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Asymmetric Simple Exclusion Process

x1 x2 x3 xk

pq p

Particles at locations ~x = (x1 < x2 < . . . < xk) : xi ∈ Z evolve
in continuous time.

Each particle has an independent exponential clock with
mean 1. When the clock rings, the particle attempts to jump
to the right with probability 0 < p < 1

2
, and to the left with

probability q = 1− p. Jumping to occupied sites is prohibited.

τ := p/q < 1.



Asymmetric Simple Exclusion Process

ASEP is the first non-determinantal model shown to belong to
the Kardar-Parisi-Zhang (KPZ) universality class.

Start from the step initial condition xi(0) = i , i = 1, 2, 3, . . ..
Let N0(t) be the number of particles to the left of the origin
at time t > 0.

Theorem [Tracy-Widom ’07+]

lim
t→+∞

P
(
N0(t/(q− p))− t/4

2−1/3t1/3
≥ −s

)
= FGUE (s),

where FGUE (s) is the Tracy-Widom GUE distribution.



ASEP and the KPZ equation

Z

Under the weak asymmetry scaling τ = 1−
√
ε, the ASEP

interface (slope −1 over a particle, slope +1 over a hole)

converges [Bertini-Giacomin ’97], [Amir-Corwin-Quastel ‘10] to the
solution h(t, x) of the KPZ equation

∂th = −1

2
(∂xh)2 +

1

2
∂2xh + ξ (ξ — space-time white noise)

with narrow wedge initial data (corresponding to step initial data
in ASEP).
(h = − logZ , where Z (t, x) solves SHE; also [Hairer ’11])
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TW’s solution. Step 1

Apply the coordinate Bethe ansatz to find eigenfunctions of
the ASEP generator

(HASEP
τ f )(~x) =

∑
i

p(f (~x+i )− f (~x)) +
∑
j

q(f (~x−j )− f (~x))

Here ~x+i is the configuration obtained by moving particle xi
one step to the right, and similarly for the configuration ~x−j .
The sums above are taken over allowed i and j .

Inspired by Bethe ansatz for Heisenberg XXZ spin chain (whose
Hamiltonian is conjugate to HASEP

τ : but with complex τ)
[Bethe ’31], [Yang-Yang ’66];
also see [Gwa–Spohn ’92], [Schutz ‘97], [Rakos–Schutz ’05].



TW’s solution. Step 1
The action of the generator HASEP

τ can be simplified. Let k = 2,
then if x1 and x2 are not immediate neighbors,

HASEP
τ f (x1, x2) =p(f (x1 + 1, x2)− f (x1, x2))

+ q(f (x1 − 1, x2)− f (x1, x2))

+ p(f (x1, x2 + 1)− f (x1, x2))

+ q(f (x1, x2 − 1)− f (x1, x2)).

If x1 and x2 are neighbors (x2 = x1 + 1), then

HASEP
τ f (x1, x2) =p(f (x1, x2 + 1)− f (x1, x2))

+ q(f (x1 − 1, x2)− f (x1, x2))

If it turns out that for our specific f the discrepancy between the
two expressions is 0 (for x2 = x1 + 1), then it does not matter which
formula to use.



TW’s solution. Step 1
In general, represent the action of HASEP

τ as a free generator (of
independent particles)

(LASEP
τ u)(~x) :=

k∑
i=1

[∇ASEP
τ ]iu(~x)

(∇ASEP
τ u)(y) := pu(y + 1) + qu(y − 1)− u(y), y ∈ Z,

subject to k − 1 two-body boundary conditions:(
pu(~x+i ) + qu(~x−i+1)− u(~x)

)∣∣∣
~x∈Zk : xi+1=xi+1

= 0.

That is, HASEP
τ u = LASEP

τ u for u(~x) satisfying boundary
conditions.

The ASEP is integrable in the Bethe sense i.e. no higher boundary
conditions are needed.



TW’s solution. Step 1

To find eigenfunctions of the true ASEP generator HASEP
τ :

Eigenfunctions of the free generator LASEP
τ are simply

powers
k∏

j=1

(
1 + zj

1 + zj/τ

)−xj
, where zi ∈ C. Their

eigenvalues are symmetric in zi :

−(1− τ)2

1 + τ

k∑
j=1

1

(1 + zj)(1 + τ/zj)

Combine these eigenfunctions so that they satisfy the
k − 1 boundary conditions. These combinations will be
eigenfunctions of HASEP

τ .



TW’s solution. Step 1

This approach gives the following eigenfunctions of HASEP
τ :

Bethe ansatz eigenfunctions of the ASEP

ΨASEP
~z (~x) :=

∑
σ∈S(k)

∏
B<A

zσ(B) − τzσ(A)
zσ(B) − zσ(A)

k∏
j=1

(
1 + zσ(j)

1 + zσ(j)/τ

)−xj
.

Change of variables ξi = (1 + zi)/(1 + zi/τ), up to constant:

ΦASEP
~ξ

(~x) :=
∑
σ∈S(k)

sgn(σ)
∏

1≤B<A≤k

SASEP(ξσ(A), ξσ(B))
k∏

j=1

ξ
−xj
σ(j),

where SASEP(ξ1, ξ2) := τ − (1 + τ)ξ1 + ξ1ξ2

Note: these are “algebraic” eigenfunctions. For instance, they
are not compactly supported.



TW’s solution. Step 2

Use the eigenfunctions ΨASEP
~z to write down the transition

probabilities of the ASEP:

Pt(~x → ~y) := probability that the (k-particle) ASEP is at
state ~y at time t given that it started from state ~x at time 0.

These probabilities solve the master equation (the same as
forward Kolmogorov equation). This is an ODE with the
right-hand side essentially HASEP

τ . It is diagonalized in the
ΨASEP
~z ’s:

(A) project the initial conditions P0(~x → ~y) = 1~x=~y (as a
function of the spatial variables ~y) onto the eigenfunctions

(B) evolve the eigenfunctions: multiply by exp(evASEP · t)

(C) reconstruct the solution Pt(~x → ~y) from the (evolved)
eigenfunctions
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TW’s solution. Step 2

(A) project the initial conditions P0(~x → ~y) = 1~x=~y (as a
function of the spatial variables ~y) onto the eigenfunctions

(B) evolve the eigenfunctions: multiply by exp(evASEP · t)

(C) reconstruct the solution Pt(~x → ~y) from the (evolved)
eigenfunctions

Steps (A) and (C) involve taking direct and inverse
Fourier-like transforms, respectively, plus a Plancherel-type
isomorphism theorem (discussed later).



TW’s solution. Step 2

ASEP transition function [Tracy-Widom ’07]

Pt(~x → ~y) =
∑
σ∈S(k)

∮
. . .

∮
Aσ(~ξ)et·evASEP(~ξ)

k∏
j=1

ξ
−xσ(j)+yj−1
σ(j)

dξj
2πi

Integrals are over small circles around 0,
evASEP(~ξ) :=

∑k
j=1(pξ−1j + qξj − 1)

Aσ(~ξ) :=
∏

A<B : σ(A)>σ(B)

Sσ(A)σ(B),

Sαβ := −p + qξαξβ − ξα
p + qξαξβ − ξβ

= −SASEP(ξα, ξβ)

SASEP(ξβ, ξα)
.



TW’s solution. Step 3

Use the transition function to get Fredholm determinantal
expressions for one-point distributions P(xm(t) ≤ x) of the
ASEP. This is done [Tracy-Widom ’08, ’09] for

1 Step initial condition xi(0) = i , i = 1, 2, . . ..

2 Step-Bernoulli initial condition: nothing to the left of the
origin, and particles to the right of the origin
independently at each site with some fixed probability.

In both cases, the passage from Pt(~x → ~y) to Fredholm
determinants is very nontrivial and involves certain
symmetrization identities.



TW’s solution. Step 3
Symmetrization identity for the step initial condition [TW ’07]:

∑
σ∈S(k)

σ

∏
i<j

SASEP(ξi , ξj)

ξj − ξi
ξ2ξ

2
3 . . . ξ

k−1
k

(1− ξ1ξ2 . . . ξk)(1− ξ2 . . . ξk) . . . (1− ξk)


=

τ
k(k−1)

2∏k
j=1(1− ξj)

.

Start with

Pt(~x → ~y) =
∑

σ∈S(k)

∮
. . .

∮
Aσ(~ξ)et·evASEP(~ξ)

k∏
j=1

ξ
−xσ(j)+yj−1
σ(j)

dξj
2πi

,

sum
∏k

j=1 ξ
−xσ(j)+yj−1
σ(j) over y < y2 < . . . < yk with y fixed, then

apply symmetrization identity ⇒ get a tractable expression for
P(x1(t) = y).
Further, can also write P(xm(t) ≤ y) for any m as a Fredholm
determinant.



TW’s solution. Step 3
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TW’s solution. Step 4

The Fredholm determinantal expression:

P(xm(t) ≤ y) =

∫
large circle

det(Id− λqK )∏m−1
j=0 (1− λτ j)

dλ

λ
,

where K is the operator with kernel

K (ξ, ξ′) :=
ξye(pξ

−1+qξ−1)t

p + qξξ′ − ξ
.

It “remains” to study asymptotics of this Fredholm
determinant: very nontrivial transformations, then use steepest
descent analysis.



TW’s solution. Overview

1 Diagonalize the generator using Bethe ansatz
eigenfunctions

2 Use Fourier-like transforms and Plancherel isomorphism
theorems to get transition probabilities

3 Use nontrivial symmetrization identities to get Fredholm
determinantal expressions for one-point functions

4 Study asymptotics of Fredholm determinants

A new key: focus on eigenfunctions and study their
properties such as Fourier-like transforms and Plancherel
isomorphism theorems. This gives all results of steps 1–3.



TW’s solution. Overview

1 Diagonalize the generator using Bethe ansatz
eigenfunctions

2 Use Fourier-like transforms and Plancherel isomorphism
theorems to get transition probabilities

3 Use nontrivial symmetrization identities to get Fredholm
determinantal expressions for one-point functions

4 Study asymptotics of Fredholm determinants

A new key: focus on eigenfunctions and study their
properties such as Fourier-like transforms and Plancherel
isomorphism theorems. This gives all results of steps 1–3.



Outline

1 ASEP and its KPZ limit

2 Tracy-Widom’s solution to the ASEP

3 q-Hahn zero-range process and its spectral
theory

4 Degenerations



“Most general” (eigen?)functions

Ψ~z(~n) :=
∑
σ∈S(k)

∏
B<A

zσ(A) − q zσ(B)

zσ(A) − zσ(B)

k∏
j=1

(
a zσ(j) + b

c zσ(j) + d

)−nj
,

~n = (n1 ≥ n2 ≥ . . . ≥ nk), nj ∈ Z
(note the difference in ordering: now weakly decreasing).

For a = c = d = 1, c = 1/q, and xj = nk+1−j , these are
eigenfunctions of the ASEP

For b = c = 0, these are essentially the Hall-Littlewood
symmetric polynomials
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zσ(A) − zσ(B)

k∏
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(
a zσ(j) + b

c zσ(j) + d

)−nj
,

~n = (n1 ≥ n2 ≥ . . . ≥ nk), nj ∈ Z

Can rescale zj ’s =⇒ in the linear fractional expression
az + b

cz + d
, only 2 parameters remain.

Reparametrize as
θ − z

1− νz
.

Up to an overall simple factor θ−n1−...−nk , only the
parameter ν remains.
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q-Hahn eigenfunctions

Ψ`
~z(~n) :=

∑
σ∈S(k)

∏
B<A

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

k∏
j=1

(
1− zσ(j)

1− νzσ(j)

)−nj

Introduced in [Povolotsky ‘13] as eigenfunctions of a certain
discrete-time stochastic particle system (q-Hahn zero-range
process)

Also appeared in the work of [Takeyama ’14] in the context of
a deformation of the affine Hecke algebra of type GL
(essentially, deform the commutative part in a linear
fractional way): leads to a stochastic particle system which is
a continuous-time limit of the q-Hahn ZRP

Spectral theory: [Borodin–Corwin–P.–Sasamoto ’13–’14]



q-Hahn ZRP
q-Hahn jumping distribution

Let 0 < q < 1 and 0 ≤ ν ≤ µ < 1,

ϕq,µ,ν(j | m) = µj (ν/µ; q)j(µ; q)m−j
(ν; q)m

(q; q)m
(q; q)j(q; q)m−j

,

where (a; q)n :=
∏n

j=1(1− aqj−1).
(sums to one; is orthogonality weight for the classical q-Hahn
orthogonal polynomials)



q-Hahn ZRP
q-Hahn jumping distribution

ϕq,µ,ν(j | m) = µj (ν/µ; q)j(µ; q)m−j
(ν; q)m

(q; q)m
(q; q)j(q; q)m−j

n 1n 1
3

n 2
=
..
.n

8

n 9
=
..
.n

1
2

ϕq,µ,ν(4 | 7) q-Hahn zero range
discrete-time Markov
process on
~n = (n1 ≥ . . . ≥ nk):
in parallel, move j (out of m)
particles in each column to
the right with probability
ϕq,µ,ν(j | m)



q-Hahn ZRP
ϕq,µ,ν(4 | 7)

Coordinate Bethe ansatz for q-Hahn ZRP [Povolotsky ’13]

The functions

Ψ`
~z(~n) =

∑
σ∈S(k)

∏
B<A

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

k∏
j=1

(
1− zσ(j)

1− νzσ(j)

)−nj
are eigenfunctions of the q-Hahn ZRP’s transition operator
Hq,µ,ν with eigenvalues

k∏
j=1

1− µ zj

1− νzj



PT invariance

The q-Hahn ZRP operator Hq,µ,ν is not self-adjoint. This
property is replaced by PT invariance (invariance under joint
space and time reflection).

Let mq,ν(~n) be the product of
(ν; q)ci
(q; q)ci

over “clusters” of ~n.

(∼ invariant product measure)

PT invariance

The operator m−1q,νHtranspose
q,µ,ν mq,ν coincides with the space reflec-

tion of Hq,µ,ν



Left and right q-Hahn eigenfunctions

Left Ψ`
~z(~n)∑

σ∈S(k)

∏
B<A

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

k∏
j=1

(
1− zσ(j)

1− νzσ(j)

)−nj
Right Ψr

~z(~n)

(−1)k(1−q)kmq,ν(~n)
∑

σ∈S(k)

∏
B<A

zσ(B) − qzσ(A)
zσ(B) − zσ(A)

k∏
j=1

(
1− zσ(j)

1− νzσ(j)

)nj

We have

Hq,µ,νΨ`
~z =

k∏
j=1

1− µzj
1− νzj

Ψ`
~z , Ψr

~zHq,µ,ν =
k∏

j=1

1− µzj
1− νzj

Ψr
~z .



Direct transform
Two spaces of functions

1 Space of compactly supported functions of the spatial
variables ~n

2 Space of symmetric Laurent polynomials in
1−zj
1−νzj

Direct transform of f (~n)

(Fq,νf )(~z) :=
∑
~n

f (~n)Ψr
~z(~n) =:

〈
f ,Ψr

~z

〉
~n
.



Inverse transform

Inverse transform of G (~z)

(J q,νG )(~n) :=

∮
γ1

dz1
2πi

. . .

∮
γk

dzk
2πi

∏
A<B

zA − zB
zA − qzB

×
k∏

j=1

1

(1− zj)(1− νzj)

(
1− zj

1− νzj

)−nj
G (~z).

1qq20 ν−1
γ3

γ2

γ1

Can write the inverse
transform as
(J q,νG )(~n) =

〈
G ,Ψ`(~n)

〉
~z



Plancherel isomorphism theorems

Theorem [Borodin–Corwin–P.–Sasamoto ’14]

(1) The composition J q,νFq,ν is an identity operator on the
space of compactly supported functions in ~n.

(2) The composition Fq,νJ q,ν is an identity operator on the
space of symmetric Laurent polynomials in

1−zj
1−νzj

.

Proof of (1) is a direct combinatorial argument: show that(
J q,νΨr

•(~x)
)
(~y) = 1~x=~y . In fact, contributions form each

permutation σ in Ψr
~z vanishes individually if ~x 6= ~y .

Proof of (2) relies on the presence of a commuting family of
operators Hq,µ,ν (depending on additional parameter µ)
diagonalized in the same eigenfunctions. This gives many
relations that we use.



Biorthogonality
Spatial biorthogonality〈

Ψ`
•(~x),Ψr

•(~y)
〉
~z

= 1~x=~y .
Follows immediately from the first Plancherel theorem.
Also this implies completeness of the Bethe ansatz for the q-
Hahn ZRP.

Spectral biorthogonality

In a certain weak sense (V(~z) is the Vandermonde),∑
~n

Ψr
~z(~n)Ψ`

~w (~n)V(~z)V(~w)

= (−1)
k(k−1)

2

k∏
j=1

(1− zj)(1− νzj)
∏
A 6=B

(zA − qzB) det[δzi ,wj
]ki ,j=1.

This statement in fact implies the second Plancherel theorem.
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q-Hahn symmetrization identity

The second Plancherel theorem applied to a specific function
G (~z) implies (after a change of variables)

∑
σ∈S(k)

∏
B<A

Sq,ν(ξσ(B), ξσ(A))

ξσ(A) − ξσ(B)

( ∑
n1≥...≥nk≥0

mq,ν(~n)
k∏

j=1

ξ
nj
σ(j)

)

=

(
1− ν
1− q

)k (
q(1− ν)

1− qν

) k(k−1)
2

k∏
j=1

1

1− ξj
.

Here mq,ν(~n) is the product of
(ν; q)ci
(q; q)ci

over “clusters” of ~n,

and

Sq,ν(ξ1, ξ2) :=
1− q

1− qν
+

q − ν
1− qν

ξ2 +
ν(1− q)

1− qν
ξ1ξ2 − ξ1.



Duality with the q-Hahn TASEP

An(t) An−1(t) An−2(t)

ϕq,µ,ν(3 | 4)

q-Hahn TASEP: in parallel, each paricle jumps by j steps with
probability ϕq,µ,ν(j | next gap).

Duality [Corwin ’14]

The q-Hahn TASEP is dual to the q-Hahn ZRP.
Let H(~A, ~n) :=

∏k
j=1 q

Anj
+nj . Then

ETASEP
~A0

H(~A(t), ~n0) = EZRP
~n0

H(~A0, ~n(t)).

Duality plus spectral theory for ZRP allows to write moment
formulas for q-Hahn TASEP with arbitrary initial data (these
moments solve backward Kolmogorov equations for q-Hahn ZRP).



Overview of q-Hahn results

1 Applying coordinate Bethe ansatz to the q-Hahn ZRP,
get explicit eigenfunctions

2 There are direct and inverse Fourier-like transforms,
they are mutual inverses. In particular, this proves
completeness of the Bethe ansatz.

3 The eigenfunctions satisfy certain biorthogonality
relations.

4 Allows to solve forward and backward Kolmogorov
equations for the q-Hahn ZRP with arbitrary initial data.

The forward equations give transition probabilities for
the q-Hahn ZRP
By duality, the backward equations give moment
formulas for the q-Hahn TASEP with arbitrary initial
data

5 Also gives symmetrization identities.
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Hierarchy of eigenfunctions
Conjugated q-Hahn

q-Hahn ZRP / q-Hahn TASEP [Povolotsky ’13], [Corwin ‘14]

E.f. =
∑
σ∈S(k)

∏
B<A

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

k∏
j=1

(
1− zσ(j)

1− νzσ(j)

)−nj

Asymmetric six-vertex model

ASEP
stochastic six-vertex model

Heisenberg XXZ spin chain

q-Boson / q-TASEP
[BC ’11], [BCS ’12], [BCPS ‘13]

Macdonald

(q-Whittaker)
processes

Van Diejen’s delta Bose gas [vD ’04]

E.f. =
∑
σ∈S(k)

∏
B<A

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

k∏
j=1

z
−nj
σ(j)

Hall-Littlewood polynomials

Semi-discrete delta Bose gas
/ Semi-discrete directed polymer
[O’Connell-Yor ’01], [O’Connell ’09]

Continuous delta Bose gas
/ Lieb–Liniger model

/ KPZ / stochastic heat equation
[Heckman–Opdam ’97]



Degeneration to ASEP

If q = 1/ν = τ , the q-Hahn eigenfunctions become the ASEP
eigenfunctions.

Note that in this case mq,ν(~n) = 0 unless all nj ’s are distinct.

This is responsible for the weak/strict ordering in q-Hahn ZRP
and ASEP, respectively.

1qq20 ν−1
γ3

γ2

γ1

Nested integration con-
tours no longer work be-
cause ν−1 = q.

With some work, all
these contours collapse
to a single small contour
around 1



Degeneration to ASEP

There are direct and inverse Fourier-like transforms for the
ASEP, and they are mutual inverses. In particular, this proves
completeness of the Bethe ansatz for the ASEP.

The first Plancherel theorem implies the Tracy-Widom’s
formula for the transition function of the ASEP.

Note

An independent proof of the first Plancherel theorem(
FASEPΨr ,ASEP

• (~x)
)
(~y) = 1~x=~y (given in [Tracy-Widom ’07])

is more involved combinatorially, because individual contribu-
tions of permutations σ in Ψr ,ASEP

~z do not vanish if ~x 6= ~y
(after setting q = ν−1).



Degeneration to ASEP

The q-Hahn symmetrization identity

∑
σ∈S(k)

∏
B<A

Sq,ν(ξσ(B), ξσ(A))

ξσ(A) − ξσ(B)

( ∑
n1≥...≥nk≥0

mq,ν(~n)
k∏

j=1

ξ
nj
σ(j)

)

=

(
1− ν
1− q

)k (
q(1− ν)

1− qν

) k(k−1)
2

k∏
j=1

1

1− ξj
.

immediately implies the ASEP one. When q = ν−1, the sum
over ~n above simplifies to the rational function from the
Tracy-Widom’s identity.

There are also more complicated identities corresponding to
step-Bernoulli initial data in q-Hahn ZRP and ASEP,
respectively.



Degeneration to ASEP

Finally, ASEP is self-dual (at the level of moments). So the
spectral theory for the ASEP allows to write down certain
moment formulas for arbitrary initial data.

These moment formulas were obtained for the step and
step-Bernoulli initial data in [Borodin–Corwin–Sasamoto ’12].

Note

At the level of processes, neither q-Hahn ZRP nor q-Hahn
TASEP seem to converge to the ASEP.

Note

ASEP eigenfunctions are the same as those of a certain stochas-
tic six-vertex model. Symmetrization identities were used to
prove KPZ-type results in [Borodin–Corwin–Gorin ’14].



Degeneration to ASEP

Finally, ASEP is self-dual (at the level of moments). So the
spectral theory for the ASEP allows to write down certain
moment formulas for arbitrary initial data.

These moment formulas were obtained for the step and
step-Bernoulli initial data in [Borodin–Corwin–Sasamoto ’12].

Note

At the level of processes, neither q-Hahn ZRP nor q-Hahn
TASEP seem to converge to the ASEP.

Note

ASEP eigenfunctions are the same as those of a certain stochas-
tic six-vertex model. Symmetrization identities were used to
prove KPZ-type results in [Borodin–Corwin–Gorin ’14].



Degeneration to ASEP

Finally, ASEP is self-dual (at the level of moments). So the
spectral theory for the ASEP allows to write down certain
moment formulas for arbitrary initial data.

These moment formulas were obtained for the step and
step-Bernoulli initial data in [Borodin–Corwin–Sasamoto ’12].

Note

At the level of processes, neither q-Hahn ZRP nor q-Hahn
TASEP seem to converge to the ASEP.

Note

ASEP eigenfunctions are the same as those of a certain stochas-
tic six-vertex model. Symmetrization identities were used to
prove KPZ-type results in [Borodin–Corwin–Gorin ’14].



q-Boson / q-TASEP
Setting ν = 0 in the q-Hahn eigenfunctions leads to the
eigenfunctions of the stochastic q-Boson particle system
introduced in [Sasamoto–Wadati ’98].

The corresponding spectral theory was developed in
[Borodin–Corwin–P.–Sasamoto ’13].

This leads to moment formulas for the q-TASEP with arbitrary
initial data (our original motivation).

q-TASEP was studied extensively in connection with the Macdonald
processes, and was shown to belong to the KPZ universality class
[Borodin–Corwin ’11+], [Ferrari–Veto ’13+].

Our hierarchy of eigenfunctions thus unifies (at the spectral
theory level) two discrete-space regularizations of the KPZ
equation, namely, q-TASEP and ASEP.
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Conjugated q-Hahn eigenfunctions

Ψ`;θ
~z (~n) :=

∑
σ∈S(k)

∏
B<A

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

k∏
j=1

(
θ − zσ(j)
1− νzσ(j)

)−nj
All θ = 1 results carry over to this case.

Eigenfunctions depend on (θ, q, ν), and for θ 6= 1 correspond
to non-stochastic Hamiltonians.

Setting ν = 1/(qθ), we arrive at eigenfunctions of the transfer
matrix of the (non-stochastic) six-vertex model. Further this
case degenerates to the Heisenberg XXZ spin chain.

Spectral theory for the latter was constructed (in a different
form) by Thomas, Babbitt, and Gutkin (1977, 1990, 2000).



Hierarchy of eigenfunctions
Conjugated q-Hahn

q-Hahn ZRP / q-Hahn TASEP [Povolotsky ’13], [Corwin ‘14]

E.f. =
∑
σ∈S(k)

∏
B<A

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

k∏
j=1

(
1− zσ(j)

1− νzσ(j)

)−nj

Asymmetric six-vertex model

ASEP
stochastic six-vertex model

Heisenberg XXZ spin chain

q-Boson / q-TASEP
[BC ’11], [BCS ’12], [BCPS ‘13]

Macdonald

(q-Whittaker)
processes

Van Diejen’s delta Bose gas [vD ’04]

E.f. =
∑
σ∈S(k)

∏
B<A

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

k∏
j=1

z
−nj
σ(j)

Hall-Littlewood polynomials

Semi-discrete delta Bose gas
/ Semi-discrete directed polymer
[O’Connell-Yor ’01], [O’Connell ’09]

Continuous delta Bose gas
/ Lieb–Liniger model

/ KPZ / stochastic heat equation
[Heckman–Opdam ’97]



Some (of the many) remaining

questions

1 At the q-Boson / q-TASEP level there are Macdonald
processes [Borodin, Corwin et al., ‘11+].
The q-TASEP dynamics in 1+1 dimensions admits a
(2+1)-dimensional lifting: dynamics on interlacing arrays
(e.g., see [Borodin–P. ‘13]).

How to lift these structures to the q-Hahn level?

2 At the six-vertex model level there is algebraic Bethe
ansatz. Can it be lifted?

3 Having formulas for arbitrary initial data, can we derive
asymptotics from them?
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