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de Finetti’s theorem

From ξ to P

#{ξi = 1: 1 ≤ i ≤ n}

n

Law
−−→ P, n →∞

distributions on {0, 1
n
, 2
n
, . . . , n−1

n
, 1} approximate the measure

P on [0, 1].

From P to ξ

1 Sample real number p ∈ [0, 1] according to P

2 Sample Bernoulli sequence ξ = (ξ1, ξ2, . . . ) with
probability p of success.

Pn(k) := Prob(#{ξi = 1: 1 ≤ i ≤ n} = k)

=

(
n

k

)
1∫

0

pk(1− p)n−kP(dp).
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de Finetti’s theorem

Bernoulli sequences are the extremal exchangeable binary
sequences (P on [0, 1] is δp)

Any exchangeable binary sequence is a mixture of
Bernoulli sequences.
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Pn on {0, 1, 2, . . . , n − 1, n}

Pn(k) = Prob(#{ξi = 1: 1 ≤ i ≤ n} = k).

(floors of the Pascal triangle)

The distributions {Pn}∞n=1 encode the exchangeable
binary sequence ξ. The scaling limit of Pn’s is our
measure P on [0, 1].

The Pn’s are compatible with each other:

Pn(k) =
n+1−k
n+1

Pn+1(k) +
k+1
n+1

Pn+1(k + 1) ∀k

m

Can define down kernel p↓
n+1,n from {0, . . . , n + 1} to

{0, . . . , n} such that

Pn+1 ◦ p
↓
n+1,n = Pn ∀n
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down transition kernel

p↓
n+1,n(k, k) =

n + k − 1

n + 1
, p↓

n+1,n(k, k − 1) =
k

n + 1
.

1 Markov transition kernel:
∑

m

p↓
n+1,n(k,m) = 1 for all k.

2 Can define through the Pascal triangle:

p↓
n+1,n(k,m) =

# of paths to (n,m)

# of paths to (n + 1, k)
.

summarizing

Binary sequence ξ is exchangeable iff {Pn}’s are
compatible with the down kernel: Pn+1 ◦ p

↓
n+1,n = Pn.

de Finetti’s Theorem = classification of compatible
(coherent) sequences of measures {Pn} on levels of the
Pascal triangle.
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up transition kernel

Fix a measure P on [0, 1] ⇔ a system {Pn}.

Define

p↑
n,n+1(m, k) := p↓

n+1,n(k,m)
Pn+1(k)

Pn(m)
.

Thus

Pn ◦ p
↑
n,n+1 = Pn+1 ∀n.

(random growth on the Pascal triangle; depends on P).

This is a restatement of the two-step sampling procedure for the
exchangeable binary sequence ξ = (ξ1, ξ2, . . . ) corresponding
to P.
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distinguished measures P on [0, 1]

Is there a (scaling) limit of the chains Tn as n →∞?

→ Nothing general can be said for arbitrary P on [0, 1].

Beta distributions

Beta distributions Pa,b (where a, b > 0):

Pa,b(dx) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1− x)b−1dx .

One gets diffusion limits for the chains Tn

Pa,b’s are nice from algebraic point

Remark: Pa,b’s from a Bayesian point:

Beta prior on Bernoulli parameter p ∈ [0, 1]
⇒ Beta posterior
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Beta distributions and the uniform distribution

Take Pa,b on [0, 1], then

Pn(k) =

1∫

0

Γ(n+1)Γ(a+b)
Γ(k+1)Γ(n−k+1)Γ(a)Γ(b)

pk+a−1(1− p)n−k+b−1dp

=

(
n

k

)
(a)k(b)n−k

(a + b)n
,

where
(x)m := x(x + 1)(x + 2) . . . (x +m − 1).

Uniform distribution

For the uniform distribution (a = b = 1) on [0, 1], Pn is also
uniform on {0, 1, . . . , n}.
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up/down Markov chains for uniform distribution

p↑
n,n+1(k, k + 1) =

k + 1

n + 2
, p↑

n,n+1(k, k) =
n − k + 1

n + 2
.

Tn(k → k + 1) = (k+1)(n−k)
(n+1)(n+2)

Tn(k → k − 1) = k(n−k+1)
(n+1)(n+2)

Tn(k → k) = (k+1)2+(n−k+1)2

(n+1)(n+2)

k

n
= x ∈ [0, 1], ∆x =

1

n
:

Tn(k → k+1) = Prob(x → x+∆x) ∼ x(1−x)+ 1
n
(1−x)

Tn(k → k − 1) = Prob(x → x −∆x) ∼ x(1− x) + 1
n
x
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up/down Markov chains for uniform distribution

Scaling limit

Scale space by
1

n
, scale time by

1

n2
(i.e., one step of the

nth Markov chain = small time interval of order n−2).

Then as n → +∞,

n2(Tn − 1)→ x(1− x)
d2

dx2
+ (1− 2x)

d

dx
First, check the convergence on polynomials
(algebraically!). The processes have polynomial core.

Then apply Trotter-Kurtz type theorems to conclude the
convergence of finite Markov chains to diffusion processes.
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intermission: a variety of models

Counting paths ⇒ p↓ ⇒ classification of coherent measures

Examples

Pascal triangle

Kingman’s exchangeable random partitions

q-Pascal triangle, Stirling triangles, etc.

Young graph — the lattice of all partitions

Young graph with multiplicities (one choice of
multiplicities is equivalent to Kingman’s theory)

Schur graph — the lattice of all strict partitions (my
yesterday’s talk: a related Markov dynamics is Pfaffian)

Gelfand-Tsetlin schemes
...



intermission: a variety of models

��HH ��HH��QQ ������ZZZZZZ
������HHH���HHH���HHHZZZZ; . . .

Figure: Young graph



intermission: a variety of models

��HHHH ��HH��QQQQQQ ��������ZZZZZZZZZZZZZZZZZZZZZZZZ
���������HHHHHHHHHH�����HHHHH�����HHHHHHHHHHHHHHHZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

; . . .
Figure: Kingman graph (= Young graph with multiplicities)
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Definition

π is a random partition of N = {1, 2, 3, . . . }, i.e., N =
⊔

i∈I

Ai .

π is called exchangeable if the distribution of π is invariant under
permutations of N.

Kingman Simplex

∇∞ :=
{

(x1 ≥ x2 ≥ · · · ≥ 0) :
∑

xi ≤ 1
}

Compact in coordinatewise topology.

x ∈ ∇∞ ←→ discrete distribution

Probability measure on ∇∞ ←→ random discrete
distribution
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exchangeable random partitions

Kingman’s representation

π — exchangeable random partition of N

l

probability measure M on ∇∞ (the boundary measure)

Finite level random integer partitions — encoding of π

Restrict π to {1, 2, . . . , n} ⊂ N, thus get a random
partition πn of the finite set {1, 2, . . . , n}.

Exchangeable ⇒ the distribution of πn is encoded by the
distribution of decreasing sizes of blocks

λ = (λ1 ≥ λ2 ≥ · · · ≥ λℓ(λ) > 0), λi ∈ Z,
∑

λi = n.

⇒ sequence of measures Mn on the sets
Pn := {λ = (λ1 ≥ · · · ≥ λℓ(λ))

— integer partition such that
∑

λi = n}
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from {Mn} to M

Random x1 ≥ x2 ≥ · · · ≥ 0 are limiting values of
λ1, λ2, . . . :

λj

n

Law
−−→ xj , j = 1, 2, . . . .

The sets of partitions Pn approximate ∇∞:

Pn ∋ λ = (λ1, . . . , λℓ) →֒
(
λ1

n
, . . . λℓ

n
, 0, 0, . . .

)
∈ ∇∞.

Images of Mn’s weakly converge to M on ∇∞.

From the point of random partitions π of N the x1 ≥ x2 ≥ · · · ≥
0 are the limiting frequencies of blocks, in decreasing order.
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exchangeable random partitions

from M to {Mn} — two-step random sampling

1 Sample x = (x1, x2, . . . ) ∈ ∇∞ according to M on ∇∞.
For simplicity, let

∑
xi = 1

2 Consider the measure with weights x1, x2, . . . on N.
Sample n independent numbers A1, . . . ,An ∈ N according
to this measure

3 λ1 ≥ λ2 ≥ · · · ≥ λℓ — multiplicities of A1,A2, . . . ,An in
decreasing order:

e.g., (A1, . . . ,An) = (4, 3, 5, 1, 1, 3, 1)→ λ = (3, 2, 1, 1)

Law of λ = (λ1, . . . , λℓ) ∈ Pn is Mn.
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exchangeable random partitions

monomial symmetric functions

µ = (µ1, . . . , µk) — integer partition,

mµ(y1, y2, . . . ) :=
∑

yµ1

i1
yµ2

i2
. . . yµk

ik

(sum over all distinct summands).
Examples:

m(k)(y1, y2, . . . ) := pk(y1, y2, . . . ) =
∞∑

i=1

y k
i (Newton

power sum)

m(1, . . . , 1
︸ ︷︷ ︸

k

)(y1, y2, . . . ) =
∑

i1<···<ik

yi1 . . . yik (elementary

symmetric function)

For k > 1: m(k,1)(y1, y2, . . . ) =
∞∑

i ,j=1

y k
i yj .



exchangeable random partitions

from M to {Mn} — two-step random sampling

For simplicity, let M be concentrated on {
∑

xi = 1}.

Mn(λ) =

(
n

λ1, λ2, . . . , λℓ

)∫

∇∞

mλ(x1, x2, . . . )M(dx).
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partition structures

down kernel

The measures {Mn} are compatible with each other, through
a certain canonical down transition kernel p↓

n+1,n from Pn+1 to
Pn.

p↓
n+1,n(λ, µ) :=

(
n

µ1,...,µℓ(µ)

)

(
n+1

λ1,...,λℓ(λ)

) , if λ = µ+�

p↓
n+1,n(λ, µ) := 0, otherwise

(
n

λ1,λ2,...,λℓ

)
— number of paths in the Kingman graph from ∅

to λ ∈ Pn.

p↓
n+1,n(λ, ·) = take (uniformly) a random box from λ and delete

it.
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Figure: Kingman graph
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partition structures

Definition

{Mn}— sequence of measures on Pn is called a partition struc-
ture if it is compatible with p↓

n+1,n:

Mn+1 ◦ p
↓
n+1,n = Mn

Kingman’s theorem = classification of partition structures

Any partition structure ⇒ up/down Markov chains.

Which partition structures are good for obtaining
diffusions (diffusions will be infinite-dimensional)?



outline

1 de Finetti’s Theorem

2 up/down Markov chains and limiting

diffusions

3 Kingman’s exchangeable random

partitions

4 up/down Markov chains on partitions and

limiting infinite-dimensional diffusions
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Poisson-Dirichlet distributions

There is a distinguished two-parameter family of measures
PD(α, θ) on ∇∞, 0 ≤ α < 1, θ > −α.

α = 0 — introduced by Kingman, definition through a
Poisson point process on (0,∞).

α 6= 0 — Pitman(-Yor), ’92–’95, motivated by stochastic
processes. Definition through a Cox point process on
(0,∞).

Ewens-Pitman sampling formula

Partition structure corresponding to PD(α, θ):

Mn(λ) =
n!

(θ)n
·
θ(θ + α) . . . (θ + (ℓ(λ)− 1)α)

∏
λi !

∏
[λ : k]!

·
ℓ(λ)∏

i=1

λi∏

j=2

(j−1−α)
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up-down Markov chains

Having a partition structure {Mn} corresponding to

PD(α, θ), define up/down Markov chains T
(α,θ)
n on Pn as

before. They are reversible with respect to Mn.

One step of T
(α,θ)
n = move one box in the corresponding

Young diagram from one place to another.

Remark: For α = 0, these chains have population-genetic
interpretation, and the limiting infinite-dimensional
diffusions were constructed by Ethier and Kurtz in ’81 (by
approximating by finite-dimensional diffusions).

Scale space by 1/n (embed Pn into ∇∞) and scale time
by 1/n2.
The measures Mn converge to PD(α, θ), what about

Markov chains T
(α,θ)
n ?
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limiting infinite-dimensional diffusions

Theorem [P.]

1 As n → +∞, under the space and time scalings, the
Markov chains T

(α,θ)
n converge to an infinite-dimensional

diffusion process (Xα,θ(t))t≥0 on ∇∞.

2 The Poisson-Dirichlet distribution PD(α, θ) is the unique
invariant probability distribution for Xα,θ(t). The process
is reversible and ergodic with respect to PD(α, θ).

3 The generator of Xα,θ is explicitly computed:

∞∑

i ,j=1

xi(δij − xj)
∂2

∂xi∂xj
−

∞∑

i=1

(θxi + α)
∂

∂xi
.

It acts on continuous symmetric polynomials in the
coordinates x1, x2, . . . .
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4 The spectrum of the generator in L2(∇∞,PD(α, θ)) is
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parts ≥ 2.
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limiting infinite-dimensional diffusions

Theorem [P.]

4 The spectrum of the generator in L2(∇∞,PD(α, θ)) is

{0} ∪ {−n(n − 1 + θ) : n = 2, 3, . . . },

the eigenvalue 0 is simple, and the multiplicity of
−n(n − 1 + θ) is the number of partitions of n with all
parts ≥ 2.

Remark: connection with the Pascal triangle model

Degenerate parameters

α < 0 arbitrary, θ = −2α

⇒ partitions have ≤ 2 parts.
de Finetti’s model with (any) symmetric Beta distribution.

α < 0, θ = −Kα ⇒ K -dimensional generalization.
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scheme of proof

No finite-dimensional approximating diffusions for α 6= 0!

1 The transition operators of the Markov chains T
(α,θ)
n act

on symmetric functions in the coordinates λ1, . . . , λℓ of a
partition λ ∈ Pn.

2 Write the operators T
(α,θ)
n in a suitable basis (closely

related to the monomial symmetric functions).

3 Pass to n → +∞ limit of generators (algebraically!). The
processes’ core is the algebra of symmetric functions.

4 Use general technique of Trotter-Kurtz to deduce
convergence of the processes



Thank you for your attention
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