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order

Theorem. (Vershik-Kerov ~1981; O’Connell 2003)


If the cars started at locations 0,1 (immediate neighbors; called 
step initial configuration), then the distribution of the trajectory of 
the car behind is independent of the order of the speeds

follows from Robinson-
Schensted-Knuth 
correspondence which 
encodes unused jumps
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Theorem. Vertex weights satisfy the 
Yang-Baxter equation



Intertwining relation proof
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 - space of particle 
configurations

X
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In continuous time, each particle  
jumps forward at rate . 
Let  be the q-TASEP semigroup

xi
ai(1 − qgapi)

Ta(t)

Let  be the operator of randomly moving 
particle  back closer to , depending on 

.

Bn−1
xn−1 xn

α = an/an−1 < 1

Theorem (P.-Saenz 2022). We have the intertwining 
, where  swaps .Ta(t)Bn−1 = Bn−1Tσn−1a(t) σ an−1 ↔ an

Application to densely packed 
configurations: [P.-Saenz 2019], [P. 2019]
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Let . Let us organize the tower of applications of an = rn B1, B2, B3, …

Iterated intertwining leads to , 
which is a time change in the continuous time 
q-TASEP

Tr(t)B̂r = B̂rTr(rt)
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homogeneous, all rates .
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(details on  later)

r → 1
ai = 1

(B̂r)τ/(1−r) B(τ)

T(t)B(τ) = B(τ)T(e−τt)

B(τ)Note: Outside the -Hahn case , 
this cross-vertex system  does not preserve 
the empty configuration!

q u2/u1 = s2/s1
Br
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• The Lax equation should give access to all multipoint observables for q-TASEP, but this information 
is not that easy to extract…             [Quastel-Remenik 2019] show KP equations for KPZ fixed point
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The backwards dynamics B for q-TASEP and TASEP

The backwards dynamics  is a 
continuous time Markov process on 
particle configurations which are 
densely packed to the left. Each 
particle  jumps back independently 
in continuous time:

B(τ)

xn

• Each hole has an independent exponential clock with rate equal to the number  of particles to 
its right, .


•When the clock at a hole rings, the leftmost of the particles that are to the right of the hole 
instantaneously jumps into this hole


•Because total rate of jump is proportional to the size of the gap, this is a discrete space 
inhomogeneous version of the Hammersley process [Hammersley ’72], [Aldous-Diaconis ‘95]

m
ℙ(wait > s) = e−m⋅s, s > 0

Case q = 0
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that if we run TASEP from the step (densely packed) initial 
configuration, and then run the backwards process, then the result 
is a TASEP distribution at an earlier time

δstepT(t)B(τ) = δstepT(e−τt)

Simulation by Haoyu Li

TASEP as a growth process 
- the graph shows the height 
function
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Rewriting history processes

We get two processes for rewriting history:

• from future to past (in the figure)

• from past to future (discussed in next slide)

Theorem [P.-Saenz 2022]. Move  back by 
geometric jump B. Then run a random walk  
in the chamber between , in reverse 
time, with jump rates down . 


Then the new trajectories are distributed as a 
TASEP with speeds 

xn
x′￼n

xn, xx+1
an − an+11b=c

(…, an−1, an+1, an, an+2, …)
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Thank you for your attention!
In stochastic particle systems, there’s a way 
To rewrite history with each passing day. 
A single particle, its fate made clear, 
Can undo what’s been done and make it reappear.

The laws of probability and chaos at play 
Can be bent to our will, if we but obey. 
The deterministic systems in our control, 
Will yield to a new order, as it starts to unfold.

The particles and their interactions will dictate, 
The outcome of our systems, no matter their state. 
With the tools of integrability, we can rewrite, 
The future of our systems with a single bite.

- openAI


