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“Integrable” (“exactly solvable”) probability — study of
stochastic systems which can be analyzed by essentially
algebraic methods.

Historically: De Moivre–Laplace’s explicit computation for the
binomial distribution; then (after almost 100 years) — the
general Central Limit Theorem

1 Identify new asymptotic phenomena by explicit
computations for a particular integrable model

2 Understand the general class of (possibly
non-integrable) stochastic systems which have the same
asymptotic properties (universality)



Examples of integrable stochastic systems

Random matrix ensembles [Wigner], [Dyson] (1950-60s). [T.
Tao et al.], [H.-T. Yau et al.] — universality

(5000× 5000 random symmetric matrix)
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Examples of integrable stochastic systems

Random growth of interfaces
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Examples of integrable stochastic systems

Random growth of interfaces

Simulation — integrable model?
http://www.wired.com/wiredscience/2013/03/

the-universal-laws-behind-growth-patterns-or-what-tetris-can-teach-us-about-coffee-stains/

http://www.wired.com/wiredscience/2013/03/the-universal-laws-behind-growth-patterns-or-what-tetris-can-teach-us-about-coffee-stains/
http://www.wired.com/wiredscience/2013/03/the-universal-laws-behind-growth-patterns-or-what-tetris-can-teach-us-about-coffee-stains/


Examples of integrable stochastic systems

Random growth of interfaces



Examples of integrable stochastic systems

Random tilings/dimer models (two-dimensional interfaces)



Examples of integrable stochastic systems

Random systems motivated by representation theory

Example: Plancherel measure
on Young diagrams
λ1 ≥ λ2 ≥ . . . ≥ 0,
P(λ) = (dimλ)2/n!
Vershik–Kerov–Logan–Shepp
limit shape; longest increasing
subsequence of random
permutations

Also: infinite-dimensional diffusions (related to population
dynamics and Poisson–Dirichlet distributions), combinatorics
of Young diagrams, domino tilings, ...
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Semi-discrete directed Brownian polymer
[O’Connell–Yor ’01]

ZN(t) :=

∫
0<s1<...<sN−1<t

eE(s1,...,sN−1)ds1 . . . dsN−1

t
1

2

3

N
(t,N)



Semi-discrete directed Brownian polymer
[O’Connell–Yor ’01]

ZN(t) :=

∫
0<s1<...<sN−1<t

eE(s1,...,sN−1)ds1 . . . dsN−1

where the energy is

E (s1, . . . , sN−1)
= B1(s1) +

(
B2(s2)−B2(s1)

)
+ . . .+

(
BN(t)−BN(sN−1)

)
B1, . . . ,BN — independent standard Brownian motions



Semi-discrete directed Brownian polymer: SDEs

ZN(t) =

t∫
0

eBN(t)−BN(sN−1)ZN−1(sN−1) dsN−1,

so
d

dt
ZN = ZN−1 + ZNḂN

{
dZN = ZN−1dt + ZNdBN , N = 1, 2, . . . ;

ZN(0) = 1N=1.



Semi-discrete directed Brownian polymer: SDEs

{
dZN = ZN−1dt + ZNdBN , N = 1, 2, . . . ;

ZN(0) = 1N=1.

Questions:

1 Distribution of ZN(t) for

ZN(0) = 1N=1

Any initial condition

2 Scaling limit of ZN(t) as t,N →∞



Semi-discrete polymer: scaling limit

[Borodin–Corwin–Ferrari ’12]

For ZN(0) = 1N=1, one has

lim
N→∞

P
(

log ZN(κN)− c1(κ)N

c2(κ)N1/3
≤ u

)
= F2(u)

F2 — Tracy-Widom distribution (originated in random matrix
theory ‘94)

c1(κ), c2(κ) > 0 — explicit constants

c1(κ) established by [Moriarty–O’Connell ‘06], conjectured in
[O’Connell–Yor ’01]



Semi-discrete polymer: scaling limit

[Borodin–Corwin–Ferrari ’12]

lim
N→∞

P
(

log ZN(κN)− c1(κ)N

c2(κ)N1/3
≤ u

)
= F2(u)

c1N — Law of large numbers; c2N
1/3 — fluctuations (not N1/2

as for the Gaussian)

Random matrices [TW ’94]

λmax — the rightmost eigen-
value,
Law of large numbers ∼

√
N ;

fluctuations ∼ (
√
N)1/3.
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The semi-discrete directed Brownian polymer (and random
matrix ensembles) belongs to the Kardar–Parisi–Zhang
(KPZ) universality class



Connection to the KPZ equation
Taking diffusive scaling limit in (t,N) (polymer goes from
(0, 1) to (t,N); look at fluctuations around), one arrives at
the continuous stochastic heat equation:

∂

∂t
Z (t, x) =

1

2

∂2

∂x2
Z (t, x) + Z (t, x)ξ(t, x), (SHE )

where ξ(t, x) is the space-time white noise,
Eξ(t, x)ξ(s, y) = δ(t − s)δ(x − y).

Z (t, x) = E : exp :

∫ t

0

ξ
(
s, b(s)

)
ds

where E is with respect to the Brownian bridge b(s) with
b(0) = 0 and b(t) = x (continuum directed random
polymer).

Long-term behavior of Z (t, x) (SHE) with a certain initial
condition is described by F2 — the Tracy-Widom distribution
[Amir–Corwin–Quastel ‘10].



Connection to the KPZ equation

∂

∂t
Z (t, x) =

1

2

∂2

∂x2
Z (t, x) + Z (t, x)ξ(t, x), (SHE )

If h(t, x) := log Z (t, x), then formally h satisfies the KPZ
equation [Kardar–Parisi–Zhang ’86]

∂th =
1

2
∂2
xh +

1

2
(∂xh)2 + ξ (KPZ )

The SHE is the Hopf-Cole transform of the KPZ. Rigorous
meaning: [Hairer ’11]



Connection to the KPZ equation

∂

∂t
Z (t, x) =

1

2

∂2

∂x2
Z (t, x) + Z (t, x)ξ(t, x), (SHE )

∂th =
1

2
∂2
xh +

1

2
(∂xh)2 + ξ (KPZ )

u := ∂xh satisfies stochastic Burgers equation

∂tu =
1

2
∂2
xu +

1

2
∂xu

2 + ∂xξ (stochastic Burgers)
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KPZ universality

KPZ equation is a scaling limit of a number of systems
(like the semi-discrete directed polymer). There are many
open problems.



KPZ universality

KPZ equation is a scaling limit of a number of systems
(like the semi-discrete directed polymer). There are many
open problems.



KPZ universality

KPZ equation is a scaling limit of a number of systems
(like the semi-discrete directed polymer). There are many
open problems.

Long-term behavior of Z (t, x) (SHE) is described by F2

— the Tracy-Widom distribution
[Amir–Corwin–Quastel ‘10].

Many more systems scale to F2 or another Tracy-Widom
distribution without scaling to KPZ equation; they belong
to the wider KPZ universality class.
Conjectural ingredients (already considered in [KPZ ’86])

Smoothing
Rotationally invariant, slope-dependent growth
Space-time uncorrelated noise

See [Corwin ‘11] for more detail.



Integrable Probability

Studying integrable members of the KPZ universality class
help to understand many general (universal) properties.

“Small perturbations” of integrable models should not
break the asymptotic results.

This property of integrable models extends beyond the
KPZ universality class.
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Polygon on the triangular lattice



Lozenge tilings of a polygon



Lozenge tilings of a polygon



Lozenge tilings ⇐⇒ Dimer Coverings



3D stepped surfaces with “polygonal” boundary conditions;
random interfaces between two media in 3 dimensions
(“melted crystal”)

Unit cube =

(polygon = projection of the boundary of 3D surfaces on the
plane x + y + z = 1)



Tilings of the hexagon

a

c
b

a

c

b

Number of tilings:
P. MacMahon [1915–16]

Z = total # of tilings

=
a∏

i=1

b∏
j=1

c∏
k=1

i + j + k − 1

i + j + k − 2

=
a∏

i=1

b∏
j=1

i + j + c − 1

i + j − 1



Partition functions (generalizing MacMahon’s formulas)

Fixed N-th row of the particle array: xN
N < . . . < xN

1

Z = total # of tilings

=
∏

1≤i<j≤N

xN
i − xN

j

j − i
= sν(1, . . . , 1︸ ︷︷ ︸

N

) — Schur function,

dimension of an irreducible representation of U(N) indexed by
the highest weight ν = (xN

1 + 1, xN
2 + 2, . . . , xN

N + N)
(Weyl dimension formula)

x

n

N



How very “large” uniformly random tilings
look like?
Fix a polygon P and let the mesh = N−1 = ε→ 0
(hydrodynamic scaling).

[Kenyon-Okounkov ’07] Algorithm of [Borodin-Gorin ’09]



Limit shape and frozen boundary for

general polygonal domains

[Cohn–Larsen–Propp ’98], [Cohn–Kenyon–Propp ’01],
[Kenyon-Okounkov ’07]

• (LLN) As the mesh goes to zero, random 3D stepped
surfaces concentrate around a deterministic limit shape
surface (solution to a variational problem)

• The limit shape develops frozen facets

• There is a connected liquid (disordered) region where all
three types of lozenges are present

• The limit shape surface and the separating frozen
boundary curve are algebraic

• The frozen boundary is tangent to all sides of the polygon



Variational problem

h(χ, η) — height of the limit shape at a point (χ, η) inside the
polygon.

The height h is the unique minimizer of the functional∫
polygon

σ(∇h(χ, η))dχdη,

where σ is the surface tension.

σ is the Legendre dual (f ∨(p∗) = supp(〈p, p∗〉 − f (p))) of the
Ronkin function of z + w = 1,

R(x , y) =
1

(2πi)2

∫ ∫
|z|=ex , |w |=ey

log |z + w − 1|dz
z

dw

w





“Integrability” of random tilings

Thm. [Temperley–Fisher, Kasteleyn, 1960s]

The total number of dimer coverings of a hexagonal graph is
the (absolute value of) the determinant of the incidence matrix
K (u, v)

Prob(dimers occupy (u1, v1), . . . , (u`, v`))

=
det[K ]graph without (u1, v1), . . . , (u`, v`)

det[K ]all graph

= det[K−1(ui , vj)]`i ,j=1

K−1 can be written as a double contour in-
tegral [P. ‘12], thus giving access to asymp-
totics



Asymptotic analysis of K−1

K−1(u; v) ∼ additional summand

+

∮ ∮
f (w , z)

eN[S(w ;u)−S(z;v)]

w − z
dwdz

f (w , z) — some “regular” part having a limit, S(w ; u) is an
explicit function depending on the point u inside the polygon.

Then investigate critical points of the action S(w ;χ, η) and
transform the contours of integration so that the double
contour integral goes to zero: <S(w) < 0, <S(z) > 0.

[Okounkov ’02] — first
application of double contour
integrals to get asymptotics



Local behavior at the edge:

3 directions of nonintersecting paths

Counting nontintersecting paths with the help of determinants
dates back to [Karlin–McGregor ‘59], [Lindstrom ‘73],
[Gessel–Viennot ‘89]



Local behavior at the edge:

3 directions of nonintersecting paths



Limit shape ⇒ outer paths of every type concentrate around
the corresponding direction of the frozen boundary:

Theorem [P. ’12]. Edge behavior: Tracy-Widom

Fluctuations O(N2/3) in tangent and O(N1/3) in normal direc-
tion

Thus scaled fluctuations are governed by the (space-time) Airy2

process (its marginal is Tracy-Widom F2) at not tangent nor
turning point (χ, η) ∈ boundary



Limit shape ⇒ outer paths of every type concentrate around
the corresponding direction of the frozen boundary:

Theorem [P. ’12]. Edge behavior: Tracy-Widom

Fluctuations O(N2/3) in tangent and O(N1/3) in normal direc-
tion

Thus scaled fluctuations are governed by the (space-time) Airy2

process (its marginal is Tracy-Widom F2) at not tangent nor
turning point (χ, η) ∈ boundary



• First appearances:
random matrices (in part., Tracy-Widom distribution F2),
random partitions (in part., the longest increasing
subsequence)

• Space-time Airy process: [Prähofer–Spohn ’02]

• Random tilings of infinite
polygons, same results:
[Okounkov-Reshetikhin ’07],
[Borodin-Ferrari ’08]

• K−1 computed by [Johansson ’05] in terms of orthogonal
polynomials (only for the hexagon), used in
[Baik-Kriecherbauer-McLaughlin-Miller ’07] to prove
Tracy-Widom fluctuations



Studying asymptotics of K−1 also allows to obtain local lattice
behavior. From it: understand geometry of the limit shape
surface and of the frozen boundary [BKMM ’07], [Gorin ‘07],
[Borodin-Gorin-Rains ‘09], [P. ‘12].

Theorem [P. ’12]. Gaussian Free Field

Random field of fluctuations
hN([χN], [ηN]) − E

(
hN([χN], [ηN])

)
, where hN is the random

(discrete) height function,
converges to a Gaussian Free Field on the liquid region with
zero boundary conditions

Note that limit shape result is hN([χN], [ηN])/N → h(χ, η),
where h is the deterministic continuous height function.

•

Same result about fluctuations was obtained by Kenyon
(preprint ‘04) for boundary conditions not allowing frozen
parts of the limit shape, by analytic tools. He also con-
jectured the above theorem.
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Zero temperature limit β → +∞

ZN(t) :=

∫
0<s1<...<sN−1<t

e
β E(s1,...,sN−1)

ds1 . . . dsN−1

converges to a trajectory (depending on the environment in a
deterministic way) which maximizes the energy

t
1

2

3

N
(t,N)



Let us also discretize, replacing Brownian motions by Poisson
processes, then

ZN(t) −→ LN(t) :=

{
maximal number of points collected by
an up-right path from (0, 1) to (t,N)

}

time

1

2

3

N

...

...

∗

∗ ∗

∗

∗
∗

∗
∗

∗

∗

L1 ≤ L2 ≤ . . . ≤ LN−1 ≤ LN



Let us also discretize, replacing Brownian motions by Poisson
processes, then

ZN(t) −→ LN(t) :=

{
maximal number of points collected by
an up-right path from (0, 1) to (t,N)

}

time

1

2

3

N

...

...

∗

∗ ∗

∗

∗
∗

∗
∗

∗

∗

L1 ≤ L2 ≤ . . . ≤ LN−1 ≤ LN



PushTASEP
(Pushing Totally Asymmetric Simple Exclusion Process)

Time evolution of

xn(t) := Ln(t) + n, n = 1, 2, 3, . . .

is Markov:

Z

rate = 1rate = 1

pushing

This is a discrete, zero temperature version of the
stochastic heat equation

“Long-range TASEP” [Spitzer ’70]



PushTASEP as a growth model

(slope +1 over a hole, slope −1 over a particle)

Z

(growth speed depends on the “macroscopic” slope)



PushTASEP as a growth model

(slope +1 over a hole, slope −1 over a particle)

Z

(growth speed depends on the “macroscopic” slope)



A two-dimensional extension of PushTASEP
[Borodin–Ferrari ’08]

Interlacing integer arrays (= Gelfand-Tsetlin schemes)

Each row λ(k) = (λ
(k)
k ≤ λ

(k)
k−1 ≤ . . . ≤ λ

(k)
1 ) is the highest

weight of an irreducible representation of GL(k).

Interlacing arrays parametrize vectors in the Gelfand-Tsetlin
basis in the representation of GL(N) defined by λ(N).



A two-dimensional extension of PushTASEP
[Borodin–Ferrari ’08]

interlacing integer arrays ←→ particles in 2 dimensions

1

2

3

4

-1 0 1 2 3 4 5 6

λ
(1)
1

λ
(2)
2 λ

(2)
1

λ
(3)
3 λ

(3)
2 λ

(3)
1

λ
(4)
4 λ

(4)
3 λ

(4)
2 λ

(4)
1

1 particle at level 1,
2 particles at level 2, etc.



A two-dimensional extension of PushTASEP
[Borodin–Ferrari ’08]

1. Each particle λ
(k)
j jumps

to the right by one according
to an independent exponential
clock of rate 1. 1

2

3

4

-1 0 1 2 3 4 5 6

λ
(1)
1

λ
(2)
2 λ

(2)
1

λ
(3)
3 λ

(3)
2 λ

(3)
1

λ
(4)
4 λ

(4)
3 λ

(4)
2 λ

(4)
1

2. If it is blocked from below,
there is no jump

3. If violates interlacing with
above, it pushes the above
particles



A two-dimensional extension of PushTASEP
[Borodin–Ferrari ’08]

1

2

3

4
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A two-dimensional extension of PushTASEP
[Borodin–Ferrari ’08]

1

2

3

4

-1 0 1 2 3 4 5 6 7 8



TASEP and PushTASEP

Markovian projection to the right-
most particles — PushTASEP

Markovian projection to the
leftmost particles — TASEP
(another discrete, zero temper-
ature version of the stochastic
heat equation)



TASEP and PushTASEP

Markovian projection to the right-
most particles — PushTASEP

Markovian projection to the
leftmost particles — TASEP
(another discrete, zero temper-
ature version of the stochastic
heat equation)



PushTASEP has another extension related to
nonintersecting up-right paths and the
Robinson–Schensted–Knuth correspondence

λ
(h)
1 + λ

(h)
2 + . . . + λ

(h)
j = the maximal number of (∗) one can

collect along j nonintersecting up-right paths that connect
points (1, 2, . . . , j) on the left border (time = 0), and
(h− j + 1, h− j + 2, . . . , h) on the right border (time = t > 0).

[Borodin–P. ‘13]: common
axiomatics for
2-dimensional dynamics
with nice properties &
their complete
classification

t

1

2

3

h

N

∗

∗ ∗

∗

∗
∗

∗
∗

∗

∗



Interlacing integer arrays ←→ lozenge tilings

−1 0 1 2 3 4 5 6 7 8



Growing 2-dimensional random interface h(η, ν) (with frozen
parts), models the following continuous random growth:

∂th = ∆h + Q(∂ηh, ∂νh) + ξ(η, ν)

(Q quadratic form of signature (−1, 1); anisotropic KPZ
growth)

fluctuations: ∼ L1/3 with time (L — large parameter)



Gibbs property of the dynamics on interlacing arrays

Definition. Gibbs probability measures on interlacing arrays

A measure M is called Gibbs if for each h = 1, . . . ,N :

Given (fixed) λ
(h)
h ≤ . . . ≤ λ

(h)
1 , the conditional distri-

bution of all the lower levels λ(1), . . . , λ(h−1) is uniform
(among configurations satisfying the interlacing con-
straints).

The dynamics on arrays
preserves the class of Gibbs
measures:
it maps one Gibbs measure
into another.



“Simplest” Gibbs measures — uniformly random tilings

(uniformly random configuration with fixed top row)

a

c
b

a

c

b

As a, b, c → +∞ such that
ab/c → t, uniformly random
tilings of the hexagon converge
to the distribution of the 2-
dimensional dynamics at time
t > 0.
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Macdonald polynomials
Pλ(x1, . . . , xN) ∈ Q(q, t)[x1, . . . , xN ]S(N) labeled by partitions
λ = (λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0) form a basis in symmetric
polynomials in N variables over Q(q, t). They diagonalize

D(1) =
N∑
i=1

∏
j 6=i

txi − xj
xi − xj

Tq,xi , (Tqf )(z) := f (zq),

with (generically) pairwise different eigenvalues

D(1)Pλ = (qλ1tN−1 + qλ2tN−2 + . . . + qλN )Pλ.

Macdonald polynomials have many remarkable properties (similar

to those of Schur polynomials corresponding to q = t) including

orthogonality, simple reproducing kernel (Cauchy identity), Pieri

and branching rules, index/variable duality, etc. There are also

simple higher order Macdonald difference operators commuting

with D(1).



q-deformed particle systems

2-dimensional dynamics on interlacing arrays can be
constructed using Macdonald polynomials (with t = 0) as well
[Borodin–Corwin ’11], [Borodin–P. ‘13]. They lead to
q-deformations of TASEP and PushTASEP.



q-TASEP [Sasamoto–Wadati ’98],
[Borodin–Corwin ‘11]



q-TASEP

1 Exact contour integral formulas for q-moments

E
(∏k

j=1 q
xNj

(t)+Nj

)
(where N1 ≥ N2 ≥ . . . ≥ Nk > 0),

with a special initial condition [BC ’11],
[BC–Sasamoto ‘12]. Exact formulas for arbitrary initial
condition, and a related Plancherel isomorphism theorem
[BC–P.–Sasamoto ‘13]

2 q-TASEP locations xn(t) converge (under rescaling, as
q = e−ε, t = τε−2) to the semi-discrete directed polymer
partition functions Zn(τ).

3 Moments of q-TASEP particles are all bounded, and thus
determine the distribution. This is not true for the
polymer case (replica trick in physics literature).

4 Tracy-Widom asymptotics: [Ferrari-Veto ‘13].

Also: [O’Connell–Pei ‘12], [Povolotsky ‘13],
[van Diejen et al. ’03], ...
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q-PushTASEP [Borodin–P. ‘13],

Describes the time evolution in a “positive temperature”
version: random up-right paths in random environment

time

1
2
3

N

...

...

∗

∗ ∗

∗

∗
∗

∗
∗

∗

∗



q-PushTASEP [Borodin–P. ‘13],

Particle locations converge to the polymer partition functions;

q = e−ε, t = τε−2,

xn(τ) = τε−2 + (n − 1)ε−1 log(ε−1) + Z̃n(τ)ε−1

then Z̃n(τ)→ Zn(τ), where

Zn(τ) =

∫
0<s1<...<sn−1<τ

eB1(s1)+...+
(
Bn(τ)−Bn(sn−1)

)
ds1 . . . dsn−1



q-PushASEP [Corwin–P. ‘13]

xi+2 xi+1

xi xi−1

rate = R(1− qgapi )rate = L

Prob = qgapi+1

Prob = qgapi+2 gapi := xi−1 − xi

R ∗ (q-TASEP, to the right) + L ∗ (q-PushTASEP, to the left)

Traffic model (relative to a time frame moving to the right)

Right jump = a car accelerates. Chance 1− qgap is lower
if another car is in front.

Left jump = a car slows down. The car behind sees the
brake lights, and may also quickly slow down, with
probability qgap (chance is higher if the car behind is
closer).



q-PushASEP integrability

Theorem [Corwin–P. ‘13]. q-moment formulas for the
q-PushASEP with the step initial condition
xi(0) = −i , i = 1, . . . ,N .

Obtained via a quantum integrable (many body) systems
approach dating back to [H. Bethe ‘31]



Conclusions

Integrable probabilistic models help to understand
general, universal behavior of stochastic systems.
Algebraic tools are often the only ones available.

Integrable properties of probabilistic models reveal
connections with other areas (representation theory,
combinatorics, integrable systems). This equips
probabilistic computations and results with a richer
structure.

Algebraic structures provide deformations (regularisations)
which eliminate analytic issues (replica trick for
polymers/SHE/KPZ vs q-TASEP [BC ‘11]).

Surveys/lecture notes:
• Corwin arXiv:1106.1596 [math.PR]
• Borodin–Gorin arXiv:1212.3351 [math.PR]
• Borodin–P. arXiv:1310.8007 [math.PR]



Bonus: Back to zero-temperature dynamics

h

xh x1x2. . .

Distribution of vertical lozenges
(x1 − h + 1, x2 − h + 2, . . . , xh) = (µ1 ≥ µ2 ≥ . . . ≥ µh) at
height h is determined from the generating series
h∏

i=1

et(zi−1) =
∑

µ1≥µ2≥...≥µh

Prob(µ) · sµ(z1, . . . , zh)

sµ(1, . . . , 1)
,

where sµ — Schur symmetric polynomials.

Connection with irreducible characters of unitary groups U(N),
and of the infinite-dimensional unitary group U(∞) [Edrei,
Schoenberg ‘50s, Voiculescu ‘76, Boyer, Vershik, Kerov ‘80s]



Apply Macdonald difference operators, t = q

D(1) =
h∑

i=1

∏
j 6=i

qzi − zj
zi − zj

Tq,zi , Tqf (z) := f (qz),

these operators are diagonalized by Schur polynomials
(representation-theoretic meaning: operators which are scalar
in each irreducible representation):

(D(1)sµ)(x1, . . . , xh) =
( h∑

i=1

qµi+h−i
)
sµ(x1, . . . , xh).

Then (idea first applied in [Borodin–Corwin ‘11], see also
[Borodin–P. ‘13: Lecture notes])

D(1)
h∏

i=1

et(zi−1) =
∑
µ

Prob(µ)
( h∑

i=1

qµi+h−i
)sµ(z1, . . . , zh)

sµ(1, . . . , 1)

We want to put z1 = . . . = zh, which is best done with
contour integrals.



Apply Macdonald difference operators, t = q

D(1)
h∏

i=1

et(zi−1)

∣∣∣∣∣
z1=...=zh=1

=
1

2πi

∮
|w−1|=ε

h∏
j=1

qw − zj
w − zj

1

(q − 1)w
et(q−1)wdw

∣∣∣∣∣
z1=...=zh=1

=
∑

µ1≥...≥µh

( h∑
r=1

qµr+h−r
)
Prob(µ)

Now, q is arbitrary, so can take contour integral over q to
compare powers of q. Get the density of vertical lozenges:

Prob
{
n ∈ {µi + h − i}hi=1

}
=

1

(2πi)2

∮
|q|=ε

dq

qn+1

∮
|w−1|=ε

(
qw − 1

w − 1

)h
et(q−1)w

(q − 1)w
dw .



Asymptotics [Borodin–Ferrari ’08]

Look at critical points of the integrand (L — large)

Prob
{
n ∈ {µi + h − i}hi=1

}
=

1

(2πi)2

∮
Γ0

dv

v

∮
Γ1

dw
eL(F (v)−F (w))

v(v − w)
,

F (z) := τz + η ln(z − 1)− ν ln z .

ν

η

η = τ

ν = τ

critical points of F are real

when 4ητ −
(
η + τ − ν

)2
= 0

(boundary of the liquid region)

ρ =
arg(zc)

π

ρ = 0

ρ = 0

ρ = 1


