
Spin deformation of -Whittaker 
polynomials and  Whittaker functions

q
𝔤𝔩N

Leonid Petrov

University of Virginia and IITP

joint works with Alexey Bufetov, Matteo Mucciconi  
https://arxiv.org/abs/2003.14260  
https://arxiv.org/abs/1905.06815  
https://arxiv.org/abs/1712.04584

April 13, 2020

https://arxiv.org/abs/2003.14260
https://arxiv.org/abs/1905.06815
https://arxiv.org/abs/1712.04584


1. Spin -Whittaker polynomials were originally introduced by Borodin and 
Wheeler (2017). We discovered a “better” version which satisfies the usual 
properties: Cauchy identity, symmetry, combinatorial formula, plus certain 
eigenoperators. They follow from Yang-Baxter equation and orthogonality 
relations for spin Hall-Littlewood polynomials. 

2. In the limit , we get new spin Whittaker functions indexed by 
interlacing real arrays. They also satisfy the limits of the usual properties. 
Plus, they are eigenfunctions of a deformed quantum Toda Hamiltonian.
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“Abstract”



Summary of results:  
Spin q-Whittaker 

polynomials

Notation (q-Pocchammer)



Spin -Whittaker polynomials - “combinatorial formula"q

0 ≤ λk+1 ≤ μk ≤ λk ≤ …μ1 ≤ λ1, λi, μi ∈ ℤ

(*)
(this is a 

polynomial in )x

😁

We made a typo implementing  
and wrote (*) instead of the correct 
expression. But surprisingly (*) leads 
to symmetric polynomials satisfying 
nice properties - that is how our sqW 
polynomials were discovered.

𝔽BW
λ/μBorodin-Wheeler’s version (2017)

This is a symmetric polynomial in 
, which is a nontrivial factx1, …, xn

(1) ≺ (2,1) ≺ (4,2,0) ≺ (4,3,2) ≺ (5,3,2,1,0)



Brief history of spin deformations (omitting probabilistic applications & combinatorics)
The starting point is the spin Hall-Littlewood symmetric rational functions

(1) : the classical Hall-Littlewood polynomials. Yang-Baxter / vertex model picture 
appeared in Tsilevich (2005), further explored by Wheeler and Zinn Justin (2014+).


(2) : Bethe Ansatz eigenfunctions of ASEP (Schutz 1990s, Tracy-Widom 2007+).


(3) In a scaling , they are Bethe Ansatz eigenfunctions of the stochastic q-
Boson dual to q-TASEP (Sasamoto-Wadati 1998; Borodin-Corwin-Sasamoto 2012, 
Borodin-Corwin-P.-Sasamoto 2013).


(4) q-TASEP / q-Boson generalize to q-Hahn TASEP / q-Hahn Boson (Povolotsky 2013; 
Corwin 2014).


(5) The fully general spin Hall-Littlewood polynomials are eigenfunctions of this system and 
of a yet more general stochastic higher spin six vertex model (Borodin-Corwin-P.-
Sasamoto 2014, Corwin-P. 2015). 


(6) Vertex model construction and connections to Yang-Baxter due to Borodin (2014).


(7) Spin q-Whittaker polynomials arise as fusion + change of variables from the spin Hall-
Littlewood polynomials (Borodin-Wheeler 2017).

s = 0

s = 1/ t

u = sũ, s2 = 0



Properties

(1)

(2) Cauchy identity

Example  - -binomial theoremN = 1, k = 1 q
Compare with Macdonald case,  
also -binomial theoremq

Compare with Borodin-Wheeler (2017): q-Gauss 
summation formula. In our setting we get a similar 
identity for , N = 2 k = 1

Any relation to Cauchy identity for interpolation 
Macdonald polynomials (Olshanski 2017)?



-difference operators (  maps  to )q Tq,x f(x) f(qx)

In the spin deformation the situation is more mysterious. First of all, . 

Next, both of them are conjugations of the first order q-Whittaker operators:

[𝔇1, 𝔇1] = 0

Same conjugations of the q-Whittaker operators are not diagonal in the spin q-Whittaker poly’s.

At , the sqW polynomials become the -Whittaker polynomials which possess 
higher order eigenoperators:

s = 0 q
Compare to q-Whittaker situation



At , the q-Whittaker orthogonality is known, and it follows from 
the presence of many self-adjoint eigenoperators for Macdonald 
polynomials (whose eigenvalues separate the polynomials). 


For , this is the statement of orthogonality of characters of 
the unitary groups .


Both sqW eigenoperators  are self-adjoint with respect to , 
but their eigenvalues do not separate labels .

s = 0

q = s = 0
U(N )

𝔇1, 𝔇1 mq,s
λ

Conjectural torus orthogonality



Summary of results:  
Spin Whittaker functions

Notation (Gauss hypergeometric function, Pochhammer symbol)



Limit transitions sqW  sW  W→ → Theorem (Mucciconi-P. 2020)

Here  is the spin Whittaker 
function, which is symmetric in , 
depends on  and on a parameter .

𝔣X1,…,XN

Xi
LN S

Reduction to the usual  Whittaker functions, 𝔤𝔩N S → + ∞
Conjecture (Mucciconi-P. 2020, 
holds modulo decay estimates)

Whittaker symmetric functions 
(Kostant, Givental, Bump, Stade, 
Gerasimov-Lebedev-Oblezin, Corwin-
O’Connell-Seppalainen-Zygouras,…)



Interlacing 1 ≤ Lk,k ≤ Lk−1,k−1 ≤ Lk,k−1 ≤ … ≤ Lk−1,1 ≤ Lk,1

Definition.

Definition of spin Whittaker functions via “combinatorial 
formula” (or “Givental integral”)

Examples.

“Dual” functions.



Properties

(1)

(3) Difference eigenoperators (       - shift by 1)

(2) Cauchy  identity, M ≥ N

interlacing  
array 

interlacing  
array 



(4) Deformed quantum Toda (scaling limit of Pieri rules, similar to            

                                        [Gerasimov-Lebedev-Oblezin 2011-12])

Theorem.Additive variables ui

Remark. For  we get the usual  quantum Toda HamiltonianS → + ∞ 𝔤𝔩N

(5) Conjectural “weak” orthogonality with deformed Sklyanin measure



Probabilistic 
applications



Discrete case (spin q-Whittaker 
processes)

q-Hahn TASEP

q-
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(Bijectivised) Yang-Baxter equation provides (two different) discrete time Markov 
dynamics on interlacing arrays increasing the parameter . 

Under one of the dynamics, the leftmost coordinates  evolve as the q-Hahn 
TASEP [Povolotsky 2013, Corwin 2014, …] 

Under the other dynamics, the rightmost coordinates  evolve as the q-Hahn 
PushTASEP (or, very similarly, as the stochastic  vertex model)  
[Corwin-Matveev-P. 2018, Bufetov-Mucciconi-P. 2019]


For both, difference eigenoperators on sqW polynomials give probabilistic information 
similarly to [Borodin-Corwin 2011].

t

λ(k)
k − k

λ(k)
1 + k

4ϕ3

q-Hahn TASEP



Continuous case (spin Whittaker processes)

Define similarly a process based on the spin Whittaker functions

X = (X1, …, XN)
Y = (Y1, …, YT)

Theorem (Mucciconi-P. 2020). 

The marginals  have the same distribution as the strict-weak beta polymer 
model  of [Barraquand-Corwin 2015].


The marginals  have the same distribution as the “weird” beta polymer 
model  of [Corwin-Matveev-P. 2018].

Lk,k(T )−1

Z(k, T )

Lk,1(T )−1

Z̃(k, T )

Both polymer models arise as  limits of the q-Hahn particle systems.


The “weird” model as  also reduces to the more usual log-gamma polymer model.

The strict-weak beta polymer reduces to the strict-weak log-gamma polymer.

q → 1

S → ∞

We also have Markov dynamics on spin Whittaker 
processes which increase the parameter .T



Beta polymers
Strict-weak beta polymer

Another beta polymer-type model - a random recursion

Where NBB is a random 
variable on [0,1] with density



The role of the  
Yang-Baxter equation 

 
 (mostly in the Schur  case)q = s = 0



Goal.  

Get many properties (symmetry, Cauchy 
identities) of Schur polynomials via Yang-
Baxter equation, starting from essentially 
the combinatorial formula (2)

sλ(u1, …, uN) = ∑
T∈SSYT(λ)

xT (2)

For simplicity, restrict to Schur 
polynomials which are most well-known 
symmetric functions in the scheme

, 


  

sλ(u1, …, uN) =
det[uλj+N−j

i ]N
i,j=1

det[uN−j
i ]n

i,j=1
λ = (λ1 ≥ … ≥ λN), λi ∈ ℤ≥0 .

(1)

Schur polynomials (  degenerations of spin q-Whittaker polynomials)q = s = 0



Combinatorial formula for Schur polynomials via a vertex model

Lattice paths in the half-quadrant with weights

, where  paths 
start on the left
uj j

1i1+j1=i2+j2 1i1≥j2 uj2

At the red diagonal, all paths must turn with weight 1.
u1

u2

u3

u4

u5

u6

At each level we read off a partition by 

.


Top partition is .

Path ensembles are in bijection with 

semistandard tableaux.

λi − λi+1 = #{paths through i-th vertical edge}
(5,3,2,1,0)



, where  paths 
start on the left
uj j 1i1+j1=i2+j2 1i1≥j2 uj2

Exercise.  

sλ(u1, …, uN) = ∑
path ensembles with top row λ

∏vertex weights

Example in the picture:     

Weight of the picture:       

s(5,3,2,1,0)(u1, u2, u3, u4, u5)

u1u2
2u3

3u3
4u2

5



x

x

y

y

Yang-Baxter equations (all paths up-right)

Cross vertex weights

 Rx,y(i1, j1; i2, j2) = 1i1+j1=i2+j2 1i1≥j2(y/x) j2 (1 − y/x 1i1>j2)

1i1+j1=i2+j2 1i1≥j2 xj2 1xj

x yx y

y x



x

x

y

y
x yx y

y x

Example (a)

=

Example (b)

=



Symmetry of polynomials 

u1

u2

u3

u4

u5

u6

To swap any pair , first apply YBE (b) on the 
right. This produces a cross which we then move to the 
left using YBE (a) many times. 


At the leftmost boundary we also use YBE (a):

ui ↔ ui+1

y = ui, x = ui+1



More Yang-Baxter equations for Cauchy identity (blue - up-right, red - down-right)

ℝx,y = 1i1+j2=j1+i2(xy)min(i2, j2)

1i1+j1=i2+j2 1i1≥j2 xj2 1xj

1i1=j1+i21i2+j1=i1+j2 1i2≥j2 xj2xj



Example (b)

=

Example (a)

=



Proof of the Cauchy identity

The left-hand side is a partition function of 
configurations like these.


Do the following  times:

Start from the right, apply YBE (b) to produce a 
new cross vertex, then YBE (a) to drag it the left. 
This exchanges one  with one . On the left 
boundary we have

Nk

xi yj

After  exchanges, 
the resutling partition 
function becomes , 
and we get the 
Cauchy identity.

Nk

1



Spin -Whittaker weights (for the second YBE)q



Cauchy identity for the spin -Whittaker polynomialsq

At the last step (which is basically the -binomial theorem), we would 

get a factor of  instead of the full product, so this explains 

the powers in the right-hand side of the Cauchy identity.

q
(−sx; q)∞

(xy; q)∞

Note. For probabilistic applications, we repeat the Yang-Baxter moves in the Cauchy 
identity, and at each step make a stochastic choice (“bijectivisation”). We can start the 
YBE from left or right, and this produces both couplings, for “TASEP” and “PushTASEP” 
sides.



Conclusions and further problems
Two new families of symmetric functions - “better” spin -Whittaker 
polynomials, and (possibly more fundamental) spin Whittaker functions.

Is there an integrable vertex model explanation of the “corner vertices”? 
Satisfy the “usual” properties of symmetric functions, including Cauchy 
identity, some eigenoperators, etc.

How to prove the conjectural orthogonality relations for these symmetric 
functions?

Are there higher order eigenoperators for sqW or sW? 
There are probabilistic applications (our initial motivation), and we have added 
an extra parameter to q-Whittaker / Whittaker setup ([COSZ], [BC] 2010+). We 
also get connections to random polymers, etc.

Is there a good polymer interpretation of multilayer distributions coming 
from spin Whittaker processes? (multilayer beta polymers) 
RSK like constructions associated with beta polymers and spin 
Whittaker processes? 
Is there any representation theory behind spin Whittaker functions?

q


