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Colored ASEP (multispecies ASEP, mASEP)

* There is a unigue stationary distribution

Proby  n (1, ...,1y) in each “sector”

| | | | | | | | | | ﬁ:(Nl,,,.,Nn), WhereI/]jE {O,l,...,n}

1 e Forn = 1 (single color), it is uniform among all
N . .
e Particles have colors (types) in {1,...,n}. ( N1> configurations
» Particles of colors (ik, I} +1) at adjacent sites » For many colors, nontrivial correlations

k, k + 1 swap at rate (color n: highest priority) * Multiline queues: [Angel 2006], [Ferrari-Martin 2007]

Rate((iy, ;1) = (ioq5 1) = {611 Z Z Z+1 (MTASEP, g = 0), [Martin 2018] (full MASEP)
’ N e Matrix Ansatz: [Prolhac-Evans-Mallick 2009]
* q € [0,1) is the parameter  Macdonald polynomials: [Cantini-de Gier-Wheeler
e Lives on a ring with V sites; there are [V, 2015], [Corteel-Mandelshtam-Williams 2018}

particles of color i (conserved quantities) * We use integrable vertex models



Main result for mASEP [Aggarwal-Nicoletti-P. 2023] €

* We define a vertex model on the cylinder

In column (—m),
¢ - (=m)
(—n,—n+1,...,—2,— 1} x (ZINZ) use weight W "/

« The mASEP configuration n = (771, ooy HN) A

. cylinder cut
enCOdeS the b()undary COndlthn. I R T

- Proby (1, ..., 7ny) is proportional to the

partition function with the boundary 7, which

iInvolves the summation over the wrappings

LS S SN N S

1
M(—n), ..., M(—1). There are infinitely many
. 3
arrows of color m wrapping around column (—m).
2

« Weights are denoted by W( m)(A k;C,70),
A, Ce Zl, k¢ e{0,l,...,n}
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Theorem. Proby, (77, ..., 1y) is proportional to

of products of the weights
ZM(—n),...,M(—l) Zpaz‘h conf P 9

WA over all n X N vertices, with boundaries @, #.

Sm9xm
A A AL A
0 —I— 0 k —I— k 0 _I_ L 0 —|— m
A A A A
1 (.,L' —_ Squ) qA[k+1 n| T (1 _ qu) qA[k+1,n] :EqA[m+1,n]
Ay A Ay Ay
k_I_o k_I_g e_l_k e_l_m
A A A A
1 T (1 - qAE) qA[E—I-l,'n] S (1 - qu) qA[k-i-l,'n] SqA[m+1,n]

Infinitely many vertical arrows of colorm; m < k< ¢ <n

In column (—m),
use weight W

Sm ’xm




« The sum path conf is over path configurations in the

Main result for mASEP [Aggarwal-Nicoletti-P. 2023]

| | n X N rectangle with boundaries @, M, 1, M.
Theorem. Proby, (77, ..., 1y) is proportional to

of products of the weights
ZM(—n),...,M(—l) Zpath conf P 9

W&;’Q over all n X N vertices, with boundaries @, 7.

Infinitely many vertical arrows of colorm; m < k< ¢ <n

A A A A
0 —I— 0 k —I— k 0 _I_ L 0 —I— m
A A A A In column (—m),
. (—m
1 (.’L' _ Squ)qA[k+1 n] .T(]. . qu‘)qA[k+1,n] qu[m—l—l,n] use Welght Wsm’xm
Ay A Aj Af
k_l_o k_I_e g_|_k g_l_m
A A A A
1 r(l — qu)qA[e+1,n] s(1 — qu)qA[k+1,n] sqAm+1n




Main result for mASEP [Aggarwal-Nicoletti-P. 2023]

Theorem. Proby, (77, ..., 1y) is proportional to

of products of the weights
ZM(—n),...,M(—l) Zpazth conf P 9

W&;Q over all n X N vertices, with boundaries @, 7.

a A A A
+ + |+
A A A A

1 (:c — Squ)qA[k+1 n] :E(l _ qu)qA[kH,n] qu[mH,n]
Ai Al A} Af
+ 4+
A A A A
1 z(1 — g?)ghiesin | (1 — g)ghrtin | gghimiin

Infinitely many vertical arrows of colorm; m < k< ¢ <n

« The sum path conf is over path configurations in the
n X N rectangle with boundaries @, M, 1, M.
- Parameters s,,, x,, do not affect Proby, (7, ..., 11y)

on the ring. Positivity is automatic.
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Main result for mASEP [Aggarwal-Nicoletti-P. 2023]

Theorem. Proby (7, ..., 1y) is proportional to

of products of the weights
2M(—n),...,M(—l) Zpazth conf P 9

W&;’Q over all n X N vertices, with boundaries @, 7.

° a Ay A
T
A A A A

1 (:E - Squ) qA[k+1 n] | (1 _ qu) qA[k+1,n] qu[mH,n]
A Al A} A
SO N
A A A A
1 ZB(]. — qu)qA[EJrl,n] 8(1 _ qu)qA[k—l—l,n] SqA[mH,n]

Infinitely many vertical arrows of colorm; m < k< ¢ <n

The sum path conf is over path configurations in the
n X N rectangle with boundaries @, M, 1, M.
Parameters s,,, x,, do not affect Proby (17, ..., 7y)

on the ring. Positivity is automatic.
Similar result on the line (with fewer parameters for

positivity). The remaining parameters are responsible

for the color densities.

C

In column (—m),
use weight W

S 119X
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Matrix Product Ansatz (MPA) solution [Prolhac-Evans-

Mallick 2009]. The matrices are row partition functions:

M7En) M)
/
Xy (M21) = g 4411
M (-n) N mMi-1)

* [Martin 2018] found a multiline queue sampling

algorithm that nontrivially corresponds to MPA
e s =¢,x = 1 gives Martin’s “alternative queues”

(resolves conjecture); interpolation s € [0,1).

A A AL A

0 | 0 k | k 0 | k 0 | m
A A A A

1 (3C — SC.IA’c )qA[kH’nl :c(l — qu)qA[kH,n] qu[m+1,’n]
A} Air Aj A;

k | 0 k | 14 / | k / | m
A A A A

1 T (1 _ qu) qA[£+1 n | g (1 _ qu) qA[k+1 n] qu[m_H n]




Matching to previous results

» The vertex model for s = 0, x = 1 is essentially the

Matrix Product Ansatz (MPA) solution [Prolhac-Evans-

Mallick 2009]. The matrices are row partition functions:

M7En) M)
/
>%<MM> = ¢ —H—'—f—f‘ Lj
M (-n) - mMi-1)

[Martin 2018] found a multiline queue sampling

algorithm that nontrivially corresponds to MPA
s = g, x = 1 gives Martin’s “alternative queues”
(resolves conjecture); interpolation s € [0,1).

« \We can use row-dependent X; and weighted

wrappings to produce nonsymmetric Macdonald
polynomials like [Cantini-de Gier-Wheeler 2015], [Corteel-

Mandelshtam-Williams 2018]; apparently different from
[Borodin-Wheeler 2019]

A A Ay A
A A A A
1 (CE L Squ) qA[k—I-l,n] T (1 . qu) qA[k+1,n] qu[mH,n]
A} Air Aj A/
k | 0 k | l ¢ I k ¢ | m
A A A A
1 T (1 _ qu) qA[e+1 n | g (1 _ qu) qA[k+1 n] SqA[m+1 n]
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Two other particle systems [Aggarwal-Nicoletti-P. 2023] We present vertex models
for stationary measures of

two more systems on the

O ring and the line
DN SO S SN SNV SRR SN SO SRR SN SV SO SO  eerereranans \
* Colored stochastic q-Boson (q-TAZRP),  Colored g-PushTASEP of capacity P
introduced by [Takeyama 2015] » [Borodin-Wheeler 2018], [Bukh-Cox 2019], [Angel-
» A particle of color i hops from k to Ayyer-Martin, in progress 2023]

k — 1 (mod N) according to an independent * A particle activates with rate

1, ,—A, P—A{ 11 1
exponential clock with rate X, (g —1)g

xk_l(l — g V0 g V&1 » Active particle hops from site to site, where it
can either stop; stop activate another particle

* Tableau/queue model for stationary
of lower color; or move through, with prob.

distributions [Ayyer-Mandelshtam-Martin 2022]; we
] — qP—|B|, (q_Bd — l)qP_B[CHI,n], qP_B[c,n]

match to our vertex models



Stationarity from Yang-Baxter
equation

“Toy” example: stationarity
for the single-color stochastic
six-vertex model in the
quadrant

(Explain the main idea in a
simpler setting than the ring)
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. . . [Gwa-Spohn 1992], [Borodin-Corwin-Gorin 2014],
- - 1: - - 4‘— --1-- : - - 'r 4! - - [Aggarwal-Borodin 2016]
1 1 01 02 1—-61 1-206
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 Yang-Baxter equation. For fixed
g, and fixed iy, 1, i € {0,1},
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two pictures is the same:
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13

Ph

up,,

1 —p, +up,

u .

1=
C1=6

q .— 51/52
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1 — py + Up, 1 — 52 1 172 a
* Fusion [Kulish-Reshetikhin-Sklyanin 1983], 2 (s 0

[Corwin-P. 2015] - a way to construct new YBE

solutions from existing ones.
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1a )3

Ph = U = ] = 0,/0 : ’ —J
1 — Py T up, 1 — 52 1 e a
* Fusion [Kulish-Reshetikhin-Sklyanin 1983], ‘2 2 3

[Corwin-P. 2015] - a way to construct new YBE

solutions from existing ones.

_______ ‘HIF _[m

1+ 1+ 1+ A+
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- sk 5,18 : -
ph — Uu := ° := o “ Wy
1 — py T up, I — 52 1 e a
 Fusion [Kulish-Reshetikhin-Sklyanin 1983], L Lo

[Corwin-P. 2015] - a way to construct new YBE

solutions from existing ones.




“Toy” example: stationarity for the single-color stochastic six-vertex model

1a )3

Pn = u .= , = 0,/0 — 4 4 m— 2
L= py+up, 1 -0, e o L[ a '
h
* Fusion [Kulish-Reshetikhin-Sklyanin 1983], 1 4|\ T 2 (2 - N

[Corwin-P. 2015] - a way to construct new YBE

solutions from existing ones.

g
Stationarity via Yang-Baxter
""""""""""""""" » For g = + 00, the right output of the fat vertex

3 y ‘w is Bern0ulll(x+ 1) independent of the bottom
(-9, X
1+ 1+ 1+ 1+ and the left inputs.
'H‘ /lr * The Yang-Baxter equation is equivalent to the
L4 X
previous “Burke” computation: p, = ,
% we ¥ T
= ———) ﬁ K Ux N up,,
- (——3 W = " ux+ 1 " 1 —p,+up,
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A

1 1 01 02 1—01 1 — 0o

A -9 5,18
= U = , =
1—,0V+l/t,0v 1—52 1 12
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1 1 01 09 1—01 1 — 09
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“Toy” example: stationarity for the single-color stochastic six-vertex model

e

1 1 01 09 1—01 1 — 09




“Toy” example: stationarity for the single-color stochastic six-vertex model
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Stationarity from Yang-Baxter
equation

Colored stochastic six-vertex
model Iin the quarter plane



Colored stochastic six-vertex model. Many colors = many fat lines

R,QA > reev\

+ 4+ ++

2 1 — (51 1 — 52



Colored stochastic six-vertex model. Many colors = many fat lines
Red > Green

+ 4+ ++

1 51 52 1—51 ]-_52




Colored stochastic six-vertex model. Many colors = many fat lines

R,QA > reev\

+ 4+ ++

2 1 — (51 1 — 52



Colored stochastic six-vertex model. Many colors = many fat lines
Red > Green

+ 4+ ++

2 1—51 1—52

 Fusion and Yang-Baxter equation.



Colored stochastic six-vertex model. Many colors = many fat lines

Red > Greew " " e
0 + 0 k + k 0 _|_ k
A A A
02 1—-61 1—206 1+ zq Al | (x4 vg) g | z(1 — g) gAienn
1+ 1+ 14+x
- - Ay Al Aje
 Fusion and Yang-Baxter equation. | | |
k 0 k 14 14 k
A A A
1 — g |z (1= g?)gherm | v(1 — g%)ghnnn
1+ 2z 1+ 14+ x




Colored stochastic six-vertex model.

Many colors = many fat lines

Red > Green A A .
0 + 0 k + k 0 | o
A A A
1—6 1—6 1+ zq | (z+ vge)ghtwn | g (1 — g)gAenn
2 : ? 1+ 1+ 1+
= i A: A;:e_ AZ(
* Fusion and Yang-Baxter equation. | | |
k 0 k 14 14 k
Higher spin, higher rank stochastic weights. A i A
Relatedto U (sl ,11); 1 <k<Z <n 1 —vglAl | z(1 — ) ghream | p(1 — g%) g
l1+x 1+ 1+2x




Colored stochastic six-vertex model. Many colors = many fat lines
Rﬁﬁl 7 Greev\ A A A;

I A

|A| Ay, A[k'-l—l,n] 1 — Ay, A[k+1,n]
5o 1— 6 1— 6 1+ zq (x +vq™*)q (1l —q™)q
l+z l+z l+z

Ay A Al

* Fusion and Yang-Baxter equation. | | |
k 0 k 14 14 k
Higher spin, higber rank stochastic weights. A A A
Related to Uq( ] n+1); 1 < k< <n 1 — vglAl r(1 — q4¢)gherin | (1 — gr)ghrrin




Colored stochastic six-vertex model. Many colors = many fat lines
Raed 7 Greev\ A A A;

++%+%ﬁMﬂfh

2 1—51 1—52

1+2x 1+ 2 1+2x

* Fusion and Yang-Baxter equation. | | |
k 0 k 14 14 k
Higher spin, higber rank stochastic weights. A A A
Related to Uq( </ n+1); 1 <k<?<n 1 — vglAl | 2(1 — gA)ghierim | p(1 — gA%) gAterim




Colored stochastic six-vertex model. Many colors = many fat lines

Red > Green A . -
0 + 0 k + k 0 | o
A A A
1—6, 1-96 1+ 2g4 | (@4 vg)ghenn | 3(1— gh)gAmnn
& ' ? 1+ 1+ x 1+ x
- - Ay Al Af
 Fusion and Yang-Baxter equation. | |
k 0 k 14 14 k
Higher spin, higher rank stochastic weights. A i Al
Related to UC]( sl n+1); 1 < k<? <n 1 — vl | (1 — g4 ghern | v(1 — g4r)gAr+n
1+ 1+ 1+ x

 Set the number of arrows of a given

color m to +o00. We get WE;’;’CZ from

the beginning (up to simple factors).



Colored stochastic six-vertex model. Many colors = many fat lines
Red > Green

+ 4+ ++

2 1—51 1—52

 Fusion and Yang-Baxter equation.

Higher spin, higher rank stochastic weights.
Related to U ( s/ ,41); 1 <k < £ <n

 Set the number of arrows of a given

color m to +o00. We get WE;’;’CZ from

the beginning (up to simple factors).



Colored stochastic six-vertex model. Many colors = many fat lines

Red > Green

+ 4+ ++

2 1—51 1—52

 Fusion and Yang-Baxter equation.

Higher spin, higher rank stochastic weights.
Related to U ( s/ ,41); 1 <k < £ <n

 Set the number of arrows of a given

color m to +00. We get WE;’;Z from

the beginning (up to simple factors).

-3 (2) /("“)

(lg,V) .................. ’.,,., .......
@ .1 R wet/x
o : E Coloredol
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Colored stochastic six-vertex model. Many colors = many fat lines
Red > Green

+ 4+ ++

2 1—51 1—52

-3 2) (4)

 Fusion and Yang-Baxter equation.

Higher spin, higher rank stochastic weights.
Related to U ( s/ ,41); 1 <k < £ <n

 Set the number of arrows of a given

color m to +00. We get W&;’;‘; from

the beginning (up to simple factors).



Colored stochastic six-vertex model. Many colors = many fat lines
Red > Green (-3) (2) (1)

+ 4+ ++

2 1—51 1—52

 Fusion and Yang-Baxter equation.

Higher spin, higher rank stochastic weights.
Related to U ( s/ ,41); 1 <k < £ <n

 Set the number of arrows of a given

color m to +00. We get WE;’;Z from

the beginning (up to simple factors).



Colored stochastic six-vertex model. Many colors = many fat lines
Red > Green (-3) (2) (1)

+ 4+ ++

2 1—51 1—52

 Fusion and Yang-Baxter equation.

Higher spin, higher rank stochastic weights.
Related to U ( s/ ,41); 1 <k < £ <n

 Set the number of arrows of a given

(Implies mMASEP
stationary measure

color m to +co. We get W™ from
e results on the line)

the beginning (up to simple factors).



Stationarity from Yang-Baxter
equation

MASEP on the ring



Yang-Baxter equation on the n X N cylinder
Red > Green 1 — 9,

*1*4-’4-'4-’-’%

2 1—51 1—52

A A A

A
: + :
A
1 , , ,
Ay A Ay A7
: + :
A
1

T (1 . qu) qA[e+1,n] S (1 _ qu) qA[k—i—l,n] SqA["”“’”]

(These weights are not stochastic and have
more parameters than on the line; all of this
is okay on the ring)



Yang-Baxter equation on the n X N cylinder

Red > Green

*1*4-'-4-'-%-’-‘#

1 -

02 1 — 01 1 — 09

A A AL A
0 + 0 k + k 0 + N 0 + m

A A A A
1 (x _ Squ) qA[k-H n| T (1 _ qu) qA[k_H n| qu[m-i-l n]

A} Al Aj A;
k+o k+e g+k £+m
1 z(1—qh)ghean | s(1—ghr)ghenn | sqhimin

(These weights are not stochastic and have
more parameters than on the line; all of this
is okay on the ring)

Mi-3) ME2) MI-1)

M-3) M2) M- :
- RS ~— J
Q(2,1) UPASER S



Yang-Baxter equation on the n X N cylinder
Mi-3) ME2) M-D) culinder ¢t "/ Ry,

Red > Green 1 =9 . p
¥ 4 Y
T 1-5, P SR O N -
¢ ta, \ "°.BI3/L v/g
2 1 — 51 1 — 52 ¢ " , R’WL QZ
- - — - n T T
k 'o,.Rzg/ /
+ + S 5 O 1
A A A A . _°_’_-_._. Y A
1 (.73 _ Squ)qA[k—i—l,n] :L'(l — qA )qA[k+1 n] g;qA[mH,n] M\.ﬁ) M\_z) M(_i> c_,jlif\&@f CM"E ..°°.
k’ Y -/ k N /
A} Al Ay A; ’
+ + + + Q (2, ASEN S
k 0 k ¢ ¢ k ¢ m
A A A A
1 p(1—g)ghenn | s(L— g )qhennl | sghmen | W2) M) MO etlinder aub R
(These weights are not stochastic and have ¢ % ................................................. ' vj
more parameters than on the line; all of this " .f(’“/x ?/g
is okay on the ring) ¢ .......................................... w T T [
¢ A . F.(Ia/” sz
R’a/x ,
B4 et B B, i



Yang-Baxter equation on the n X N cylinder

Mi-3) ME2) M-D) culinder ¢t "/ Ry,
Red > Green 2 T DU .
¥ : 4
1 S IR LT T T Tt . T R
J ‘3‘7/3 ........... , e e eranan, ‘7/ 3,
2 1 — 51 1 — 52 ¢ " Q; R’WL QZ
- - — - R S
k 'o,.Rzg/ /
+ + S I P ’ O S y
A A A A . ______________________________
1 ( — sq)ghrin |z (1 — g)ghrin | gghimn ME3)  ME2) M) clinder cut
AF At At A+ — " /- ~N ’ /
_‘L + + + Q (2, UAYEL P
k 0 k l / k l m
A A A A
1 z(1—gh)ghesin | s(1— g)ghierin | sqhimita o oolinder b o Rele M\3)M\2)M\1) ___________________
. /
- c ' ¢ 4
(These weights are not stochastic and have ¢ ........................... v/
more parameters than on the line; all of this y .°'-,B’3/x ¢ ?/g
s okay on the ring) 7 — ol e e ] ./.
o e sssssssssssssssssssssssessasann I S 02,
R’a/x ¢ /
N X
cylinder cut M3 ME2) ML)
- J —— 7

Ty (2901 a1



Yang-Baxter equation on the n X N cylinder

Red > Green

*1*4-'-%-'-{*-‘#

1 -

2 1— 51 1 — 52
A| A A A
A A A A
1 (.’E Squ) qA[k+1 1| (1 _ qu) qA-[k+1,n] quA[mH ]
Aj; Al A} A/
A A A A
1 z(1 - qAE)qA[”l 1 os(1— qu)qA[kJrl,n] SqA[m+1,n]

(These weights are not stochastic and have
more parameters than on the line; all of this
is okay on the ring)

Commutation relation on the cylinder
Z RO, mTyn,n) =T,,(D,D)QD,n) = R(D,n)

Mi-3) ME2) MI-1)

- —~— J
Q(2,1) Tar, (57"
calinder cut Rafe ME-3) ME-2) Mi-1)

o )

g 7

- Mi-3) M-2) M(-1)
— ) - . 4
Q2,1 )




Yang-Baxter equation on the n X N cylinder

Mi-3) ME2) M-D) culinder ¢t "/ Ry,
Red > Greewn 1 — 01 wTTTTT ,
~1-5, § o Forin i s SO . A
J N BAUO O SO DO Y | R v/ 3,
02 1-91 1-—o0 # s Rlu/z Q’f
A n . n ¢ .............................. ,.......R}% .........................................
0+0 k+k O+k o+m ¢ VL" e eveeseeeenencaeeassesnsees VLL
A A A AL s, S
1 (x — quk)qA[k—H ] :C(l qu)qA[k+1 ] qu[mH ] M\“3> M\“2> MK“D c_,jlm&@f (;u,{:
- ~— J
Af Al A} Af
| | | | Q(8,) DACEN S
k 0 k 12 14 k 14 m
A A A A
1| o(1—gM)qAem | s(1—gh)ghenn | sqhmns L colinder b Ry M) M M)
. /
(These weights are not stochastic and have ¢ ...... & e ¢v:'
more parameters than on the line; all of this y . Rafx ¢ q/g
is okay on the ring) ¢ ............... it B /
| | | o R I S 02,
Commutation relation on the cylinder ’ . Rofx s Y
Z QD )T, 1) =T, @.DRD. ) =D,n) e S
cylinder cut M3 ME2) ML)
— J — /

| _ . . !
(Bethe Ansatz: construct eigenvalue of 1  as a partition function) Tg 3 (& , @') = 1 @(¢, VL )



Limit to the mASEP, y/x = 1 — €, continuous time mASEP limit 5,,5, = 0, g = §,/6,

-3 -2 -4
Red > Green 1 -6,

-»1—) + -4.. —{-» 4 12 e - - - Ao va

2 1 — 51 1— (52 3

Time ~ 7/¢



Limit to the mASEP, y/x = 1 — €, continuous time mASEP limit 5,,5, = 0, g = §,/6,

-3 -2 -4
Red > Green 1 -6

—4—> -% + -J;-» 4 12 Rl o - Ao va

02 1—01 1—099 3

ge 3

<47 2|jzl— |2 4> R1—€(47 2,4, 2) — Tq + 0(62)

)

pd

~ A R A~
()
EEN (\)
e}
?\ |
(\V) FEN

Time ~ 7/¢

P > q <1,4|j€1_€|4, 1) = Ry_(1,4;1,4) =




Limit to the mASEP, y/x = 1 — €, continuous time mASEP limit 5,,5, = 0, g = §,/6,

Red > Green I =9

T

2 1—51 1—52

(4,2|R1_c|2,4) = Ri_c(4,2,4,2) = & 1 O(e2)

4 — 2

Time ~ 7/¢

<174|j’31—€|47 1> — R1—€(17 4; 174) —

1 4




Conclusions

* A lot of recent activity around stationary measures for colored
(also called multi-species or multi-type) and monochrome
interacting particle systems in different geometries (line, ring,
half-space, segment).
 Motivated by asymptotic phenomena (microscopic

characteristics, stationary measures for KPZ equation)
* Rich algebraic and combinatorial structure (e.qg.
nonsymmetric Macdonald polynomials)

 \We show that the ring, line, and quadrant stationarity follow
directly from the Yang-Baxter equation.

* Other geomeries?

 Box ball systems?

o Stationary horizons / speed processes?
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Bonus: Matrix Product Ansatz from Yang-Baxter equation

Matrix Product Ansatz expression
for the mASEP stationary measure

MPA = MPA
PI‘ObmASEP Trace (xm x??N )

Ni,...,Np, 1) — ZMPA
N]_,...,Nn

M

XA (w) 0

/

(=n)



Bonus: Matrix Product Ansatz from Yang-Baxter equation M

_ . DCMPA(u) 0
Matrix Product Ansatz expression ¢
for the mASEP stationary measure

MPA = «MPA
PI‘ObmASEP _ Irace (xm x??N )
Nl,...,Nn 77 o ZMPA
Ni,....Np,
Key identity in the stationarity proof:
existence of auxiliary matrices in
[Prolhac-Evans-Mallick 2009]
n
MPA «MPA _ MPA §MPA vMPA ~MPA
> XA (Mioe) sy ;.0 = XF AT = XFPAXT

i i/ =0

/

(=n)



Bonus: Matrix Product Ansatz from Yang-Baxter equation M’ (—n)

e
Matrix Product Ansatz expression X (u) o 111
for the mASEP stationary measure M(—n)
MPA MPA B
ProhmASEP _ Irace (xm L x??N )
N1,...,Np, n ZMPA
Ni,....Np,
Key identity in the stationarity proof:
existence of auxiliary matrices in
[Prolhac-Evans-Mallick 2009]
n
MPA «MPA _ vMPA§MPA  §+MPA ~~MPA
> XA (Mioe) sy ;.0 = X AXF XA
3,4'=0
Yang-Baxter equation
n
MPA MPA . <, 1 -\ __ ovMPA MPA
> G w) XM (1 =€) - Ri—e(i, 557, 5) = XA (u(1 — €) XF A (w).
i,i/=0

~ 9,
DC?&PA (u) = (1 —q)u B DC?/IPA (u)



Bonus: Matrix Product Ansatz from Yang-Baxter equation

AD — gDA =FEA —qAE = (1 — q)A,

ED — gDE = (1 —q)(E + D).

1 s O uU— S 0 0
0 g gs ... l1—qg u-—sq 0
" 1
A = 0 O q2 ) D = u 0 1—q2 u—sq2
1 uw O A A A: A
I ool 0 ‘ 0 k _I_ k 0 k 0 m
0 0 1 1 ! A| A|
1 (1 — s - g*) gi+1n (1 — g?%) gAr+1.m] gAim+1,n)
A} Al A A7
s = (: [Prolhac-Evans-Mallick 2009}
§ = @: conjectured alternative ’“_l_(’ ’“—‘_E f—i—’“ £ "
queues [Martin 2018] A A A A
! (L—ge)gherim | s- (1= g)ghmsim | s gAiminn

General s: interpolation




Thank you for attention!

Special thanks to the
organizers of the conference



