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• Multiline queues: [Angel 2006], [Ferrari–Martin 2007] 

(mTASEP, ), [Martin 2018] (full mASEP)


• Matrix Ansatz: [Prolhac–Evans–Mallick 2009]


• Macdonald polynomials: [Cantini–de Gier–Wheeler 

2015], [Corteel–Mandelshtam–Williams 2018] 

• We use integrable vertex models

q = 0



Main result for mASEP [Aggarwal-Nicoletti-P. 2023]

• We define a vertex model on the cylinder 




• The mASEP configuration  

encodes the boundary condition.


•  is proportional to the 

partition function with the boundary , which 
involves the summation over the wrappings 

. There are infinitely many 

arrows of color  wrapping around column .


• Weights are denoted by ,

, .

{−n, − n + 1,…, − 2, − 1} × (ℤ/Nℤ)

η = (η1, …, ηN)

ProbN1,…,Nn
(η1, …, ηN)

η

M(−n), …, M(−1)
m (−m)

𝕎(−m)
s,x (A, k; C, ℓ)

A, C ∈ ℤn
≥0 k, ℓ ∈ {0,1,…, n}

In column , 
use weight 

(−m)
𝕎(−m)

sm,xm

cylinder cut

cylinder cut
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Theorem.  is proportional to 

  of products of the weights 

 over all  vertices, with boundaries . 

ProbN1,…,Nn
(η1, …, ηN)

∑M(−n),…,M(−1) ∑path conf

𝕎(−m)
sm,xm

n × N Ø, η

In column , 
use weight 

(−m)
𝕎(−m)

sm,xm

• The sum  is over path configurations in the 

 rectangle with boundaries .

path conf

n × N Ø, M, η, M

• Parameters  do not affect  

on the ring. Positivity is automatic.

sm, xm ProbN1,…,Nn
(η1, …, ηN)

• Similar result on the line (with fewer parameters for 

positivity). The remaining parameters are responsible 

for the color densities.

Infinitely many vertical arrows of color ; m m < k < ℓ ≤ n
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Matching to previous results
• The vertex model for  is essentially the 

Matrix Product Ansatz (MPA) solution [Prolhac–Evans–

Mallick 2009]. The matrices are row partition functions:

s = 0, x = 1

• [Martin 2018] found a multiline queue sampling 
algorithm that nontrivially corresponds to MPA

•  gives Martin’s “alternative queues” 

(resolves conjecture); interpolation .

s = q, x = 1
s ∈ [0,1)

• We can use row-dependent  and weighted 

wrappings to produce nonsymmetric Macdonald 
polynomials like [Cantini–de Gier–Wheeler 2015], [Corteel–

Mandelshtam–Williams 2018]; apparently different from 
[Borodin-Wheeler 2019]

xj
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• Colored stochastic q-Boson (q-TAZRP), 
introduced by [Takeyama 2015]


• A particle of color  hops from  to 

 according to an independent 
exponential clock with rate 

.


• Tableau/queue model for stationary 
distributions [Ayyer–Mandelshtam–Martin 2022]; we 
match to our vertex models

i k
k − 1 (mod N)

x−1
k (1 − qV(k)i)qV(k)[i+1,n]

• Colored q-PushTASEP of capacity  
• [Borodin-Wheeler 2018], [Bukh-Cox 2019], [Angel–

Ayyer–Martin, in progress 2023] 

• A particle activates with rate 




• Active particle hops from site to site, where it 
can either stop; stop activate another particle 
of lower color; or move through, with prob. 

, , 

𝖯

x−1
k (q−Aj − 1)q𝖯−A[ j+1,n]

1 − q𝖯−|B| (q−Bd − 1)q𝖯−B[d+1,n] q𝖯−B[c,n]

We present vertex models 
for stationary measures of 
two more systems on the 
ring and the line



Stationarity from Yang-Baxter 
equation

“Toy” example: stationarity 
for the single-color stochastic 
six-vertex model in the 
quadrant

(Explain the main idea in a 
simpler setting than the ring)
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“Toy” example: stationarity for the single-color stochastic six-vertex model

u :=
1 − δ1

1 − δ2
, q := δ1/δ2ρh =

uρv

1 − ρv + uρv

• Fusion [Kulish-Reshetikhin-Sklyanin 1983], 
[Corwin-P. 2015] - a way to construct new YBE 
solutions from existing ones.

Stationarity via Yang-Baxter 

• For , the right output of the fat vertex 

is , independent of the bottom 

and the left inputs.


• The Yang-Baxter equation is equivalent to the 

previous “Burke” computation: , 

 .

g = + ∞
Bernoulli( x

x + 1 )

ρv =
x

x + 1

ρh =
ux

ux + 1
⇒ ρh =

uρv

1 − ρv + uρv
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Stationarity from Yang-Baxter 
equation

Colored stochastic six-vertex 
model in the quarter plane
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Colored stochastic six-vertex model. Many colors  many fat lines⇒

• Fusion and Yang-Baxter equation.
Higher spin, higher rank stochastic weights. 
Related to ; Uq( ̂sl n+1) 1 ≤ k < ℓ ≤ n

• Set the number of arrows of a given 

color  to . We get  from 

the beginning (up to simple factors).

m +∞ 𝕎(−m)
sm,xm

(Implies mASEP 
stationary measure 
results on the line)



Stationarity from Yang-Baxter 
equation

mASEP on the ring
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(Bethe Ansatz: construct eigenvalue of  as a partition function )T
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Conclusions

• A lot of recent activity around stationary measures for colored 
(also called multi-species or multi-type)  and monochrome 
interacting particle systems in different geometries (line, ring, 
half-space, segment). 

• Motivated by asymptotic phenomena (microscopic 

characteristics, stationary measures for KPZ equation)

• Rich algebraic and combinatorial structure (e.g. 

nonsymmetric Macdonald polynomials)

• We show that the ring, line, and quadrant stationarity follow 

directly from the Yang-Baxter equation.

• Other geomeries?

• Box ball systems?

• Stationary horizons / speed processes?
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Bonus: Matrix Product Ansatz from Yang-Baxter equation

: [Prolhac–Evans–Mallick 2009] 
: conjectured alternative 

queues [Martin 2018] 
General : interpolation

s = 0
s = q

s



Thank you for attention!

Special thanks to the 
organizers of the conference


