\$1(2) Operators and Markov Dynamics on Branching Graphs

Leonid Petrov

Department of Mathematics, Northeastern University, Boston, USA Institute for Information Transmission Problems, Moscow, Russia

October 7, 2011

Partitions

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_{\ell(\lambda)} > 0),$$

 $\lambda_i \in \mathbb{Z}$

Partitions

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_{\ell(\lambda)} > 0),$$

 $\lambda_i \in \mathbb{Z}$


```
\#\{\text{boxes that can be added to }\lambda\}
= \#\{\text{boxes that can be deleted from }\lambda\}+1.
```


Content of a box $c(\Box) := \operatorname{column}(\Box) - \operatorname{row}(\Box)$

Content of a box

 $c(\square) := \operatorname{column}(\square) - \operatorname{row}(\square)$

 $x_1,\ldots,x_k:=$ contents of boxes that can be added to λ , $y_1,\ldots,y_{k-1}:=$ contents of boxes that can be removed from λ

 $x_1,\ldots,x_k:=$ contents of boxes that can be added to λ , $y_1,\ldots,y_{k-1}:=$ contents of boxes that can be removed from λ

Kerov's identities ['90s]

$$\sum_{i=1}^{k} x_i - \sum_{j=1}^{k-1} y_j = 0$$
$$\sum_{i=1}^{k} x_i^2 - \sum_{j=1}^{k-1} y_j^2 = 2|\lambda|$$

 $(|\lambda| = \text{number of boxes})$

Kerov's identities ['90s]

$$\sum_{i=1}^{k} x_i - \sum_{j=1}^{k-1} y_j = 0$$
$$\sum_{i=1}^{k} x_i^2 - \sum_{j=1}^{k-1} y_j^2 = 2|\lambda|$$

 $(|\lambda| = \text{number of boxes})$

$$\sum_{i=1}^{k} x_i^0 - \sum_{j=1}^{k-1} y_j^0 = 1$$

Linear Transformations

 $\mathbb{Y} := \mathsf{lattice} \ \mathsf{of} \ \mathsf{all} \ \mathsf{Young} \ \mathsf{diagrams} \ \mathsf{ordered} \ \mathsf{by} \ \mathsf{inclusion}$

 $\mathbb{C}\mathbb{Y}:=$ linear space with basis $\{\underline{\lambda}\}_{\lambda\in\mathbb{Y}}$

Linear Transformations

 $\mathbb{Y} := \mathsf{lattice} \ \mathsf{of} \ \mathsf{all} \ \mathsf{Young} \ \mathsf{diagrams} \ \mathsf{ordered} \ \mathsf{by} \ \mathsf{inclusion}$

 $\mathbb{C}\mathbb{Y}:=$ linear space with basis $\{\underline{\lambda}\}_{\lambda\in\mathbb{Y}}$

Operators in $\mathbb{C}\mathbb{Y}$

$$U^{\circ}\underline{\lambda}:=\sum_{
u=\lambda+\square}\underline{
u},\qquad D^{\circ}\underline{\lambda}:=\sum_{\mu=\lambda-\square}\underline{\mu}$$

Then

$$[D^{\circ}, U^{\circ}] := D^{\circ}U^{\circ} - U^{\circ}D^{\circ} = Id.$$

$$U\underline{\lambda} := \sum_{|y-\lambda|=\square} \sqrt{ig(z+c(\square)ig)ig(z'+c(\square)ig)}\cdot \underline{
u}$$

$$egin{aligned} U \underline{\lambda} &:= \sum_{
u = \lambda + \square} \sqrt{ig(z + c(\square)ig)ig(z' + c(\square)ig)} \cdot \underline{
u} \ D \underline{\lambda} &:= \sum_{
u = \lambda} \sqrt{ig(z + c(\square)ig)ig(z' + c(\square)ig)} \cdot \underline{\mu} \end{aligned}$$

$$\begin{split} U\underline{\lambda} &:= \sum_{\nu = \lambda + \square} \sqrt{ \left(z + c(\square) \right) \left(z' + c(\square) \right)} \cdot \underline{\nu} \\ D\underline{\lambda} &:= \sum_{\mu = \lambda - \square} \sqrt{ \left(z + c(\square) \right) \left(z' + c(\square) \right)} \cdot \underline{\mu} \\ H\underline{\lambda} &:= \left(2|\lambda| + zz' \right) \cdot \underline{\lambda} \\ z, z' &\in \mathbb{C} \quad \text{parameters}. \end{split}$$

$$\begin{split} U\underline{\lambda} &:= \sum_{\nu = \lambda + \square} \sqrt{\left(z + c(\square)\right) \left(z' + c(\square)\right)} \cdot \underline{\nu} \\ D\underline{\lambda} &:= \sum_{\mu = \lambda - \square} \sqrt{\left(z + c(\square)\right) \left(z' + c(\square)\right)} \cdot \underline{\mu} \\ H\underline{\lambda} &:= \left(2|\lambda| + zz'\right) \cdot \underline{\lambda} \\ z, z' &\in \mathbb{C} \quad - \text{ parameters}. \end{split}$$

 $\mathfrak{sl}(2)$ commutation relations (\leftarrow Kerov's identities)

$$[D, U] = H,$$
 $[H, U] = 2U,$ $[H, D] = -2D$

Differential posets [Stanley] Dual graded graphs [Fomin], '80s

Generalize $[D^{\circ}, U^{\circ}] = Id$ for other objects.

Differential posets [Stanley] Dual graded graphs [Fomin], '80s

Generalize $[D^{\circ}, U^{\circ}] = Id$ for other objects.

Branching graphs

 $\mathbb{G} := \bigsqcup_{n=0}^{\infty} \mathbb{G}_n, \quad \mathbb{G}_n - \text{finite}, \quad \mathbb{G}_0 := \{\emptyset\}$ $\kappa > 0 - \text{edge multiplicity function}$

Differential posets [Stanley] Dual graded graphs [Fomin], '80s

Generalize $[D^{\circ}, U^{\circ}] = Id$ for other objects.

Branching graphs

 $\mathbb{G} := \bigsqcup_{n=0}^{\infty} \mathbb{G}_n$, \mathbb{G}_n — finite, $\mathbb{G}_0 := \{\emptyset\}$ $\kappa > 0$ — edge multiplicity function

Operators in CG

$$U^{\circ}\underline{x} := \sum_{y \colon y \searrow x} \kappa(x,y) \cdot \underline{y}, \qquad D^{\circ}\underline{x} := \sum_{z \colon z \nearrow x} \kappa(z,x) \cdot \underline{z}.$$

Operators in \mathbb{CG}

$$U^{\circ}\underline{x} := \sum_{y \colon y \searrow x} \kappa(x,y) \cdot \underline{y}, \qquad D^{\circ}\underline{x} := \sum_{z \colon z \nearrow x} \kappa(z,x) \cdot \underline{z}.$$

Branching graph \mathbb{G} is called r-self-dual (r > 0) iff

$$[D^{\circ}, U^{\circ}] = r \cdot Id.$$

(also more general r-duality is tractable)

(Combinatorial) dimension

 $\dim \lambda := \#\{\text{paths (with weights) from } \varnothing \text{ to } \lambda\}$

(Combinatorial) dimension

 $\dim \lambda := \#\{\text{paths (with weights) from } \emptyset \text{ to } \lambda\}$

Enumerative consequences

For *r*-self-dual branching graphs,

$$\sum_{\lambda\in\mathbb{G}_n}(\dim\lambda)^2=r^nn!.$$

Much more in [Stanley '88, '90], [Fomin '94 and other works].

(Combinatorial) dimension

 $\dim \lambda := \#\{\text{paths (with weights) from } \emptyset \text{ to } \lambda\}$

Enumerative consequences

For *r*-self-dual branching graphs,

$$\sum_{\lambda \in \mathbb{G}_n} (\dim \lambda)^2 = r^n n!.$$

Much more in [Stanley '88, '90], [Fomin '94 and other works].

$$M_n^{U^{\circ}D^{\circ}}(\lambda) := \frac{(\dim \lambda)^2}{r^n n!}$$
 — probability measure on \mathbb{G}_n for all n .

Generalizing $\mathfrak{sl}(2)$ operators

For the Young graph:

$$egin{aligned} U \underline{\lambda} &:= \sum_{
u = \lambda + \square} \sqrt{ig(z + c(\square)ig)ig(z' + c(\square)ig)} \cdot \underline{
u} \ D \underline{\lambda} &:= \sum_{\mu = \lambda - \square} \sqrt{ig(z + c(\square)ig)ig(z' + c(\square)ig)} \cdot \underline{\mu} \ H \lambda &:= (2|\lambda| + zz') \cdot \lambda \end{aligned}$$

Generalizing $\mathfrak{sl}(2)$ operators

For the Young graph:

$$egin{aligned} U \underline{\lambda} &:= \sum_{
u = \lambda + \square} \sqrt{ig(z + c(\square)ig)ig(z' + c(\square)ig) \cdot \underline{
u}} \ D \underline{\lambda} &:= \sum_{\mu = \lambda - \square} \sqrt{ig(z + c(\square)ig)ig(z' + c(\square)ig) \cdot \underline{\mu}} \ H \lambda &:= (2|\lambda| + zz') \cdot \lambda \end{aligned}$$

How to introduce dependence on the box in general?

Ideal branching graphs

 $\mathbb{G} = \textit{lattice of finite order ideals in some poset L} \\ + \text{ an edge multiplicity function } \kappa > 0.$

$$\mu \nearrow \lambda$$
 (connected by an edge) iff $\mu \subset \lambda$ and $|\lambda| = |\mu| + 1$

For the Young graph \mathbb{Y} :

$$L=\mathbb{Z}^2_{>0}$$
, $\kappa\equiv 1$.

Ideal branching graphs

Examples:

- Chain
- Pascal triangle
- Young graph with edge multiplicities:
 - Young (simple edges)
 - Kingman (branching of set partitions)
 - Jack (β)
 - Macdonald (q, t)
- Shifted shapes
- Sim-hook and shifted rim-hook shapes (fixed # of boxes in a rim-hook)
- **1** 3D Young diagrams (= plane partitions)

Definition

Operators U, D, H in \mathbb{CG} are called *Kerov's operators* if

$$U\underline{\lambda} = \sum_{\nu: \nu \searrow \lambda} \kappa(\lambda, \nu) q(\nu/\lambda) \underline{\nu},$$

$$D\underline{\lambda} = \sum_{\mu:\; \mu \nearrow \lambda} \kappa(\mu, \lambda) q(\lambda/\mu)\underline{\mu}$$

for some function $q(\cdot)$ on the underlying poset L

Definition

Operators U, D, H in \mathbb{CG} are called Kerov's operators if

$$U\underline{\lambda} = \sum_{\nu: \nu \searrow \lambda} \kappa(\lambda, \nu) q(\nu/\lambda) \underline{\nu},$$

$$D\underline{\lambda} = \sum_{\mu: \; \mu \nearrow \lambda} \kappa(\mu, \lambda) q(\lambda/\mu)\underline{\mu}$$

for some function $q(\cdot)$ on the underlying poset L

$$2 H\underline{\lambda} = c_{|\lambda|} \cdot \underline{\lambda} \text{ for all } \lambda \in \mathbb{G}$$

Definition

Operators U, D, H in \mathbb{CG} are called Kerov's operators if

$$U\underline{\lambda} = \sum_{\nu: \nu \searrow \lambda} \kappa(\lambda, \nu) q(\nu/\lambda) \underline{\nu},$$

$$D\underline{\lambda} = \sum_{\mu: \; \mu \nearrow \lambda} \kappa(\mu, \lambda) q(\lambda/\mu)\underline{\mu}$$

for some function $q(\cdot)$ on the underlying poset L

- $2 H\underline{\lambda} = c_{|\lambda|} \cdot \underline{\lambda} \text{ for all } \lambda \in \mathbb{G}$
- **1** These operators satisfy $\mathfrak{sl}(2)$ relations

$$[D, U] = H,$$
 $[H, U] = 2U,$ $[H, D] = -2D$

 (\cdot,\cdot) — standard inner product in \mathbb{CG} : $(\underline{\lambda},\underline{\mu}) = \delta_{\lambda,\mu}$.

$$(\cdot,\cdot)$$
 — standard inner product in \mathbb{CG} : $(\underline{\lambda},\underline{\mu}) = \delta_{\lambda,\mu}$.

$$H\underline{\lambda} = (2|\lambda| + \theta)\underline{\lambda}$$
, where $\theta = (H\underline{\varnothing}, \underline{\varnothing})$; assume $\theta > 0$

$$(\cdot,\cdot)$$
 — standard inner product in \mathbb{CG} : $(\underline{\lambda},\underline{\mu}) = \delta_{\lambda,\mu}$.

$$H\underline{\lambda}=(2|\lambda|+ heta)\underline{\lambda}$$
, where $heta=(H\underline{\varnothing},\underline{\varnothing})$; assume $heta>0$

"Enumerative" consequences

$$\sum_{\lambda\in\mathbb{G}_n}(\mathit{U}^n\underline{\varnothing},\underline{\lambda})(\mathit{D}^n\underline{\lambda},\underline{\varnothing})= heta(heta+1)\dots(heta+n-1)n!=:(heta)_n n!$$

 (\cdot,\cdot) — standard inner product in \mathbb{CG} : $(\underline{\lambda},\mu)=\delta_{\lambda,\mu}$.

$$H\underline{\lambda} = (2|\lambda| + \theta)\underline{\lambda}$$
,

 $H\lambda = (2|\lambda| + \theta)\lambda$, where $\theta = (H\varnothing, \varnothing)$;

assume $\theta > 0$

"Enumerative" consequences

$$\sum_{\lambda\in\mathbb{G}_n}(U^n\underline{\varnothing},\underline{\lambda})(D^n\underline{\lambda},\underline{\varnothing})= heta(heta+1)\dots(heta+n-1)n!=:(heta)_n n!$$

$$r^n \longrightarrow (\theta)_n$$
 deformation

Kerov's operators and probability measures

Probability measure on \mathbb{G}_n for all n

$$M_n^{UD}(\lambda) = \frac{1}{(\theta)_n n!} (U^n \underline{\varnothing}, \underline{\lambda}) (D^n \underline{\lambda}, \underline{\varnothing}) = \frac{(\dim \lambda)^2}{(\theta)_n n!} \prod_{b \in \lambda} q(b)^2$$

Problem

Find all Kerov's operators on a given ideal graph

Problem

Find all Kerov's operators on a given ideal graph

 $(\mathbb{G} - \text{chain} \Rightarrow \text{irreducible lowest weight } \mathfrak{sl}(2)-\text{modules})$

Problem

Find all Kerov's operators on a given ideal graph

 $(\mathbb{G} - \text{chain} \Rightarrow \text{irreducible lowest weight } \mathfrak{sl}(2)-\text{modules})$

Often Kerov's operators are parametrized by several complex parameters

Problem

Find all Kerov's operators on a given ideal graph

 $(\mathbb{G} - \text{chain} \Rightarrow \text{irreducible lowest weight } \mathfrak{sl}(2)-\text{modules})$

Often Kerov's operators are parametrized by several complex parameters

UD-self-dual graph G

For \mathbb{G} to have Kerov's operators,

 $[D^{\circ}, U^{\circ}]$ must be a diagonal operator.

(more general than Stanley-Fomin's differentiality/duality).

Unified characterization of many interesting measures

• Pascal — Bernoulli scheme with Beta priors (no U°, D°)

- Pascal Bernoulli scheme with Beta priors (no U°, D°)
- Young graph with edge multiplicities:
 - Young (simple edges) z-measures on partitions [Kerov, Olshanski, Vershik '93]

- Pascal Bernoulli scheme with Beta priors (no U°, D°)
- Young graph with edge multiplicities:
 - Young (simple edges) z-measures on partitions [Kerov, Olshanski, Vershik '93]
 - Kingman two-parameter Poisson-Dirichlet measures [Kingman '70s, Pitman '92]

- Pascal Bernoulli scheme with Beta priors (no U°, D°)
- Young graph with edge multiplicities:
 - Young (simple edges) z-measures on partitions [Kerov, Olshanski, Vershik '93]
 - Kingman two-parameter Poisson-Dirichlet measures [Kingman '70s, Pitman '92]
 - Jack (β) z-measures with Jack parameter [Kerov '00]

- **1** Pascal Bernoulli scheme with Beta priors (no U°, D°)
- Young graph with edge multiplicities:
 - Young (simple edges) z-measures on partitions [Kerov, Olshanski, Vershik '93]
 - Kingman two-parameter Poisson-Dirichlet measures [Kingman '70s, Pitman '92]
 - Jack (β) z-measures with Jack parameter [Kerov '00]
 - Macdonald (q,t) no U,D, but $[D^{\circ},U^{\circ}]=rac{1-q}{1-t}\cdot Id$

- **1** Pascal Bernoulli scheme with Beta priors (no U°, D°)
- Young graph with edge multiplicities:
 - Young (simple edges) z-measures on partitions [Kerov, Olshanski, Vershik '93]
 - Kingman two-parameter Poisson-Dirichlet measures [Kingman '70s, Pitman '92]
 - Jack (β) z-measures with Jack parameter [Kerov '00]
 - Macdonald (q, t) no U, D, but $[D^{\circ}, U^{\circ}] = \frac{1-q}{1-t} \cdot Id$
- 3 Shifted shapes [Borodin '97]

- **1** Pascal Bernoulli scheme with Beta priors (no U°, D°)
- Young graph with edge multiplicities:
 - Young (simple edges) z-measures on partitions [Kerov, Olshanski, Vershik '93]
 - Kingman two-parameter Poisson-Dirichlet measures [Kingman '70s, Pitman '92]
 - Jack (β) z-measures with Jack parameter [Kerov '00]
 - Macdonald (q, t) no U, D, but $[D^{\circ}, U^{\circ}] = \frac{1-q}{1-t} \cdot Id$
- 3 Shifted shapes [Borodin '97]
- Rim-hook, shifted rim-hook natural analogues of zand Borodin's measures with many parameters

- **1** Pascal Bernoulli scheme with Beta priors (no U°, D°)
- Young graph with edge multiplicities:
 - Young (simple edges) z-measures on partitions [Kerov, Olshanski, Vershik '93]
 - Kingman two-parameter Poisson-Dirichlet measures [Kingman '70s, Pitman '92]
 - Jack (β) z-measures with Jack parameter [Kerov '00]
 - Macdonald (q, t) no U, D, but $[D^{\circ}, U^{\circ}] = \frac{1-q}{1-t} \cdot Id$
- Shifted shapes [Borodin '97]
- Rim-hook, shifted rim-hook natural analogues of zand Borodin's measures with many parameters
- 3 D Young diagrams nothing

- **1** Pascal Bernoulli scheme with Beta priors (no U°, D°)
- Young graph with edge multiplicities:
 - Young (simple edges) z-measures on partitions [Kerov, Olshanski, Vershik '93]
 - Kingman two-parameter Poisson-Dirichlet measures [Kingman '70s, Pitman '92]
 - Jack (β) z-measures with Jack parameter [Kerov '00]
 - Macdonald (q, t) no U, D, but $[D^{\circ}, U^{\circ}] = \frac{1-q}{1-t} \cdot Id$
- 3 Shifted shapes [Borodin '97]
- Rim-hook, shifted rim-hook natural analogues of zand Borodin's measures with many parameters
- 3D Young diagrams nothing ☺

Remark about Jack (β) z-measures

```
[Kerov '00], [Borodin–Olshanski '05], [Strahov, '10: \beta = 1 and 4]
```

The measures on partitions arising from the Young graph with Jack edge multiplicities are natural discrete analogues of:

Remark about Jack (β) z-measures

[Kerov '00], [Borodin–Olshanski '05], [Strahov, '10: $\beta = 1$ and 4]

The measures on partitions arising from the Young graph with Jack edge multiplicities are natural discrete analogues of:

β random matrix ensembles

N-particle random point configurations on $\mathbb R$ with joint density

const
$$\cdot \prod_{i=1}^{N} \mu(dx_i) \cdot \prod_{1 \le i \le j \le N} |x_i - x_j|^{\beta}$$
.

Young graph corresponds to $\beta = 2$.

 Characterize various interesting measures on partitions in a unified way

- Characterize various interesting measures on partitions in a unified way
- Define Markov dynamics associated with these measures

- Characterize various interesting measures on partitions in a unified way
- Define Markov dynamics associated with these measures
- Oerive properties of dynamics in a unified way

- Characterize various interesting measures on partitions in a unified way
- Define Markov dynamics associated with these measures
- Oerive properties of dynamics in a unified way
- On an abstract level diagonalize the generator of dynamics

- Characterize various interesting measures on partitions in a unified way
- Define Markov dynamics associated with these measures
- Oerive properties of dynamics in a unified way
- On an abstract level diagonalize the generator of dynamics
- In concrete examples go much further (use Fock space structure):
 - Young graph determinantal dynamics
 - Schur graph of shifted shapes determinantal random point fiels + Pfaffian dynamics

Down and up Markov transition kernels on $\mathbb G$

Down Markov transition kernels

As a branching graph, \mathbb{G} comes with a natural family of *down Markov transition kernels* $p_{n,n-1}^{\downarrow}$ from \mathbb{G}_n to \mathbb{G}_{n-1} :

$$p_{n,n-1}^{\downarrow}(\lambda,\mu) := \frac{\kappa(\mu,\lambda)\dim\mu}{\dim\lambda},$$

where $|\mu| = n - 1$, $|\lambda| = n$.

$$\sum_{\mu \colon |\mu|=n-1} p_{n,n-1}^{\downarrow}(\lambda,\mu) = 1.$$

(randomly remove one element from λ)

Down and up Markov transition kernels on $\mathbb G$

Fact ($\Leftarrow \mathfrak{sl}(2)$ commutation relations)

The measures $\{M_n^{UD}\}$ are compatible with the down transition kernel $p_{n,n-1}^{\downarrow}$:

$$M_n^{UD} \circ p_{n,n-1}^{\downarrow} = M_{n-1}^{UD},$$

i.e.,

$$\sum_{\lambda \in \mathbb{G}_n} M_n^{UD}(\lambda) p_{n,n-1}^{\downarrow}(\lambda,\mu) = M_{n-1}^{UD}(\mu).$$

(random removal preserves measures M_n^{UD})

Down and up Markov transition kernels on G

Up Markov transition kernels

There are up Markov transition kernels $p_{n,n+1}^{\uparrow}$ from \mathbb{G}_n to \mathbb{G}_{n+1} :

$$p_{n,n+1}^{\uparrow}(\lambda,
u):=rac{M_{n+1}^{UD}(
u)}{M_{n}^{UD}(\lambda)}p_{n+1,n}^{\downarrow}(
u,\lambda),$$

where
$$|\lambda| = n$$
, $|\nu| = n + 1$.

Down and up Markov transition kernels on $\mathbb G$

Up Markov transition kernels

There are up Markov transition kernels $p_{n,n+1}^{\uparrow}$ from \mathbb{G}_n to \mathbb{G}_{n+1} :

$$p_{n,n+1}^{\uparrow}(\lambda,
u):=rac{M_{n+1}^{UD}(
u)}{M_{n}^{UD}(\lambda)}p_{n+1,n}^{\downarrow}(
u,\lambda),$$

where $|\lambda| = n$, $|\nu| = n + 1$.

They depend on $\{M_n^{UD}\}$ and

$$M_n^{UD} \circ p_{n,n+1}^{\uparrow} = M_{n+1}^{UD}.$$

(randomly add an element to λ in a way preserving M_n)

Mixed measures

From $\{M_n^{UD}\}$ to measures on the whole graph $\mathbb G$

$$egin{aligned} extit{M}^{ extit{UD}}_{\xi}(\lambda) &:= (1-\xi)^{ heta} \xi^{|\lambda|} rac{(heta)_{|\lambda|}}{|\lambda|!} \cdot extit{M}^{ extit{UD}}_{|\lambda|}(\lambda) \ &= (1-\xi)^{ heta} \xi^{|\lambda|} \left(rac{\dim \lambda}{|\lambda|!}
ight)^2 \prod_{b \in \lambda} q(b)^2 \ &= "(1-\xi)^{ heta} \left(e^{\sqrt{\xi}U} \underline{arnothing}, \underline{\lambda}
ight) \left(e^{\sqrt{\xi}D} \underline{\lambda}, \underline{arnothing}
ight) \end{aligned}$$

Young diagrams

From $\{M_n^{UD}\}$ to measures on the whole graph \mathbb{G}

$$egin{aligned} extit{M}^{ extit{UD}}_{\xi}(\lambda) &:= (1-\xi)^{ heta} \xi^{|\lambda|} rac{(heta)_{|\lambda|}}{|\lambda|!} \cdot extit{M}^{ extit{UD}}_{|\lambda|}(\lambda) \ &= (1-\xi)^{ heta} \xi^{|\lambda|} \left(rac{\dim \lambda}{|\lambda|!}
ight)^2 \prod_{b \in \lambda} q(b)^2 \ &" = "(1-\xi)^{ heta} \left(e^{\sqrt{\xi}U} \underline{arnothing}, \underline{\lambda}
ight) \left(e^{\sqrt{\xi}D} \underline{\lambda}, \underline{arnothing}
ight) \end{aligned}$$

Example: Chain $\mathbb{G} = \mathbb{Z}_{\geq 0}$

$$M_{\xi}^{UD}(n) = (1-\xi)^{\theta} \xi^n \frac{(\theta)_n}{n!} := \pi_{\theta,\xi}(n).$$

Example: Chain $\mathbb{G} = \mathbb{Z}_{\geq 0}$

Birth and death process $\mathbf{n}_{\theta,\xi}$ preserving $\pi_{\theta,\xi}$ on $\mathbb{Z}_{\geq 0}$

$$\mathsf{Prob}\Big(\mathsf{n}_{ heta,\xi}(t+dt)=n-1\mid \mathsf{n}_{ heta,\xi}(t)=n\Big)=rac{n}{1-\xi}+o(t);$$

$$\mathsf{Prob}\Big(\mathsf{n}_{ heta,\xi}(t+dt)=n+1\mid \mathsf{n}_{ heta,\xi}(t)=n\Big)=rac{\xi(n+ heta)}{1-\xi}+o(t)$$

Markov process λ_{ξ} preserving M_{ξ}^{UD} (for general \mathbb{G})

- $\mathbf{0} |\lambda_{\xi}(t)| \equiv \mathsf{n}_{\theta,\xi}(t)$
- **2** boxes are added/deleted to/from λ_{ξ} according to $p_{n,n+1}^{\uparrow}$ and $p_{n,n-1}^{\downarrow}$

Averages w.r.t. M_{ξ}^{UD}

Operator G_{ε}

Let

$$G_{\xi} := e^{\sqrt{\xi}U}(1-\xi)^{\frac{H}{2}}e^{-\sqrt{\xi}D}.$$

It is a *unitary* operator in $\ell^2(\mathbb{G})$ (:= \mathbb{CG} with standard inner product)

Averages w.r.t. M_{ξ}^{UD}

Operator G_{ε}

Let

$$G_{\varepsilon}:=e^{\sqrt{\xi}U}(1-\xi)^{\frac{H}{2}}e^{-\sqrt{\xi}D}.$$

It is a *unitary* operator in $\ell^2(\mathbb{G})$ (:= \mathbb{CG} with standard inner product)

Proposition

$$\langle f \rangle_{M_{\xi}^{UD}} := \sum_{\lambda \in \mathbb{C}} f(\lambda) M_{\xi}^{UD}(\lambda) = (G_{\xi}^{-1} f G_{\xi} \underline{\varnothing}, \underline{\varnothing}).$$

Averages w.r.t. M_{ξ}^{UD}

Operator G_{ε}

Let

$$G_{\xi} := e^{\sqrt{\xi}U}(1-\xi)^{\frac{H}{2}}e^{-\sqrt{\xi}D}.$$

It is a *unitary* operator in $\ell^2(\mathbb{G})$ (:= \mathbb{CG} with standard inner product)

Proposition

$$\langle f \rangle_{M_{\xi}^{UD}} := \sum_{\lambda \in \mathbb{G}} f(\lambda) M_{\xi}^{UD}(\lambda) = (G_{\xi}^{-1} f G_{\xi} \underline{\varnothing}, \underline{\varnothing}).$$

Remark: Fock space structure of Young and Schur graphs allow to study M_{ε}^{UD} and dynamics λ_{ξ} in great detail

Generator of dynamics λ_{ε}

Generator acting in $\ell^2(\mathbb{G}, M_{\varepsilon}^{UD})$

$$(Af)(\lambda) := \sum_{
ho \in \mathbb{G}} Q_{\lambda,
ho} f(
ho),$$
 $Q_{\lambda,
ho}$ — jump rates of $oldsymbol{\lambda}_{\xi}.$

Generator of dynamics $oldsymbol{\lambda}_{\xi}$

Generator acting in $\ell^2(\mathbb{G},M^{UD}_{\xi})$

$$(Af)(\lambda) := \sum_{
ho \in \mathbb{G}} Q_{\lambda,
ho} f(
ho),$$
 $Q_{\lambda,
ho}$ — jump rates of $oldsymbol{\lambda}_{\xi}.$

Isometry $\ell^2(\mathbb{G},M^{UD}_{\xi})\longleftrightarrow \ell^2(\mathbb{G})$

$$\ell^2(\mathbb{G},M_\xi^{UD})\ni f\longleftrightarrow f\cdot (M_\xi^{UD})^{\frac{1}{2}}\in \ell^2(\mathbb{G})$$

Generator of dynamics λ_{ξ}

Generator acting in $\ell^2(\mathbb{G},M^{UD}_{\xi})$

$$(Af)(\lambda) := \sum_{
ho \in \mathbb{G}} Q_{\lambda,
ho} f(
ho),$$
 $Q_{\lambda,
ho}$ — jump rates of $oldsymbol{\lambda}_{\xi}.$

Isometry $\ell^2(\mathbb{G},M^{UD}_{arepsilon})\longleftrightarrow\ell^2(\mathbb{G})$

$$\ell^2(\mathbb{G},M_\xi^{UD})\ni f\longleftrightarrow f\cdot (M_\xi^{UD})^{\frac{1}{2}}\in \ell^2(\mathbb{G})$$

operator A in $\ell^2(\mathbb{G},M^{UD}_{\mathcal{E}})\longleftrightarrow$ operator B in $\ell^2(\mathbb{G})$

Generator of dynamics λ_{ξ}

Generator acting in $\ell^2(\mathbb{G})$

$$B = -\frac{1}{2}G_{\xi}(H - \theta)G_{\xi}^{-1}.$$

Generator of dynamics $oldsymbol{\lambda}_{\xi}$

Generator acting in $\ell^2(\mathbb{G})$

$$B=-\frac{1}{2}G_{\xi}\left(H-\theta\right)G_{\xi}^{-1}.$$

Spectrum of B in $\ell^2(\mathbb{G})$

Eigenvalue (-n), where $n = 0, 1, 2, \ldots$, with multiplicity $\#\mathbb{G}_n$.

Generator of dynamics $oldsymbol{\lambda}_{\xi}$

Generator acting in $\ell^2(\mathbb{G})$

$$B=-\frac{1}{2}G_{\xi}\left(H-\theta\right)G_{\xi}^{-1}.$$

Spectrum of B in $\ell^2(\mathbb{G})$

Eigenvalue (-n), where n = 0, 1, 2, ..., with multiplicity $\#\mathbb{G}_n$.

Eigenfunctions of B in $\ell^2(\mathbb{G})$

Let $\mathfrak{F}_{\lambda}:=\mathit{G}_{\varepsilon}\underline{\lambda}$ (for all $\lambda\in\mathbb{G}$), then

$$B\mathfrak{F}_{\lambda} = -|\lambda|\mathfrak{F}_{\lambda}, \qquad \lambda \in \mathbb{G}.$$

Diagonalization of the generator

Isometry $\ell^2(\mathbb{G}) \longleftrightarrow \ell^2(\mathbb{G}, M_{\mathcal{E}}^{UD})$

functions \mathfrak{F}_{λ} in $\ell^2(\mathbb{G})$

functions

$$\mathfrak{M}_{\lambda} := \left(rac{\sqrt{\xi}}{1-\xi}
ight)^{|\lambda|} \left(\prod_{b \in \lambda} q(b)
ight) \cdot \mathfrak{F}_{\lambda} \cdot (extstyle M_{\xi}^{ extstyle UD})^{-rac{1}{2}}$$

in
$$\ell^2(\mathbb{G}, M_{\varepsilon}^{UD})$$

Explicit formula/definition of \mathfrak{M}_{λ}

(does not require the existence of G_{ξ})

Explicit formula/definition of \mathfrak{M}_{λ}

(does not require the existence of G_{ε})

$$egin{aligned} \mathfrak{M}_{\lambda}(
ho) := & \sum_{\mu \subseteq \lambda} \left(rac{\xi}{\xi-1}
ight)^{|\lambda|-|\mu|} \left(\prod_{b \in \lambda/\mu} q(b)^2
ight) imes \ & imes rac{|
ho|!}{(|\lambda|-|\mu|)!(|
ho|-|\mu|)!} rac{\dim(\mu,\lambda)\dim(\mu,
ho)}{\dim
ho} \end{aligned}$$

where

 $\dim(\mu, \lambda) := \text{the number of paths (with weights)}$ from μ to λ .

Functions \mathfrak{M}_{λ}

① Diagonalize the generator of the Markov dynamics λ_{ξ} : $A\mathfrak{M}_{\lambda} = -|\lambda|\mathfrak{M}_{\lambda}, \ \lambda \in \mathbb{G}$

Functions \mathfrak{M}_{λ}

- Diagonalize the generator of the Markov dynamics λ_{ξ} : $A\mathfrak{M}_{\lambda} = -|\lambda|\mathfrak{M}_{\lambda}, \ \lambda \in \mathbb{G}$
- $\textbf{ 2 Form a (Hilbert space) basis in } \ell^2(\mathbb{G},M^{\mathit{UD}}_{\xi})$

Functions \mathfrak{M}_{λ}

- ① Diagonalize the generator of the Markov dynamics λ_{ξ} : $A\mathfrak{M}_{\lambda} = -|\lambda|\mathfrak{M}_{\lambda}, \ \lambda \in \mathbb{G}$
- **2** Form a (Hilbert space) basis in $\ell^2(\mathbb{G}, M_\xi^{UD})$
- 3 Form an orthogonal basis:

$$(\mathfrak{M}_{\lambda},\mathfrak{M}_{\mu})_{\mathcal{M}^{UD}_{\xi}}=\delta_{\lambda,\mu}rac{\xi^{|\lambda|}}{(1-\xi)^{2|\lambda|}}\prod_{b\in\lambda}q(b)^{2}.$$

Example: Chain $\mathbb{G} = \mathbb{Z}_{\geq 0}$. Meixner polynomials

$$\mathfrak{M}_{n}(x) = \sum_{k=0}^{n} \left(\frac{\xi}{\xi - 1}\right)^{n-k} {n \choose k} \frac{\Gamma(\theta + n)}{\Gamma(\theta + k)} \cdot x(x - 1) \dots (x - k + 1).$$

— monic Meixner orthogonal polynomials.

Example: Chain $\mathbb{G} = \mathbb{Z}_{\geq 0}$. Meixner polynomials

$$\mathfrak{M}_{n}(x) = \sum_{k=0}^{n} \left(\frac{\xi}{\xi - 1}\right)^{n-k} \binom{n}{k} \frac{\Gamma(\theta + n)}{\Gamma(\theta + k)} \cdot x(x - 1) \dots (x - k + 1).$$

— monic Meixner orthogonal polynomials.

$$(\mathfrak{M}_n, \mathfrak{M}_m)_{\pi_{\theta,\xi}} = \delta_{n,m} \frac{\xi^n n! (\theta)_n}{(1-\xi)^{2n}}$$

Example: Chain $\mathbb{G} = \mathbb{Z}_{\geq 0}$. Meixner polynomials

$$\mathfrak{M}_{n}(x) = \sum_{k=0}^{n} \left(\frac{\xi}{\xi - 1}\right)^{n-k} \binom{n}{k} \frac{\Gamma(\theta + n)}{\Gamma(\theta + k)} \cdot x(x - 1) \dots (x - k + 1).$$

— monic Meixner orthogonal polynomials.

$$(\mathfrak{M}_n, \mathfrak{M}_m)_{\pi_{\theta,\xi}} = \delta_{n,m} \frac{\xi^n n! (\theta)_n}{(1-\xi)^{2n}}$$

 $\mathbb{G} = \mathbb{Y}$ — Meixner symmetric functions [Olshanski '10, '11]

Characterization of Meixner polynomials \mathfrak{M}_n

 \mathfrak{M}_n (n = 0, 1, ...) are the unique polynomials such that

$$\mathfrak{M}_n = x^n + \text{lower degree terms}$$

Characterization of Meixner polynomials \mathfrak{M}_n

 \mathfrak{M}_n (n = 0, 1, ...) are the unique polynomials such that

- 2 These polynomials are eigenfunctions of our generator:

$$A\mathfrak{M}_n = -n \cdot \mathfrak{M}_n, \qquad n = 0, 1, \dots$$

Final remarks

The general-case functions \mathfrak{M}_{λ} on \mathbb{G} can be characterized in a similar manner.

Final remarks

The general-case functions \mathfrak{M}_{λ} on \mathbb{G} can be characterized in a similar manner.

Operators U° , D° (in particular, on the (q,t)-Young graph) gives rise to similar dynamics. There is explicit diagonalization. For the chain $\mathbb{G}=\mathbb{Z}_{\geq 0}$ — monic Charlier orthogonal polynomials (w.r.t. Poisson weight).