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I. Symmetric functions as partition 
function of vertex models



Schur symmetric polynomials
 - partition


 - Schur symmetric polynomial


Exercise (Combinatorial formula). 


The polynomial  is equal to the  

partition function - the sum of weights of  

all collections of up-right paths in 


 with boundary conditions  

determined by , where the weight of a path collection 

is the product of the vertex weights

λ = (λ1 ≥ … ≥ λN ≥ 0)

sλ(x1, …, xN) =
det[xλj+N−j

i ]N
i,j=1

∏i<j (xi − xj)

sλ(x1, …, xN)

ℤ≥1 × {1,…, N}

λ

one of possible five-vertex models



Vertex models

Previous vertex weights for  were too simple! They can be much more general:


• We can allow paths to intersect


• There are 6 choices of weights, traditional notation 


• The weights  may depend on the lattice site as , etc.


But, with the dependence on  it is much too general - we lose integrability. 


At a minimum,  should stay the same throughout the lattice.


We focus on the free fermion six vertex model where .

sλ

a1, a2, b1, b2, c1, c2

a1, a2, b1, b2, c1, c2 a1(i, j)

i, j

Δ =
a1a2 + b1b2 − c1c2

2 a1a2b1b2

Δ = 0

Simpler running example. Factorial Schur functions:
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Fully inhomogeneous free fermion six vertex model (our definition)
• Renormalize so that the infinitely often 

vertex has weight 


• Plus free fermion condition, leaves us 
with 4 parameters 

• Organize the parameters by rows and 
columns in the interest of integrability 
(via Yang-Baxter equation)


• Row parameters are variables

1
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From  to factorial Schur functionsFλ

Lemma. 

We will also see  counterparts, which are symmetric rational functions    [Morales-Pak-Panova 2017]Gλ šλ(x ∣ y)

Next: our favorite properties of the symmetric functions Fλ, Gλ



Cauchy identity                    Theorem [ABPW ‘21].  

                                                                   

Proof. Yang-Baxter equation and rewriting of partition function 

Add extra cross vertices, move them to the left,  

then remains only the domain-wall partition function which is  

an explicit product in the free fermion case

∑
λ=(λ1≥…≥λN≥0)

Gλ(w1, …, wT; y; θ1, …, θT; s) Fλ(x1, …, xN; y; r1, …, rN; s)

=
∏1≤i≤ j≤N (r−2

i xi − xj)∏1≤i<j≤N (s−2
i yi − yj)

∏N
i,j=1 (yi − xj)

N

∏
i=1

T

∏
j=1

xi − θ−2
j wj

xi − wj
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Explicit determinantal formulas

1. Double alternant formula for  

2. Biorthogonality 

3. Jacobi-Trudi type formula for  (Macdonald’s “variation”) 

 

4. We also prove a Sergeev-Pragacz type formula for   

like for supersymmetric Schur polynomials (long…)

Fλ

Gλ

Gλ

(Note:  is symmetric up to a simple prefactor)Fλ
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Factorial Schur case

1. Double alternant formula 

2. Biorthogonality 

3. Jacobi-Trudi type formula for  

4. Cauchy identity (new? at least different from [Molev 2009])

šλ

Similar to some det formulas from [Morales-Pak-Panova 2017]



II. From symmetric functions to 
probability distributions



Cauchy identity + positivity  probability⇒
 

                                                                 

∑
λ=(λ1≥…≥λN≥0)

Gλ(w1, …, wT; y; θ1, …, θT; s) Fλ(x1, …, xN; y; r1, …, rN; s)

=
∏1≤i≤ j≤N (r−2

i xi − xj)∏1≤i<j≤N (s−2
i yi − yj)

∏N
i,j=1 (yi − xj)

N

∏
i=1

T

∏
j=1

xi − θ−2
j wj

xi − wj

Define probability distribution on  by normalizing the Cauchy identity:
λ = (λ1 ≥ … ≥ λN ≥ 0)

Lemma.   (and also all vertex weights) under conditionsFλ, Gλ ≥ 0

  and    for all wi < yj < wiθ−2
i < yjs−2

j xi < yj < xir−2
i < yjs−2

j i, j

ℙ(λ) =
1
Z

Fλ(x; y; r; s)Gλ(w; y; θ; s)
More generally, we can consider random  

path ensemble whose probability weights are  

proportional to products of vertex weights


(“Random tableaux”)



An equivalent model of domino tilings, for which we get bulk asymptotics

 (thanks to free 
fermion structure, it’s 
a dimer model!)



Analogy with plane partitions

, ℙ(plane partition P) =
qvolume(P)

Z
0 < q < 1

Z = ∑
P

qvolume(P) =
∞

∏
n=1

1
(1 − qn)n

(measure is uniform, conditioned on the number of boxes)

[MacMahon, 1900s]

[Okounkov-Reshetikhin 2001] 

• Determinantal point process structure, 

based on Schur polynomials


• Bulk (lattice) asymptotic behavior. Pure 

Gibbs states classified by Sheffield (2003)
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III. Free fermions and 
correlations



Bethe Ansatz operators A,B,C,D

• Act in  

 

 

 

• Know how to act in (finite) tensor powers of  

 

• Thanks to the Yang-Baxter equation, satisfy certain quadratic relations, for example:


• Functions  are matrix elements of products of these operators. We use relations to compute explicit formulas

V = ℂ2 = span{e0, e1}

V

Fλ, Gλ

Fλ = ⟨e0 ⊗ e0 ⊗ …, B(rN, xN)…B(r1, x1)eλ⟩[Korepin-Bogoliubov-Izergin 1993; Borodin-P. 2016]
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Bethe Ansatz and correlations

• Fock space is spanned by , where  are semi-infinite subspaces of  - packed to the left, empty to the right


• We define normalized operators  - infinite volume limits of 

eJ J ℤ

Aℤ, Bℤ, Cℤ, Dℤ A, B, C, D

etc

The measure has the form
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Bethe Ansatz and correlations
• Definition. For a subset , the correlation function is the probability .  

It has the form  because it’s a dimer model. But we want  explicitly for asymptotics


• The correlation function is computed by replacing  by the product of annihilation-creation pairs:


•  creates a new arrow at  (if it's there, maps vector to 0)


•  annihilates an arrow at  (if it’s not there, maps vector to 0)


• The operators satisfy the canonical anticommitation relations  (all other anticommutators are zero)


• As opposed to Schur measures [Okounkov 1999], here we don’t know how the operators  commute with .


• Instead, we insert certain generating functions, built from the same Bethe Ansatz operators. Relations follow from YBE

A = {a1, …, am} ℙ[J(λ) ⊃ A]

det[K(ai, aj)]m
i,j=1 K

Iλ

ψa a

ψ*a a

ψaψ*a + ψ*a ψa = 1

ψa, ψ*a Bℤ, Dℤ
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Generating functions and correlations
Define


Theorem [ABPW] (Inhomogeneous Boson-Fermion correspondence).


Theorem. 

follows from commutation relations / YBE + Wick’s determinant
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Correlation kernel - extracted using inhomogeneous orthogonality

Theorem. We have  where the kernel is given byℙ[J(λ) ⊃ {a1, …, am}] = det[K(ai, aj)]m
i,j=1



IV. Asymptotics



Asymptotics in the bulk

• For each point  in the “liquid 
region” there exists a complex 
slope  parametrizing the slope of 
paths


• Around , at the lattice level 
we see a determinantal point 
process depending on sequences 

, 

• Inhomogeneous 2d sine kernel:

(α, τ)

z

(α, τ)

wi, θi; yj, sj i, j ∈ ℤ
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Summary
• Free fermion six vertex model provides multiparameter (inhomogeneous) generalizations  

(4 families of parameters, 2 per each coordinate direction) of:


• Schur polynomials, and also factorial / supersymmetric Schur polynomials


• Schur measures and processes, with double contour integral determinantal structure


• Translation invariant ergodic Gibbs measures ("pure Gibbs states") governed by the extended 
discrete sine kernel


• Technical features:


• Fermionic operators naturally come from the Bethe ansatz operators A,B,C,D


• Inhomogeneous Boson-fermion correspondence


• "Inhomogeneous calculus": Taylor and Laurent series, Cauchy integral formula for extracting 
coefficients (orthogonality)

Thank you! 
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