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® de Finetti's Theorem

® up/down Markov chains and limiting
diffusions

® Kingman's exchangeable random
partitions

@ up/down Markov chains on partitions and
limiting infinite-dimensional diffusions
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° 517527537 0

— random variables € {0,1}

o distribution of the sequence & = (&1, &2, &3,

invariant under pemutations
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(Exchangeable binary sequences
° 517527537 o 00

— random variables € {0,1}

@ distribution of the sequence £ = (&1, &, &3,
invariant under pemutations

...) s
Exchangeable binary sequences &
!

probability measures P on [0, 1]
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n

> P,
distributions on {0, 1
P on [0, 1].

n— oo
anana"'a

1} approximate the measure
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#{E=1:1<i<n} Low
n 7

P, n— oo

distributions on {0,1,2 ... =1 1} approximate the measure
P on [0,1].

© Sample real number p € [0, 1] according to P
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de Finetti's theorem

From & to P
i=1:1<i < aw
7€ _I_n}L,P, n— oo
n
distributions on {0, % o n, = =1 1} approximate the measure
P on [0, 1].
From P to &

© Sample real number p € [0, 1] according to P

@ Sample Bernoulli sequence & = (&1, &, ... ) with
probability p of success.

Pa(k) := Prob(#{¢ =1: 1 < i < n} = k)

()fp — p)"*P(dp).



@ Bernoulli sequences are the extremal exchangeable binary
sequences (P on [0,1] is ;)
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@ Bernoulli sequences are the extremal exchangeable binary
sequences (P on [0,1] is ;)

@ Any exchangeable binary sequence is a mixture of
Bernoulli sequences.
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e P,on{0,1,2,...

,n—1,n}
Pn(k) = Prob(#{& =1: 1 <i < n} = k).
(floors of the Pascal triangle)
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finite level distributions

@ P,on{0,1,2,...,n—1,n}
Pa(k) = Prob(#{&; =1: 1 < i < n} = k).
(floors of the Pascal triangle)

@ The distributions {P,}5%; encode the exchangeable
binary sequence £. The scaling limit of P,'s is our
measure P on [0, 1].




finite level distributions

@ P,on{0,1,2,...,n—1,n}
Pa(k) = Prob(#{&; =1: 1 < i < n} = k).
(floors of the Pascal triangle)

@ The distributions {P,}5%; encode the exchangeable
binary sequence £. The scaling limit of P,'s is our
measure P on [0, 1].

@ The P,'s are compatible with each other:

Po(k) = "225P 1 (k) + £ Poa(k +1) Yk

n+1 n+1




finite level distributions

@ P,on{0,1,2,...,n—1,n}
Pa(k) = Prob(#{&; =1: 1 < i < n} = k).
(floors of the Pascal triangle)

@ The distributions {P,}5%; encode the exchangeable
binary sequence £. The scaling limit of P,'s is our
measure P on [0, 1].

@ The P,'s are compatible with each other:

Po(k) = "225P 1 (k) + £ Poa(k +1) Yk

n+1 n+1
7

Can define down kernel piﬂm from {0,...,n+ 1} to
{0, ..., n} such that

Poi1 9 Prisn = P Vn




P#—I—l,n(k, k) =

n_|_k_1

n+1 )

Pﬁ+1,n(k7 k—1)=

n_|_1

Do



n+k—1
Privnlk k) = ———

n+1 "’

k
p#—i—l,n(k? k — 1) =

n+1
© Markov transition kernel: Epiﬂ’n(k, m) =1 for all k.
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down transition kernel

k
n+1

n+k—1
n+1

pi—i—l,n(k? k) = 9 Pt+17n(k, k — 1) =

© Markov transition kernel: Zptﬂ,n(k, m) = 1 for all k.

@ Can define through the Pascal triangle:

. } _ # of paths to (n, m)
Pn+1,n( ) m) # of pathS to (n + 17 k)




down transition kernel

k
n+1

n+k—1
n+1

pi—i—l,n(k? k) = 9 pi+17n(k, k — 1) =

© Markov transition kernel: Zpiﬂ,n(k, m) = 1 for all k.

@ Can define through the Pascal triangle:

L _#of paths to (n.m)
pn—i—l,n( ) m) # of paths to (n + 17 k)

summarizing

@ Binary sequence ¢ is exchangeable iff {P,}'s are
compatible with the down kernel: P,.; o pﬁﬂm = P,.



down transition kernel

k
n+1

n+k—1

oo (kk—1) =
n+1 ) pn—i—l,n(’ )

pi—i—l,n(k’ k) =

© Markov transition kernel: Zpiﬂ,n(k, m) = 1 for all k.

@ Can define through the Pascal triangle:

L _#of paths to (n.m)
pn—i—l,n( ) m) # of paths to (n + 17 k)

summarizing
@ Binary sequence ¢ is exchangeable iff {P,}'s are
compatible with the down kernel: P,.; o pﬁﬂm = P,.

@ de Finetti's Theorem = classification of compatible
(coherent) sequences of measures {P,} on levels of the
Pascal triangle.



@ Fix a measure P on [0,1] < a system {P,}.
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@ Define

@ Fix a measure P on [0,1] < a system {P,}.

Pn-l-l(k)
pI,n-i—l(m’ k) = pi—i—l,n(k’ m) P,,(m) .
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@ Fix a measure P on [0,1] < a system {P,}.
@ Define

Pn+1(k)
pI,n—l—l(m’ k) = pi—i—l,n(k’ m) P,,(m) .
Thus

P,o Pz,n+1 =P

vn.
(random growth on the Pascal triangle; depends on P).
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up transition kernel

@ Fix a measure P on [0, 1] < a system {P,}.

@ Define
Pn+1(k)
pI,n—i—l(m? k) = pt+1,n(k7 m) P,,(m) '
Thus
P,o PI,n+1 = Ppi1 vn.

(random growth on the Pascal triangle; depends on P).

This is a restatement of the two-step sampling procedure for the
exchangeable binary sequence & = (&1,&,...) corresponding
to P.
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@ de Finetti's Theorem

® up/down Markov chains and limiting
diffusions

® Kingman's exchangeable random
partitions

@ up/down Markov chains on partitions and
limiting infinite-dimensional diffusions



@ Fix a measure P on [0, 1].
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@ Fix a measure P on [0, 1].

@ Thus get the up kernel Pz,n+1
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@ Fix a measure P on [0, 1].

@ Thus get the up kernel P;,n+1-

@ Also there is a canonical down kernel P#+1,n-

DA



up/down Markov chains

@ Fix a measure P on [0, 1].
@ Thus get the up kernel PI,n+1-
@ Also there is a canonical down kernel Pt+1,n-
@ Use these kernels to obtain the up/down Markov chain on
{0,1,...,n}:
Th= PZ,n+1 © pt-i—l,n'

n+1 -

Tn(ka /;) = Z_:O pI,n—i—l(k? m) e pi-ﬁ-l,n(m? k)




up/down Markov chains

@ Fix a measure P on [0, 1].
@ Thus get the up kernel PI,n+1-

@ Also there is a canonical down kernel Pt+1,n-
@ Use these kernels to obtain the up/down Markov chain on
{0,1,...,n}:
Th= PZ,n+1 © pt-i—l,n'

i.e.,
n+1 -

Tn(ka /;) = Z_:O pI,n—i—l(k? m) e pi-ﬁ-l,n(m? k)

@ P, is reversible w.r.t. T, for all n.




up/down Markov chains

@ Fix a measure P on [0, 1].
@ Thus get the up kernel PI,n+1-

@ Also there is a canonical down kernel Pt+1,n-
@ Use these kernels to obtain the up/down Markov chain on
{0,1,...,n}:
Th= PZ,n+1 © pt-i—l,n'

i.e.,
n+1 -

Tn(ka /;) = Z_:O pl,n—i—l(k? m) e pt—i—l,n(m? k)

@ P, is reversible w.r.t. T, for all n.

Is there a (scaling) limit of the chains T, as n — 00? )



Is there a (scaling) limit of the chains T, as n — o0? J
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Is there a (scaling) limit of the chains T, as n — o0?
— Nothing general can be said for arbitrary P on [0, 1].
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distinguished measures P on [0, 1]

Is there a (scaling) limit of the chains T, as n — 00?
— Nothing general can be said for arbitrary P on [0, 1].

o

Beta distributions
Beta distributions P, p, (where a, b > 0):
Ma+b) , .

Pa,b(dx) = WX (]. = X)b_ldX.
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@ One gets diffusion limits for the chains T,




distinguished measures P on [0, 1]

Is there a (scaling) limit of the chains T, as n — 00?
— Nothing general can be said for arbitrary P on [0, 1].

o

Beta distributions
Beta distributions P, p, (where a, b > 0):

M(a+ b)
P, p(dx) = —0————~x"1(1 — x)b~1dx.
7b( X) F(a)r(b)x ( X) X
@ One gets diffusion limits for the chains T,

® P, 's are nice from algebraic point




distinguished measures P on [0, 1]

Is there a (scaling) limit of the chains T, as n — 00?
— Nothing general can be said for arbitrary P on [0, 1].

Beta distributions
Beta distributions P, p, (where a, b > 0):

M(a+ b)
P, p(dx) = —————4x3"1(1 — x)>~1dx.
7b( X) F(a)r(b)x ( X) X
@ One gets diffusion limits for the chains T,
® P, 's are nice from algebraic point
® Remark: P,}'s from a Bayesian point:

Beta prior on Bernoulli parameter p € [0, 1]
= Beta posterior



Beta distributions and the uniform distribution

Take P, on [0, 1], then

1
— [(n+1)r(a+b) k+a—1 n—k+b—1
Pa(k) = / ke P (L= p) T dp

where




Beta distributions and the uniform distribution

Take P, on [0, 1], then

1
— [(n+1)(a+b) k+a—1 n—k+b—1
Pa(k) = / ke DraFE P (L~ P) dp

where
(X)m=x(x+1)(x+2)...(x+m—1).

Uniform distribution

For the uniform distribution (a = b = 1) on [0, 1], P, is also
uniform on {0,1,..., n}.




0 PZ,n+1(k, k+1) =

2'

pz,n—i-l(k, k) _

n_k+1
n_|_2

Hao



up/down Markov chains for uniform distribution

k,k) = —.
n+2’ pn,n+1( Y ) n+2

k+1)(n—k
o To(k— k+1) =ty

° pz,n-i-l(k’ k + 1) =

_ k(n—k+1)
Talk = k= 1) = o

_ (k+1)2+(n—k+1)?
Tolk = k) = =




up/down Markov chains for uniform distribution

k+1 n—k+1

L pz,n-l-l(k’k_‘_l) = n+2' PI,n+1(k> k) = ﬁ
o Ty(k - k+1)= (etllo-h)
_ k(n—k+1)

_ (k+1)2+(n—k+1)?
Tolk = k) = =

k 1
o —=x€[0,1], Ax = —
n n

Ta(k = k+1) = Prob(x — x+Ax) ~ x(1—x)+2(1—x)
Ta(k = k — 1) = Prob(x — x — Ax) ~ x(1 — x) + £x




1 1
@ Scale space by p scale time by = (i.e., one step of the

nth Markov chain = small time interval of order n=2)
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up/down Markov chains for uniform distribution

Scaling limit

1 . 1 .
@ Scale space by p scale time by — (i.e., one step of the
n
nth Markov chain = small time interval of order n=2).

@ Then as n — +o0,
n?(T,—1) = x(1— x)d—2 +(1-— 2x)i
" dx? dx




up/down Markov chains for uniform distribution

Scaling limit

1 . 1 .
@ Scale space by p scale time by = (i.e., one step of the
nth Markov chain = small time interval of order n=2).

@ Then as n — +o0,
2

d d
20T _ A o9
n?(T,—1) = x(1—x) el (1—2x) ™

@ First, check the convergence on polynomials
(algebraically!). The processes have polynomial core.




up/down Markov chains for uniform distribution

Scaling limit

1 . 1 .
@ Scale space by p scale time by = (i.e., one step of the
nth Markov chain = small time interval of order n=2).

@ Then as n — +o0,
2

d d
20T _ A o9
n?(T,—1) = x(1—x) el (1—2x) ™

@ First, check the convergence on polynomials
(algebraically!). The processes have polynomial core.

@ Then apply Trotter-Kurtz type theorems to conclude the
convergence of finite Markov chains to diffusion processes.
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@ de Finetti's Theorem

® up/down Markov chains and limiting
diffusions

intermission: a variety of models

® Kingman's exchangeable random
partitions

@ up/down Markov chains on partitions and
limiting infinite-dimensional diffusions



Counting paths = p* = classification of coherent measures
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Counting paths = p* = classification of coherent measures
@ Pascal triangle

«O» «4Fr « >

<

DA



Counting paths = p* = classification of coherent measures
@ Pascal triangle
@ Kingman's exchangeable random partitions
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Examples
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@ Schur graph — the lattice of all strict partitions (my
yesterday'’s talk: a related Markov dynamics is Pfaffian)



intermission: a variety of models

Counting paths = p* = classification of coherent measures

Examples
@ Pascal triangle

@ Kingman's exchangeable random partitions

@ g-Pascal triangle, Stirling triangles, etc.
@ Young graph — the lattice of all partitions

@ Young graph with multiplicities (one choice of
multiplicities is equivalent to Kingman'’s theory)

@ Schur graph — the lattice of all strict partitions (my
yesterday'’s talk: a related Markov dynamics is Pfaffian)

@ Gelfand-Tsetlin schemes



Figure: Young graph



Figure: Kingman graph (= Young graph with rgultipjicitigs) _
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©® de Finetti's Theorem

® up/down Markov chains and limiting
diffusions

® Kingman's exchangeable random
partitions

@ up/down Markov chains on partitions and
limiting infinite-dimensional diffusions



7 is a random partition of N ={1,2,3,...},i.e, N=| | A
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7 is a random partition of N ={1,2,3,...},i.e, N=| | A

iel
7 is called exchangeable if the distribution of 7 is invariant under
permutations of N.

O» «5»

it
v

DA



7 is a random partition of N ={1,2,3,...},i.e, N=| | A

iel

7 is called exchangeable if the distribution of 7 is invariant under
permutations of N.

vm::{(x12x22~-~20): Zx,-gl}

u]
g

|
n
||||
S
ye)
?



exchangeable random partitions

Definition

7 is a random partition of N ={1,2,3,...},i.e, N=| | A
iel

7 is called exchangeable if the distribution of 7 is invariant under

permutations of N.

Kingman Simplex

Voo 1= {(X12X2Z~-~ZO)Z ingl}

@ Compact in coordinatewise topology.



exchangeable random partitions

Definition
7 is a random partition of N ={1,2,3,...},i.e, N=| | A

iel
7 is called exchangeable if the distribution of 7 is invariant under
permutations of N.

Kingman Simplex

Voo 1= {(X12X2Z~-~ZO)Z ingl}

@ Compact in coordinatewise topology.
@ x € V., «— discrete distribution



exchangeable random partitions

Definition
7 is a random partition of N ={1,2,3,...},i.e, N=| | A

i€l

7 is called exchangeable if the distribution of 7 is invariant under
permutations of N.

Kingman Simplex

Voo 1= {(X12X2Z~-~ZO)Z ingl}

@ Compact in coordinatewise topology.
@ x € V., «— discrete distribution

@ Probability measure on V., «— random discrete
distribution



m — exchangeable random partition of N
!

probability measure M on V., (the boundary measure)
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exchangeable random partitions

Kingman's representation
m — exchangeable random partition of N

1

probability measure M on V., (the boundary measure)

Finite level random integer partitions — encoding of 7

@ Restrict 7 to {1,2,...,n} C N, thus get a random
partition 7, of the finite set {1,2,...,n}.



exchangeable random partitions

Kingman's representation
m — exchangeable random partition of N

1

probability measure M on V., (the boundary measure)

Finite level random integer partitions — encoding of 7
@ Restrict 7 to {1,2,...,n} C N, thus get a random
partition 7, of the finite set {1,2,...,n}.
@ Exchangeable = the distribution of 7, is encoded by the
distribution of decreasing sizes of blocks

)\:()\12)\222)\g(>\)>0), A\ € Z, Z)\,-:n.



exchangeable random partitions

Kingman's representation
m — exchangeable random partition of N

1

probability measure M on V., (the boundary measure)

Finite level random integer partitions — encoding of 7

@ Restrict 7 to {1,2,...,n} C N, thus get a random
partition 7, of the finite set {1,2,...,n}.

@ Exchangeable = the distribution of 7, is encoded by the
distribution of decreasing sizes of blocks
A=A 22> 2 X >0), NEZ, Y ANi=n

@ = sequence of measures M, on the sets
Poi={A=(A12>"2>A)

— integer partition such that > \; = n}



@ Random x; > x, > - -+ > 0 are limiting values of
)\1, )\2, 5000

)\j Law
< ==
n

X

j=12 ...
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@ Random x; > x, > - -+ > 0 are limiting values of
)\1, )\2, 5000

=12,
@ The sets of partitions P, approximate V:

Py A= (A,  A) = (2,...2£,0,0,...) € Vo

Images of M,'s weakly converge to M on V..
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exchangeable random partitions

from {M,} to M

@ Random x; > x, > - -+ > 0 are limiting values of
)\1,)\2,...2
AL .
#ﬂng, j=12....

@ The sets of partitions P, approximate V.:
P A= (A1, A) = (2,...2£,0,0,...) € V.

n’

Images of M,'s weakly converge to M on V..

From the point of random partitions 7 of Nthe x; > x > -+ >
0 are the limiting frequencies of blocks, in decreasing order.




@ Sample x = (x1, xa, . -
For simplicity, let > x; =1

.) € V4 according to M on V..
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exchangeable random partitions

from M to {M,} — two-step random sampling
O Sample x = (x1,%,...) € V. according to M on V..
For simplicity, let > x; =1
© Consider the measure with weights xy, x5, ... on N.

Sample n independent numbers Ay, ..., A, € N according
to this measure




exchangeable random partitions

from M to {M,} — two-step random sampling

O Sample x = (x1,%,...) € V. according to M on V..
For simplicity, let > x; =1

© Consider the measure with weights xy, x5, ... on N.
Sample n independent numbers Ay, ..., A, € N according
to this measure

O )\ > X\ > > A\, — multiplicities of A, Ay, ..., A, iIn
decreasing order:
eg., (A,...,A)=1(4,3,51,131) - A= (3,2,1,1)
Law of A = (A1, ..., \¢) € P, is M,.




p = (u1, ..., 1g) — integer partition,

mu(y1, ¥z, ) = 2yt yEE

(sum over all distinct summands).
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p = (u1, ..., 1g) — integer partition,

mu(ylv)/Z, . ) = Eylé-"lyil:g )

(sum over all distinct summands).
Examples:

Hk
Y
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exchangeable random partitions

monomial symmetric functions
= (p,- .., k) — integer partition,
mu(y1,y2,---) == 20V YL Y

(sum over all distinct summands).
Examples:

® muy(y1, ¥z, --) = pc(y1, y2, ... ) = > y{ (Newton
i=1

power sum)




exchangeable random partitions
monomial symmetric functions
= (p,- .., k) — integer partition,
mu(y, Yo, ) =DV Yy Vi

(sum over all distinct summands).
Examples:

® muy(y1, ¥z, --) = pc(y1, y2, ... ) = > y{ (Newton
i=1

power sum)
o mq, .. . 1)Wy2---)= > Yi---Yi (elementary
N—— <<k

k
symmetric function)




exchangeable random partitions
monomial symmetric functions
= (p,- .., k) — integer partition,
mu(y, Yo, ) =DV Yy Vi

(sum over all distinct summands).
Examples:

® muy(y1, ¥z, --) = pc(y1, y2, ... ) = > y{ (Newton
i=1

power sum)
o mq, .. . 1)Wy2---)= > Yi---Yi (elementary
N—— <<k

k
symmetric function)

o For k > 1: mu1y(ya,y2,---) = > ¥y,
ij=1




For simplicity, let M be concentrated on {>_ x; = 1}.

n
Mn()‘) = ()\1 A

...,,\e> /voo mA(x, %z, - . - )M(dx).
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The measures {M,} are compatible with each other, through
P,.

a certain canonical down transition kernel p* 41, from Poy; to
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The measures {M,} are compatible with each other, through
a certain canonical down transition kernel p* 41,0 from Py to
P,.
n
pi+1,n(A7ﬂ) = %
ALy Ae(a)
pﬁH’n()\,,u) := 0, otherwise

CJifA=p+0

u]
|
I
n
it



partition structures

down kernel

The measures {M,} are compatible with each other, through
a certain canonical down transition kernel pﬁHm from P, to
P,.

()u‘l’ Hu‘l

Prisa(A p) = JifA=p+0

[ A))
pn-l—ln()\ w) =0, otherwise

()\1 /\2””'/\[) — number of paths in the Kingman graph from &

to A € P,.




partition structures

down kernel

The measures {M,} are compatible with each other, through
a certain canonical down transition kernel pﬁHm from P, to
P,.

Prisa(A p) = E ),an p+0
>\1, J\zA)

Pn+1 »(A, 1) := 0, otherwise

()\1 /\2””'/\[) — number of paths in the Kingman graph from &

to A € P,.

piﬂ,n()\, -) = take (uniformly) a random box from A and delete
it.

o



Figure: Kingman graph




{M,} — sequence of measures on PP, is called a partition struc-
ture if it is compatible with Pﬁ+1,n3

Mn+1 © pﬁ.g_l,n = Mn
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{M,} — sequence of measures on PP, is called a partition struc-
ture if it is compatible with Pﬁ+1,n3

Mn+1 © pt.g_l,n = Mn

Kingman's theorem = classification of partition structures

J
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{M,} — sequence of measures on IP, is called a partition struc-
ture if it is compatible with pﬁﬂ’n:

Mpy1 0 Pi+1,n =M,

Kingman's theorem = classification of partition structures

@ Any partition structure = up/down Markov chains.
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partition structures

Definition
{M,} — sequence of measures on IP, is called a partition struc-
ture if it is compatible with Pi+1,n3

Mn+1 © pﬂ;—i—l,n = M"
Kingman's theorem = classification of partition structures |

@ Any partition structure = up/down Markov chains.

@ Which partition structures are good for obtaining
diffusions (diffusions will be infinite-dimensional)?
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©® de Finetti's Theorem

® up/down Markov chains and limiting
diffusions

® Kingman's exchangeable random
partitions

® up/down Markov chains on partitions and
limiting infinite-dimensional diffusions



PD(c,6) on V.,

There is a distinguished two-parameter family of measures
0<ax<l,

0> —«.
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Poisson-Dirichlet distributions

There is a distinguished two-parameter family of measures
PD(«, 6) on V4, 0<a<l 60>—a.

@ a = 0 — introduced by Kingman, definition through a
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Poisson-Dirichlet distributions

There is a distinguished two-parameter family of measures
PD(«, 6) on V4, 0<a<l 60>—a.

@ a = 0 — introduced by Kingman, definition through a
Poisson point process on (0, 00).

@ «a # 0 — Pitman(-Yor), '92-'95, motivated by stochastic

processes. Definition through a Cox point process on
(0, 00).

Ewens-Pitman sampling formula
Partition structure corresponding to PD(«, 6):
nl 00 +a)...(0+ () —1a) XA
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up-down Markov chains

@ Having a partition structure {M,} corresponding to
PD(c,0), define up/down Markov chains 7% on P, as
before. They are reversible with respect to M,,.

@ One step of T = move one box in the corresponding
Young diagram from one place to another.

@ Remark: For a = 0, these chains have population-genetic
interpretation, and the limiting infinite-dimensional
diffusions were constructed by Ethier and Kurtz in '81 (by
approximating by finite-dimensional diffusions).

@ Scale space by 1/n (embed P, into V) and scale time
by 1/n?.
The measures M, converge to PD(«, ), what about
Markov chains T{*%?
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limiting infinite-dimensional diffusions

Theorem [P.]

O As n — +oo, under the space and time scalings, the
Markov chains T{*?) converge to an infinite-dimensional
diffusion process (X, (t))e>0 on V.

@ The Poisson-Dirichlet distribution PD(«, ) is the unique
invariant probability distribution for X, ¢(t). The process
is reversible and ergodic with respect to PD(«, 0).

© The generator of X, ¢ is explicitly computed:

i xi(6; — x)ai2 — i(&x- + a) 0 :
= Y 0x,0x; = ' Ox;

It acts on continuous symmetric polynomials in the
coordinates xi, Xo, . . ..



Q@ The spectrum of the generator in [2(V,, PD(c, 0)) is

{0}u{-n(n—1+0):n=2,3,...},

parts > 2.

the eigenvalue 0 is simple, and the multiplicity of
—n(n — 1+ 0) is the number of partitions of n with all
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limiting infinite-dimensional diffusions

Theorem [P.]
Q The spectrum of the generator in L2(V,, PD(c, 0)) is
{0}U{-n(n—1+4+0): n=2,3,...},
the eigenvalue 0 is simple, and the multiplicity of

—n(n — 1+ 0) is the number of partitions of n with all
parts > 2.

Remark: connection with the Pascal triangle model
Degenerate parameters

a < 0 arbitrary, 0 = -2«

= partitions have < 2 parts.
de Finetti’s model with (any) symmetric Beta distribution.



limiting infinite-dimensional diffusions

Theorem [P.]

Q The spectrum of the generator in L2(V,, PD(c, 0)) is
{0tu{-n(n—1+6):n=2,3,...},
the eigenvalue 0 is simple, and the multiplicity of

—n(n — 1+ 0) is the number of partitions of n with all
parts > 2.

Remark: connection with the Pascal triangle model
Degenerate parameters

a < 0 arbitrary, 0 = -2«

= partitions have < 2 parts.
de Finetti’s model with (any) symmetric Beta distribution.

a <0, § = —Ka = K-dimensional generalization.



No finite-dimensional approximating diffusions for a # 0!
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scheme of proof

No finite-dimensional approximating diffusions for o # 0!

© The transition operators of the Markov chains T4 et
on symmetric functions in the coordinates \q,..., A\, of a
partition \ € P,,.

@ Write the operators T, in a suitable basis (closely
related to the monomial symmetric functions).

© Pass to n — +oo limit of generators (algebraically!). The
processes’ core is the algebra of symmetric functions.

© Use general technique of Trotter-Kurtz to deduce
convergence of the processes




Thank you for your attention |
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Figure: x1(t) > xo(t) > x3(t) > xa(t)



