$

Is there a (scaling) limit of the chains T_n as $n \to \infty$?

 \rightarrow Nothing general can be said for arbitrary P on [0,1].

Beta distributions

Beta distributions $P_{a,b}$ (where a, b > 0):

$$P_{a,b}(dx) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} dx.$$

ullet One gets diffusion limits for the chains T_n

Is there a (scaling) limit of the chains T_n as $n \to \infty$?

 \rightarrow Nothing general can be said for arbitrary P on [0,1].

Beta distributions

Beta distributions $P_{a,b}$ (where a, b > 0):

$$P_{a,b}(dx) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} dx.$$

- One gets diffusion limits for the chains T_n
- $P_{a,b}$'s are nice from algebraic point

Is there a (scaling) limit of the chains T_n as $n \to \infty$?

 \rightarrow Nothing general can be said for arbitrary P on [0,1].

Beta distributions

Beta distributions $P_{a,b}$ (where a, b > 0):

$$P_{a,b}(dx) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} dx.$$

- One gets diffusion limits for the chains T_n
- $P_{a,b}$'s are nice from algebraic point
- Remark: $P_{a,b}$'s from a Bayesian point:

Beta prior on Bernoulli parameter $p \in [0,1]$

⇒ Beta posterior

Beta distributions and the uniform distribution

Take $P_{a,b}$ on [0,1], then

$$P_{n}(k) = \int_{0}^{1} \frac{\Gamma(n+1)\Gamma(a+b)}{\Gamma(k+1)\Gamma(n-k+1)\Gamma(a)\Gamma(b)} p^{k+a-1} (1-p)^{n-k+b-1} dp$$

$$= \binom{n}{k} \frac{(a)_{k}(b)_{n-k}}{(a+b)_{n}},$$

where

$$(x)_m := x(x+1)(x+2)\dots(x+m-1).$$

Beta distributions and the uniform distribution

Take $P_{a,b}$ on [0,1], then

$$P_{n}(k) = \int_{0}^{1} \frac{\Gamma(n+1)\Gamma(a+b)}{\Gamma(k+1)\Gamma(n-k+1)\Gamma(a)\Gamma(b)} p^{k+a-1} (1-p)^{n-k+b-1} dp$$

$$= \binom{n}{k} \frac{(a)_{k}(b)_{n-k}}{(a+b)_{n}},$$

where

$$(x)_m := x(x+1)(x+2)\dots(x+m-1).$$

Uniform distribution

For the uniform distribution (a = b = 1) on [0, 1], P_n is also uniform on $\{0, 1, \ldots, n\}$.

$$m{\phi} \ p_{n,n+1}^{\uparrow}(k,k+1) = rac{k+1}{n+2}, \qquad p_{n,n+1}^{\uparrow}(k,k) = rac{n-k+1}{n+2}.$$

•
$$p_{n,n+1}^{\uparrow}(k, k+1) = \frac{k+1}{n+2},$$
 $p_{n,n+1}^{\uparrow}(k, k) = \frac{n-k+1}{n+2}.$
• $T_n(k \to k+1) = \frac{(k+1)(n-k)}{(n+1)(n+2)}$
 $T_n(k \to k-1) = \frac{k(n-k+1)}{(n+1)(n+2)}$

$$T_n(k \to k) = \frac{(k+1)^2 + (n-k+1)^2}{(n+1)(n+2)}$$

•
$$p_{n,n+1}^{\uparrow}(k,k+1) = \frac{k+1}{n+2}$$
, $p_{n,n+1}^{\uparrow}(k,k) = \frac{n-k+1}{n+2}$.

•
$$T_n(k \to k+1) = \frac{(k+1)(n-k)}{(n+1)(n+2)}$$

$$T_n(k \to k-1) = \frac{k(n-k+1)}{(n+1)(n+2)}$$

$$T_n(k \to k) = \frac{(k+1)^2 + (n-k+1)^2}{(n+1)(n+2)}$$

$$\bullet \ \frac{k}{n} = x \in [0,1], \ \Delta x = \frac{1}{n}.$$

$$T_n(k \to k+1) = \operatorname{Prob}(x \to x + \Delta x) \sim x(1-x) + \frac{1}{n}(1-x)$$

$$T_n(k \to k-1) = \mathsf{Prob}(x \to x - \Delta x) \sim x(1-x) + \frac{1}{n}x$$

Scaling limit

• Scale space by $\frac{1}{n}$, scale time by $\frac{1}{n^2}$ (i.e., one step of the nth Markov chain = small time interval of order n^{-2}).

Scaling limit

- Scale space by $\frac{1}{n}$, scale time by $\frac{1}{n^2}$ (i.e., one step of the nth Markov chain = small time interval of order n^{-2}).
- Then as $n \to +\infty$,

$$n^{2}(T_{n}-\mathbf{1}) \to x(1-x)\frac{d^{2}}{dx^{2}}+(1-2x)\frac{d}{dx}$$

Scaling limit

- Scale space by $\frac{1}{n}$, scale time by $\frac{1}{n^2}$ (i.e., one step of the nth Markov chain = small time interval of order n^{-2}).
- Then as $n \to +\infty$,

$$n^{2}(T_{n}-\mathbf{1}) \to x(1-x)\frac{d^{2}}{dx^{2}}+(1-2x)\frac{d}{dx}$$

• First, check the convergence on polynomials (algebraically!). The processes have polynomial core.

Scaling limit

- Scale space by $\frac{1}{n}$, scale time by $\frac{1}{n^2}$ (i.e., one step of the nth Markov chain = small time interval of order n^{-2}).
- Then as $n \to +\infty$,

$$n^{2}(T_{n}-1) \rightarrow x(1-x)\frac{d^{2}}{dx^{2}}+(1-2x)\frac{d}{dx}$$

- First, check the convergence on polynomials (algebraically!). The processes have polynomial core.
- Then apply Trotter-Kurtz type theorems to conclude the convergence of finite Markov chains to diffusion processes.

- de Finetti's Theorem
- up/down Markov chains and limiting diffusions

- Kingman's exchangeable random partitions
- up/down Markov chains on partitions and limiting infinite-dimensional diffusions

Counting paths $\Rightarrow p^{\downarrow} \Rightarrow$ classification of coherent measures

Counting paths $\Rightarrow p^{\downarrow} \Rightarrow$ classification of coherent measures

Examples

Pascal triangle

Counting paths $\Rightarrow p^{\downarrow} \Rightarrow$ classification of coherent measures

- Pascal triangle
- Kingman's exchangeable random partitions

Counting paths $\Rightarrow p^{\downarrow} \Rightarrow$ classification of coherent measures

- Pascal triangle
- Kingman's exchangeable random partitions
- q-Pascal triangle, Stirling triangles, etc.

Counting paths $\Rightarrow p^{\downarrow} \Rightarrow$ classification of coherent measures

- Pascal triangle
- Kingman's exchangeable random partitions
- q-Pascal triangle, Stirling triangles, etc.
- Young graph the lattice of all partitions

Counting paths $\Rightarrow p^{\downarrow} \Rightarrow$ classification of coherent measures

- Pascal triangle
- Kingman's exchangeable random partitions
- q-Pascal triangle, Stirling triangles, etc.
- Young graph the lattice of all partitions
- Young graph with multiplicities (one choice of multiplicities is equivalent to Kingman's theory)

Counting paths $\Rightarrow p^{\downarrow} \Rightarrow$ classification of coherent measures

- Pascal triangle
- Kingman's exchangeable random partitions
- q-Pascal triangle, Stirling triangles, etc.
- Young graph the lattice of all partitions
- Young graph with multiplicities (one choice of multiplicities is equivalent to Kingman's theory)
- Schur graph the lattice of all strict partitions (*my yesterday's talk:* a related Markov dynamics is Pfaffian)

Counting paths $\Rightarrow p^{\downarrow} \Rightarrow$ classification of coherent measures

Examples

- Pascal triangle
- Kingman's exchangeable random partitions
- q-Pascal triangle, Stirling triangles, etc.
- Young graph the lattice of all partitions
- Young graph with multiplicities (one choice of multiplicities is equivalent to Kingman's theory)
- Schur graph the lattice of all strict partitions (my yesterday's talk: a related Markov dynamics is Pfaffian)
- Gelfand-Tsetlin schemes

...

Figure: Young graph

- de Finetti's Theorem
- up/down Markov chains and limiting diffusions
- Kingman's exchangeable random partitions
- up/down Markov chains on partitions and limiting infinite-dimensional diffusions

Definition

 π is a random partition of $\mathbb{N} = \{1, 2, 3, \dots\}$, i.e., $\mathbb{N} = \bigsqcup_{i \in I} A_i$.

Definition

$$\pi$$
 is a random partition of $\mathbb{N}=\{1,2,3,\dots\}$, i.e., $\mathbb{N}=\bigsqcup_{i\in I}A_i$.

 π is called *exchangeable* if the distribution of π is invariant under permutations of \mathbb{N} .

Definition

$$\pi$$
 is a random partition of $\mathbb{N}=\{1,2,3,\dots\}$, i.e., $\mathbb{N}=\bigsqcup_{i\in I} A_i$.

 π is called *exchangeable* if the distribution of π is invariant under permutations of \mathbb{N} .

Kingman Simplex

$$\overline{\nabla}_{\infty} := \left\{ (x_1 \geq x_2 \geq \cdots \geq 0) \colon \sum x_i \leq 1 \right\}$$

Definition

$$\pi$$
 is a random partition of $\mathbb{N} = \{1, 2, 3, \dots\}$, i.e., $\mathbb{N} = \bigsqcup_{i \in I} A_i$.

 π is called *exchangeable* if the distribution of π is invariant under permutations of \mathbb{N} .

Kingman Simplex

$$\overline{\nabla}_{\infty} := \left\{ (x_1 \geq x_2 \geq \cdots \geq 0) \colon \sum x_i \leq 1 \right\}$$

Compact in coordinatewise topology.

Definition

$$\pi$$
 is a random partition of $\mathbb{N}=\{1,2,3,\dots\}$, i.e., $\mathbb{N}=\bigsqcup_{i\in I}A_i$.

 π is called *exchangeable* if the distribution of π is invariant under permutations of \mathbb{N} .

Kingman Simplex

$$\overline{\nabla}_{\infty} := \left\{ (x_1 \geq x_2 \geq \cdots \geq 0) \colon \sum x_i \leq 1 \right\}$$

- Compact in coordinatewise topology.
- $x \in \overline{\nabla}_{\infty} \longleftrightarrow$ discrete distribution

Definition

$$\pi$$
 is a random partition of $\mathbb{N}=\{1,2,3,\dots\}$, i.e., $\mathbb{N}=\bigsqcup_{i\in I}A_i$.

 π is called *exchangeable* if the distribution of π is invariant under permutations of \mathbb{N} .

Kingman Simplex

$$\overline{\nabla}_{\infty} := \left\{ (x_1 \geq x_2 \geq \cdots \geq 0) \colon \sum x_i \leq 1 \right\}$$

- Compact in coordinatewise topology.
- $x \in \overline{\nabla}_{\infty} \longleftrightarrow$ discrete distribution
- Probability measure on $\overline{\nabla}_{\infty} \longleftrightarrow$ random discrete distribution

Kingman's representation

 π — exchangeable random partition of $\mathbb N$

probability measure M on $\overline{\nabla}_{\infty}$ (the boundary measure)

Kingman's representation

 π — exchangeable random partition of $\mathbb N$

probability measure M on $\overline{\nabla}_{\infty}$ (the boundary measure)

Finite level random integer partitions — encoding of π

• Restrict π to $\{1, 2, ..., n\} \subset \mathbb{N}$, thus get a random partition π_n of the finite set $\{1, 2, ..., n\}$.

Kingman's representation

 π — exchangeable random partition of $\mathbb N$

probability measure M on $\overline{\nabla}_{\infty}$ (the boundary measure)

Finite level random integer partitions — encoding of π

- Restrict π to $\{1, 2, ..., n\} \subset \mathbb{N}$, thus get a random partition π_n of the finite set $\{1, 2, ..., n\}$.
- Exchangeable \Rightarrow the distribution of π_n is *encoded* by the distribution of decreasing sizes of blocks

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{\ell(\lambda)} > 0), \quad \lambda_i \in \mathbb{Z}, \quad \sum \lambda_i = n.$$

Kingman's representation

 π — exchangeable random partition of $\mathbb N$

probability measure M on $\overline{\nabla}_{\infty}$ (the boundary measure)

Finite level random integer partitions — encoding of π

- Restrict π to $\{1, 2, ..., n\} \subset \mathbb{N}$, thus get a random partition π_n of the finite set $\{1, 2, ..., n\}$.
- Exchangeable \Rightarrow the distribution of π_n is *encoded* by the distribution of decreasing sizes of blocks

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{\ell(\lambda)} > 0), \quad \lambda_i \in \mathbb{Z}, \quad \sum \lambda_i = n.$$

• \Rightarrow sequence of measures M_n on the sets $\mathbb{P}_n := \{\lambda = (\lambda_1 \ge \cdots \ge \lambda_{\ell(\lambda)})\}$

— integer partition such that
$$\sum \lambda_i = n$$

from $\{M_n\}$ to M

• Random $x_1 \ge x_2 \ge \cdots \ge 0$ are limiting values of $\lambda_1, \lambda_2, \ldots$:

$$\frac{\lambda_j}{n} \xrightarrow{Law} x_j, \qquad j = 1, 2, \dots$$

from $\{M_n\}$ to M

• Random $x_1 \ge x_2 \ge \cdots \ge 0$ are limiting values of $\lambda_1, \lambda_2, \ldots$:

$$\frac{\lambda_j}{n} \xrightarrow{\text{Law}} x_j, \qquad j = 1, 2, \dots$$

• The sets of partitions \mathbb{P}_n approximate $\overline{\nabla}_{\infty}$:

$$\mathbb{P}_n \ni \lambda = (\lambda_1, \ldots, \lambda_\ell) \hookrightarrow \left(\frac{\lambda_1}{n}, \ldots, \frac{\lambda_\ell}{n}, 0, 0, \ldots\right) \in \overline{\nabla}_{\infty}.$$

Images of M_n 's weakly converge to M on $\overline{\nabla}_{\infty}$.

from $\{M_n\}$ to M

• Random $x_1 \ge x_2 \ge \cdots \ge 0$ are limiting values of $\lambda_1, \lambda_2, \ldots$:

$$\frac{\lambda_j}{n} \xrightarrow{\text{Law}} x_j, \qquad j = 1, 2, \dots$$

• The sets of partitions \mathbb{P}_n approximate $\overline{\nabla}_{\infty}$: $\mathbb{P}_n \ni \lambda = (\lambda_1, \dots, \lambda_\ell) \hookrightarrow \left(\frac{\lambda_1}{n}, \dots \frac{\lambda_\ell}{n}, 0, 0, \dots\right) \in \overline{\nabla}_{\infty}.$ Images of M_n 's weakly converge to M on $\overline{\nabla}_{\infty}$.

From the point of random partitions π of \mathbb{N} the $x_1 \geq x_2 \geq \cdots \geq 0$ are the limiting frequencies of blocks, in decreasing order.

from M to $\{M_n\}$ — two-step random sampling

3 Sample $x = (x_1, x_2, ...) \in \overline{\nabla}_{\infty}$ according to M on $\overline{\nabla}_{\infty}$. For simplicity, let $\sum x_i = 1$

from M to $\{M_n\}$ — two-step random sampling

- **1** Sample $x = (x_1, x_2, ...) \in \overline{\nabla}_{\infty}$ according to M on $\overline{\nabla}_{\infty}$. For simplicity, let $\sum x_i = 1$
- **2** Consider the measure with weights x_1, x_2, \ldots on \mathbb{N} . Sample n independent numbers $A_1, \ldots, A_n \in \mathbb{N}$ according to this measure

from M to $\{M_n\}$ — two-step random sampling

- **1** Sample $x = (x_1, x_2, ...) \in \overline{\nabla}_{\infty}$ according to M on $\overline{\nabla}_{\infty}$. For simplicity, let $\sum x_i = 1$
- **2** Consider the measure with weights x_1, x_2, \ldots on \mathbb{N} . Sample n independent numbers $A_1, \ldots, A_n \in \mathbb{N}$ according to this measure
- 3 $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell$ multiplicities of A_1, A_2, \ldots, A_n in decreasing order:

e.g.,
$$(A_1,\ldots,A_n)=(4,3,5,1,1,3,1)\to \lambda=(3,2,1,1)$$

Law of $\lambda=(\lambda_1,\ldots,\lambda_\ell)\in \mathbb{P}_n$ is M_n .

monomial symmetric functions

$$\mu = (\mu_1, \dots, \mu_k)$$
 — integer partition,

$$m_{\mu}(y_1, y_2, \dots) := \sum y_{i_1}^{\mu_1} y_{i_2}^{\mu_2} \dots y_{i_k}^{\mu_k}$$

(sum over all distinct summands).

monomial symmetric functions

$$\mu = (\mu_1, \dots, \mu_k)$$
 — integer partition,

$$m_{\mu}(y_1, y_2, \dots) := \sum y_{i_1}^{\mu_1} y_{i_2}^{\mu_2} \dots y_{i_k}^{\mu_k}$$

(sum over all distinct summands). Examples:

monomial symmetric functions

$$\mu = (\mu_1, \dots, \mu_k)$$
 — integer partition,

$$m_{\mu}(y_1, y_2, \dots) := \sum y_{i_1}^{\mu_1} y_{i_2}^{\mu_2} \dots y_{i_k}^{\mu_k}$$

(sum over all distinct summands).

Examples:

• $m_{(k)}(y_1, y_2, \dots) := p_k(y_1, y_2, \dots) = \sum_{i=1}^{\infty} y_i^k$ (Newton power sum)

monomial symmetric functions

$$\mu = (\mu_1, \dots, \mu_k)$$
 — integer partition,

$$m_{\mu}(y_1, y_2, \dots) := \sum y_{i_1}^{\mu_1} y_{i_2}^{\mu_2} \dots y_{i_k}^{\mu_k}$$

(sum over all distinct summands).

Examples:

- $m_{(k)}(y_1, y_2, \dots) := p_k(y_1, y_2, \dots) = \sum_{i=1}^{\infty} y_i^k$ (Newton power sum)
- $m_{(\underbrace{1,\ldots,1}_{k})}(y_1,y_2,\ldots) = \sum_{i_1<\cdots< i_k} y_{i_1}\ldots y_{i_k}$ (elementary symmetric function)

monomial symmetric functions

$$\mu = (\mu_1, \dots, \mu_k)$$
 — integer partition,

$$m_{\mu}(y_1,y_2,\dots) := \sum y_{i_1}^{\mu_1} y_{i_2}^{\mu_2} \dots y_{i_k}^{\mu_k}$$

(sum over all distinct summands).

Examples:

- $m_{(k)}(y_1, y_2, \dots) := p_k(y_1, y_2, \dots) = \sum_{i=1}^{\infty} y_i^k$ (Newton power sum)
- $m_{(\underbrace{1,\ldots,1}_{k})}(y_1,y_2,\ldots) = \sum_{i_1<\cdots< i_k} y_{i_1}\ldots y_{i_k}$ (elementary symmetric function)
- For k > 1: $m_{(k,1)}(y_1, y_2, ...) = \sum_{i,j=1}^{\infty} y_i^k y_j$.

from M to $\{M_n\}$ — two-step random sampling

For simplicity, let M be concentrated on $\{\sum x_i = 1\}$.

$$M_n(\lambda) = \binom{n}{\lambda_1, \lambda_2, \dots, \lambda_\ell} \int_{\overline{\nabla}_{\infty}} m_{\lambda}(x_1, x_2, \dots) M(dx).$$

down kernel

The measures $\{M_n\}$ are compatible with each other, through a certain canonical *down transition kernel* $p_{n+1,n}^{\downarrow}$ from \mathbb{P}_{n+1} to \mathbb{P}_n .

down kernel

The measures $\{M_n\}$ are compatible with each other, through a certain canonical down transition kernel $p_{n+1,n}^{\downarrow}$ from \mathbb{P}_{n+1} to \mathbb{P}_n .

$$p_{n+1,n}^{\downarrow}(\lambda,\mu) := rac{inom{n}{\mu_1,\dots,\mu_{\ell(\mu)}}}{inom{n+1}{\lambda_1,\dots,\lambda_{\ell(\lambda)}}}, ext{ if } \lambda = \mu + \square$$
 $p_{n+1,n}^{\downarrow}(\lambda,\mu) := 0, ext{ otherwise}$

down kernel

The measures $\{M_n\}$ are compatible with each other, through a certain canonical down transition kernel $p_{n+1,n}^{\downarrow}$ from \mathbb{P}_{n+1} to \mathbb{P}_n .

$$p_{n+1,n}^{\downarrow}(\lambda,\mu) := rac{inom{n}{\mu_1,...,\mu_{\ell(\mu)}}}{inom{n+1}{\lambda_1,...,\lambda_{\ell(\lambda)}}}, ext{ if } \lambda = \mu + \square$$

 $p_{n+1,n}^{\downarrow}(\lambda,\mu) := 0$, otherwise

 $\binom{n}{\lambda_1,\lambda_2,\dots,\lambda_\ell}$ — number of paths in the Kingman graph from \varnothing to $\lambda\in\mathbb{P}_n.$

down kernel

The measures $\{M_n\}$ are compatible with each other, through a certain canonical down transition kernel $p_{n+1,n}^{\downarrow}$ from \mathbb{P}_{n+1} to \mathbb{P}_n .

$$p_{n+1,n}^{\downarrow}(\lambda,\mu) := rac{inom{n}{\mu_1,\dots,\mu_{\ell(\mu)}}}{inom{n+1}{\lambda_1,\dots,\lambda_{\ell(\lambda)}}}, ext{ if } \lambda = \mu + \square$$

 $p_{n+1,n}^{\downarrow}(\lambda,\mu) := 0$, otherwise

 $\binom{n}{\lambda_1,\lambda_2,\dots,\lambda_\ell}$ — number of paths in the Kingman graph from \varnothing to $\lambda\in\mathbb{P}_n.$

 $p_{n+1,n}^{\downarrow}(\lambda,\cdot)=$ take (uniformly) a random box from λ and delete it.

Figure: Kingman graph

Definition

 $\{M_n\}$ — sequence of measures on \mathbb{P}_n is called a *partition structure* if it is compatible with $p_{n+1,n}^{\downarrow}$:

$$M_{n+1}\circ p_{n+1,n}^{\downarrow}=M_n$$

Definition

 $\{M_n\}$ — sequence of measures on \mathbb{P}_n is called a *partition structure* if it is compatible with $p_{n+1,n}^{\downarrow}$:

$$M_{n+1} \circ p_{n+1,n}^{\downarrow} = M_n$$

Kingman's theorem = classification of partition structures

Definition

 $\{M_n\}$ — sequence of measures on \mathbb{P}_n is called a *partition structure* if it is compatible with $p_{n+1,n}^{\downarrow}$:

$$M_{n+1} \circ p_{n+1,n}^{\downarrow} = M_n$$

Kingman's theorem = classification of partition structures

• Any partition structure \Rightarrow up/down Markov chains.

Definition

 $\{M_n\}$ — sequence of measures on \mathbb{P}_n is called a *partition structure* if it is compatible with $p_{n+1,n}^{\downarrow}$:

$$M_{n+1} \circ p_{n+1,n}^{\downarrow} = M_n$$

Kingman's theorem = classification of partition structures

- Any partition structure ⇒ up/down Markov chains.
- Which partition structures are good for obtaining diffusions (diffusions will be infinite-dimensional)?

- de Finetti's Theorem
- up/down Markov chains and limiting diffusions
- Kingman's exchangeable random partitions
- up/down Markov chains on partitions and limiting infinite-dimensional diffusions

There is a distinguished two-parameter family of measures $PD(\alpha, \theta)$ on $\overline{\nabla}_{\infty}$, $0 \le \alpha < 1$, $\theta > -\alpha$.

There is a distinguished two-parameter family of measures $PD(\alpha, \theta)$ on $\overline{\nabla}_{\infty}$, $0 \le \alpha < 1$, $\theta > -\alpha$.

• $\alpha = 0$ — introduced by Kingman, definition through a Poisson point process on $(0, \infty)$.

There is a distinguished two-parameter family of measures $PD(\alpha, \theta)$ on $\overline{\nabla}_{\infty}$, $0 \le \alpha < 1$, $\theta > -\alpha$.

- $\alpha = 0$ introduced by Kingman, definition through a Poisson point process on $(0, \infty)$.
- $\alpha \neq 0$ Pitman(-Yor), '92–'95, motivated by stochastic processes. Definition through a Cox point process on $(0,\infty)$.

There is a distinguished two-parameter family of measures $PD(\alpha, \theta)$ on $\overline{\nabla}_{\infty}$, $0 \le \alpha < 1$, $\theta > -\alpha$.

- $\alpha = 0$ introduced by Kingman, definition through a Poisson point process on $(0, \infty)$.
- $\alpha \neq 0$ Pitman(-Yor), '92–'95, motivated by stochastic processes. Definition through a Cox point process on $(0, \infty)$.

Ewens-Pitman sampling formula

Partition structure corresponding to $PD(\alpha, \theta)$:

$$M_n(\lambda) = \frac{n!}{(\theta)_n} \cdot \frac{\theta(\theta + \alpha) \dots (\theta + (\ell(\lambda) - 1)\alpha)}{\prod \lambda_i! \prod [\lambda : k]!} \cdot \prod_{i=1}^{\ell(\lambda)} \prod_{j=2}^{\lambda_i} (j - 1 - \alpha)$$

• Having a partition structure $\{M_n\}$ corresponding to $PD(\alpha, \theta)$, define up/down Markov chains $T_n^{(\alpha, \theta)}$ on \mathbb{P}_n as before. They are reversible with respect to M_n .

- Having a partition structure $\{M_n\}$ corresponding to $PD(\alpha, \theta)$, define up/down Markov chains $T_n^{(\alpha, \theta)}$ on \mathbb{P}_n as before. They are reversible with respect to M_n .
- One step of $T_n^{(\alpha,\theta)} =$ move one box in the corresponding Young diagram from one place to another.

- Having a partition structure $\{M_n\}$ corresponding to $PD(\alpha, \theta)$, define up/down Markov chains $T_n^{(\alpha, \theta)}$ on \mathbb{P}_n as before. They are reversible with respect to M_n .
- One step of $T_n^{(\alpha,\theta)} =$ move one box in the corresponding Young diagram from one place to another.
- Remark: For $\alpha=0$, these chains have population-genetic interpretation, and the limiting infinite-dimensional diffusions were constructed by Ethier and Kurtz in '81 (by approximating by finite-dimensional diffusions).

- Having a partition structure $\{M_n\}$ corresponding to $PD(\alpha, \theta)$, define up/down Markov chains $T_n^{(\alpha, \theta)}$ on \mathbb{P}_n as before. They are reversible with respect to M_n .
- One step of $T_n^{(\alpha,\theta)} =$ move one box in the corresponding Young diagram from one place to another.
- Remark: For $\alpha=0$, these chains have population-genetic interpretation, and the limiting infinite-dimensional diffusions were constructed by Ethier and Kurtz in '81 (by approximating by finite-dimensional diffusions).
- Scale space by 1/n (embed \mathbb{P}_n into $\overline{\nabla}_{\infty}$) and scale time by $1/n^2$.

- Having a partition structure $\{M_n\}$ corresponding to $PD(\alpha, \theta)$, define up/down Markov chains $T_n^{(\alpha, \theta)}$ on \mathbb{P}_n as before. They are reversible with respect to M_n .
- One step of $T_n^{(\alpha,\theta)} =$ move one box in the corresponding Young diagram from one place to another.
- Remark: For $\alpha=0$, these chains have population-genetic interpretation, and the limiting infinite-dimensional diffusions were constructed by Ethier and Kurtz in '81 (by approximating by finite-dimensional diffusions).
- Scale space by 1/n (embed \mathbb{P}_n into $\overline{\nabla}_{\infty}$) and scale time by $1/n^2$.
 - The measures M_n converge to $PD(\alpha, \theta)$, what about Markov chains $T_n^{(\alpha,\theta)}$?

Theorem [P.]

1 As $n \to +\infty$, under the space and time scalings, the Markov chains $T_n^{(\alpha,\theta)}$ converge to an *infinite-dimensional* diffusion process $(X_{\alpha,\theta}(t))_{t>0}$ on $\overline{\nabla}_{\infty}$.

Theorem [P.]

- As $n \to +\infty$, under the space and time scalings, the Markov chains $T_n^{(\alpha,\theta)}$ converge to an *infinite-dimensional* diffusion process $(X_{\alpha,\theta}(t))_{t>0}$ on $\overline{\nabla}_{\infty}$.
- **2** The Poisson-Dirichlet distribution $PD(\alpha, \theta)$ is the *unique* invariant probability distribution for $X_{\alpha,\theta}(t)$. The process is reversible and ergodic with respect to $PD(\alpha, \theta)$.

Theorem [P.]

- **1** As $n \to +\infty$, under the space and time scalings, the Markov chains $T_n^{(\alpha,\theta)}$ converge to an infinite-dimensional diffusion process $(X_{\alpha,\theta}(t))_{t\geq 0}$ on $\overline{\nabla}_{\infty}$.
- **2** The Poisson-Dirichlet distribution $PD(\alpha, \theta)$ is the *unique* invariant probability distribution for $X_{\alpha,\theta}(t)$. The process is reversible and ergodic with respect to $PD(\alpha, \theta)$.
- **3** The *generator* of $X_{\alpha,\theta}$ is explicitly computed:

$$\sum_{i,j=1}^{\infty} x_i (\delta_{ij} - x_j) \frac{\partial^2}{\partial x_i \partial x_j} - \sum_{i=1}^{\infty} (\theta x_i + \alpha) \frac{\partial}{\partial x_i}.$$

It acts on *continuous symmetric polynomials* in the coordinates x_1, x_2, \ldots

Theorem [P.]

The spectrum of the generator in $L^2(\overline{\nabla}_\infty, PD(\alpha, \theta))$ is $\{0\} \cup \{-n(n-1+\theta) \colon n=2,3,\dots\}$, the eigenvalue 0 is simple, and the multiplicity of $-n(n-1+\theta)$ is the number of partitions of n with all parts > 2.

Theorem [P.]

4 The spectrum of the generator in $L^2(\overline{\nabla}_{\infty}, PD(\alpha, \theta))$ is $\{0\} \cup \{-n(n-1+\theta): n=2,3,\dots\},$

the eigenvalue 0 is simple, and the multiplicity of $-n(n-1+\theta)$ is the number of partitions of n with all parts ≥ 2 .

Remark: connection with the Pascal triangle model

Degenerate parameters

$$\alpha < 0$$
 arbitrary, $\theta = -2\alpha$

 \Rightarrow partitions have ≤ 2 parts. de Finetti's model with (any) symmetric Beta distribution.

Theorem [P.]

4 The spectrum of the generator in $L^2(\overline{\nabla}_{\infty}, PD(\alpha, \theta))$ is $\{0\} \cup \{-n(n-1+\theta): n=2,3,\dots\},$

the eigenvalue 0 is simple, and the multiplicity of $-n(n-1+\theta)$ is the number of partitions of n with all parts > 2.

Remark: connection with the Pascal triangle model

Degenerate parameters

$$\alpha < 0$$
 arbitrary, $\theta = -2\alpha$

 \Rightarrow partitions have ≤ 2 parts.

de Finetti's model with (any) symmetric Beta distribution.

$$\alpha < 0$$
, $\theta = -K\alpha \Rightarrow K$ -dimensional generalization.

No finite-dimensional approximating diffusions for $\alpha \neq 0$!

1 The transition operators of the Markov chains $T_n^{(\alpha,\theta)}$ act on symmetric functions in the coordinates $\lambda_1, \ldots, \lambda_\ell$ of a partition $\lambda \in \mathbb{P}_n$.

- ① The transition operators of the Markov chains $T_n^{(\alpha,\theta)}$ act on symmetric functions in the coordinates $\lambda_1,\ldots,\lambda_\ell$ of a partition $\lambda\in\mathbb{P}_n$.
- Write the operators $T_n^{(\alpha,\theta)}$ in a suitable basis (closely related to the monomial symmetric functions).

- **1** The transition operators of the Markov chains $T_n^{(\alpha,\theta)}$ act on symmetric functions in the coordinates $\lambda_1, \ldots, \lambda_\ell$ of a partition $\lambda \in \mathbb{P}_n$.
- Write the operators $T_n^{(\alpha,\theta)}$ in a suitable basis (closely related to the monomial symmetric functions).
- 3 Pass to $n \to +\infty$ limit of generators (*algebraically!*). The processes' core is the algebra of symmetric functions.

- ① The transition operators of the Markov chains $T_n^{(\alpha,\theta)}$ act on symmetric functions in the coordinates $\lambda_1,\ldots,\lambda_\ell$ of a partition $\lambda\in\mathbb{P}_n$.
- Write the operators $T_n^{(\alpha,\theta)}$ in a suitable basis (closely related to the monomial symmetric functions).
- 3 Pass to $n \to +\infty$ limit of generators (*algebraically!*). The processes' core is the algebra of symmetric functions.
- 4 Use general technique of Trotter-Kurtz to deduce convergence of the processes

Thank you for your attention

Figure: $x_1(t) \ge x_2(t) \ge x_3(t) \ge x_4(t)$