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I. Introduction

T
he use of solar electric propulsion (SEP) technology is now a realistic option for designing trajectories for
interplanetary missions, while solar sail technology is currently under development. This paper covers

the results of a study on displaced periodic orbits in the Earth-Moon system in which the third body uses
a hybrid solar sail. The hybrid sail model is composed of two low thrust propulsion systems, namely a solar
sail and solar electric propulsion.

A solar sail is propelled by reflecting solar photons; transforming the momentum of the photons into a
propulsive force. Solar sail technology appears to be a promising form of advanced spacecraft propulsion
which can enable exciting new space-science mission concepts such as solar system exploration and deep
space observation. This form of propulsion can in principle provide energy changes greater than are possible
with either ion or chemical propellants. Solar sails can also be utilised to maintain highly non-Keplerian
orbits, such as closed orbits displaced high above the ecliptic plane (see McInnes,1 Waters and McInnes,2

Simo and McInnes3). Solar sails are especially suited for such non-Keplerian orbits, since they can apply a
propulsive force continuously over long periods. In such trajectories, a sail can be used as a communication
satellite for high latitudes. For example, the orbital plane of the sail can be displaced above the orbital
plane of the Earth, so that the sail can stay fixed above the Earth at some distance, if the orbital periods
are equal. McInnes4 investigated a new family of displaced solar sail orbits near the Earth-Moon libration
points. Displaced orbits have more recently been developed by Ozimek et al.5 using collocation methods. In
Baoyin and McInnes6,7, 8 and McInnes4,9, the authors describe new orbits which are associated with artificial
Lagrange points in the Earth-Sun system. These artificial equilibria have potential applications for future
space physics and Earth observation missions. In McInnes and Simmons10, the authors investigate large new
families of solar sail orbits, such as Sun-centered halo-type trajectories, with the sail executing a circular
orbit of a chosen period above the ecliptic plane.

The idea of combining a solar sail with an auxiliary SEP system to obtain a hybrid sail system is
important due to the challenges of performing complex missions (see Leipold and Götz,11 Mengali and
Quarta,12 Dachwald,13 Baig and McInnes14). The solar electric propulsion system possesses high specific
impulse (Isp ≈ 3000 sec). SEP consumes propellant and decreases the mass of the spacecraft, whereas the
solar sail does not consume any propellant. This form of propulsion is useful for some high energy missions,
but unlike solar sails, they have a finite ∆V capability, which makes them unsuitable for missions where a
non-Keplerian orbit has to be maintained over indefinite periods of time.

Orbits around the collinear libration points of the Earth-Moon system are of great interest because
their unique positions are advantageous for several important applications in space mission design (see e.g.
Szebehely15, Farquhar,16 Roy,17 Vonbun,18 Thurman et al.,19 Gómez et al.,20,21 Breakwell and Brown22,
Richardson23, Howell24,25). Such orbits cannot be maintained without active control due to their instability
(see Breakwell and Brown22, Richardson23, Howell24,25). If the orbit maintains visibility from Earth, a
spacecraft on it (near the L2 point) can be used to provide communications between the equatorial regions
of the Earth and the lunar poles. Moreover, if another communications satellite is located at the L1 point,
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there could be continuous communications coverage between the equatorial region of the Earth and the entire
lunar surface (see Farquhar26, Farquhar and Kamel27).

This paper investigates displaced periodic orbits at linear order in the circular restricted Earth-Moon
system, where the third massless body utilizes a hybrid of solar sail and a solar electric propulsion system. In
particular, periodic orbits in the vicinity of the Lagrange points in the Earth-Moon system will be explored
along with their applications. Firstly we describe the dynamic model of the hybrid sail. The first-order
approximation is derived for the linearized equations of motion. Then, a feedback linearization control
scheme (see Slotine and Li28) is proposed and implemented. The main idea of this approach is to cancel
the nonlinearities and to impose desired linear dynamics satisfied by the solar sail. We then select the
SEP control, which takes into consideration the nonlinearity cancellation and the stabilizing linear control.
When the control is applied to the nonlinear system, asymtotic stability is achieved. This provides the
key advantage that the displacement distance of the hybrid sail is then constant. A constant displacement
distance of 1750 km has been considered for the simulations. The displaced orbits found by Ozimek et al.5

show large excursions in displacement distance. In practice, a constant displacement distance may lead to
easier tracking from the lunar surface for communications applications. Finally, we evaluate the performance
of the hybrid sail approach.

II. System Model

In this work m1 represents the larger primary (Earth), m2 the smaller primary (Moon) and we will be
concerned with the motion of a hybrid sail that has negligible mass. It is always assumed that the two
more massive bodies are moving in circular orbits with constant angular velocity ω about their common
center of mass, and the mass of the third body is too small to affect the motion of the two more massive
bodies. The unit mass is taken to be the total mass of the system (m1 + m2) and the unit of length is
chosen to be the constant separation R⋆ between m1 and m2. The time unit is defined such that m2 orbits
around m1 in time 2π. Under these considerations the masses of the primaries in the normalized system
of units are m1 = 1 − µ and m2 = µ, with µ = m2/(m1 + m2) (see Figure 1 (a)). Thus, in the Earth-
Moon system, the nondimensional unit acceleration is aref = ω2R⋆ = 2.7307 mm/s2 where the Earth-Moon
distance R⋆ = 384400 km. The dashed line in Figure 1 (a)) is a line parallel to the Sun-line direction.
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Figure 1. (a) Schematic geometry of the Hybrid Sail in the Earth-Moon circular restricted three-body problem; (b)
Angle γ between the Hybrid Sail surface normal n and the Sun-line direction S, and SEP thrust vector direction m.

II.A. Equations of Motions

The nondimensional equation of a motion of a hybrid sail14 in the rotating frame of reference is described
by

d2
r

dt2
+ 2ω ×

dr

dt
+ ∇U(r) = aS + aSEP , (1)

where ω = ωẑ (ẑ is a unit vector pointing in the direction z) is the angular velocity vector of the rotating
frame and r is the position vector of the hybrid sail relative to the center of mass of the two primaries. We
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will not consider the small annual changes in the inclination of the Sun-line with respect to the plane of the
system. The three-body gravitational potential U(r), the solar radiation pressure acceleration aS and the
nondimensional acceleration due to the SEP thruster aSEP are defined by

U(r) = −

[

1

2
|ω × r|2 +

1 − µ

r1
+

µ

r2

]

,

aS = a0(S · n)2n, (2)

aSEP = aSEPm, (3)

where µ = 0.1215 is the mass ratio for the Earth-Moon system. The hybrid sail position vectors w.r.t. m1

and m2 respectively (see Figure 1 (a)) are r1 = [x+µ, y, z ]T and r2 = [x−(1−µ), y, z]T , a0 is the magnitude
of the solar radition pressure acceleration exerted on the hybrid sail and the unit vector n denotes the thrust
direction, aSEP is the acceleration from the SEP system and the unit vector m denotes the thrust direction.
A constant displacement distance of 1750 km has been imposed, considering a characteristic acceleration of
a0 = 0.10 mm/s2 for the simulations. The sail is oriented such that it is always directed along the Sun-line
S, pitched at an angle γ to provide a constant out-of-plane force. The unit normal to the hybrid sail surface
n and the Sun-line direction are given by

n =
[

cos(γ) cos(ω⋆t) − cos(γ) sin(ω⋆t) sin(γ)
]T

, (4)

S =
[

cos(ω⋆t) − sin(ω⋆t) 0
]T

, (5)

where ω⋆ = 0.923 is the angular rate of the Sun-line in the corotating frame in a dimensionless synodic
coordinate system.

II.B. Linearized System

We now want to investigate the dynamics of the hybrid sail in the neighborhood of the libration points.
We denote the coordinates of the equilibrium point as rL = (xLi

, yLi
, zLi

) with i = 1, · · · , 5. Let a small
displacement in rL be δr such that r → rL + δr. The equations for the hybrid sail can then be written as

d2δr

dt2
+ 2ω ×

dδr

dt
+ ∇U(rL + δr) = aS(rL + δr) + aSEP (rL + δr), (6)

and retaining only the first-order term in δr = [δx, δy, δy]T in a Taylor-series expansion, the gradient of the
potential and the acceleration can be expressed as

∇U(rL + δr) = ∇U(rL) +
∂∇U(r)

∂r

∣

∣

∣

∣

r=rL

δr + O(δr2), (7)

aS(rL + δr) = aS(rL) +
∂aS(r)

∂r

∣

∣

∣

∣

r=rL

δr + O(δr2), (8)

aSEP (rL + δr) = aSEP (rL) +
∂aSEP (r)

∂r

∣

∣

∣

∣

r=rL

δr + O(δr2). (9)

It is assumed that ∇U(rL) = 0, and the accelerations aS and aSEP are constant with respect to the
small displacement δr, so that

∂aS(r)

∂r

∣

∣

∣

∣

r=rL

= 0, (10)

∂aSEP (r)

∂r

∣

∣

∣

∣

r=rL

= 0. (11)

The linear variational system associated with the libration points at rL can be determined through a
Taylor series expansion by substituting Eqs. (7), (8) and (9) into (6) so that

d2δr

dt2
+ 2ω ×

dδr

dt
− Kδr = aS(rL) + aSEP (rL), (12)
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where the matrix K is defined as

K = −

[

∂∇U(r)

∂r

∣

∣

∣

∣

r=rL

]

. (13)

Using matrix notation the linearized equation about the libration point (Equation (12)) can be represented
by the inhomogeneous linear system Ẋ = AX + b(t), where the state vector X = (δr, δṙ)T , and for which
b(t) (a 6 × 1 vector) is equal to the sum of control accelerations of the sail and the SEP.

The Jacobian matrix A has the general form

A =

(

03 I3

K Ω

)

, (14)

where I3 is a identity matrix, and

Ω =







0 2 0

−2 0 0

0 0 0






. (15)

By making the transformation r → rL + δr and retaining only the first-order term in δr = (ξ, η, ζ)T in a
Taylor-series expansion where (ξ, η, ζ) are axes attached to the libration point as shown in Figure 1 (a), the
linearized nondimensional equations of motion relative to the collinear libration points can be written as

ξ̈ − 2η̇ − Uo
xxξ = aξ + aSEPξ

, (16)

η̈ + 2ξ̇ − Uo
yyη = aη + aSEPη

, (17)

ζ̈ − Uo
zzζ = aζ + aSEPζ

, (18)

where Uo
xx, Uo

yy, and Uo
zz are the partial derivatives of the gravitational potential evaluated at the collinear

libration point, and the solar sail acceleration is defined in terms of three auxiliary variables aξ, aη, and aζ .
Again, the sail attitude is fixed such that the sail normal vector n, which is the unit vector that is

perpendicular to the sail surface, points always along the direction of the Sun line with the following constraint
S · n ≥ 0. Its direction is described by the pitch angle γ relative to the Sun-line, which represents the sail
attitude.

Substituting Eqs. (4) and (5) into Eq. (2), the solar sail acceleration components are therefore given by

aξ = a0 cos(ω⋆t) cos3(γ), (19)

aη = −a0 sin(ω⋆t) cos3(γ), (20)

aζ = a0 cos2(γ) sin(γ), (21)

where a0 is the characteristic acceleration. The SEP acceleration components aSEP are used for feedback
control as described later.

By taking aSEP = 0 (pure sail at linear order), Eqs. (16) - (18) have a simple periodic solution with a
constant out-of-plane displacement of the form

ξ(t) = ξ0 cos(ω⋆t), (22)

η(t) = η0 sin(ω⋆t), (23)

ζ(t) = ζ0. (24)

By inserting equations (22) and (23) in the differential equations (16) and (17) with aSEP = 0, we obtain
the linear system in ξ0 and η0,

(

Uo
xx − ω2

⋆

)

ξ0 − 2ω⋆η0 = a0 cos3(γ),

−2ω⋆ξ0 +
(

Uo
yy − ω2

⋆

)

η0 = −a0 cos3(γ).
(25)

Then the amplitudes ξ0 and η0 are given by
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ξ0 = a0

(

Uo
yy − ω2

⋆ − 2ω⋆

)

cos3(γ)
(

Uo
xx − ω2

⋆

)(

Uo
yy − ω2

⋆

)

− 4ω2
⋆

, (26)

η0 = a0

(

− Uo
xx + ω2

⋆ + 2ω⋆

)

cos3(γ)
(

Uo
xx − ω2

⋆

)(

Uo
yy − ω2

⋆

)

− 4ω2
⋆

, (27)

and we have the equality
ξ0

η0
=

ω2
⋆ + 2ω⋆ − Uo

yy

−ω2
⋆ − 2ω⋆ + Uo

xx

. (28)

Then with condition (28), equations (22)-(24) will be used as a reference trajectory for the control analysis
in the following sections. By applying a Laplace transform, the uncoupled out-of-plane ζ-motion defined by
the equation (18) can be expressed as (see Simo and McInnes29 for a detailed description)

ζ0 = a0 cos2(γ) sin(γ)|Uo
zz|

−1. (29)

Furthermore, the out-of-plane distance can be maximized by an optimal choice of the sail pitch angle
determined by

d

dγ
cos2(γ) sin(γ)

∣

∣

∣

∣

γ=γ⋆

= 0, (30)

γ⋆ = 35.264◦. (31)

III. Tracking by Feedback Linearization

III.A. Description

Linearization by feedback is a well-known approach to control nonlinear systems. This method transforms
a nonlinear state space model into a new coordinate system where the nonlinearities can be cancelled by
feedback. It is a way of transforming system models into equivalent models of simpler form. For example,
a change of variables Z = Φ(X) is used to transform the state equation from the X-coordinates to the
Z-coordinates, where the map Φ(.) must be invertible, such that X = Φ−1(Z) for Z ∈ Φ(D) where D is
the domain of Φ. Furthermore, the derivatives of X and Z should be continous and therefore the map Φ
and its inverse Φ−1(.) are continously differentiable. Such a map is a diffeomorphism and can be viewed as
a generalization of the coordinate transformation.

III.B. Objectives

Given the nonlinear system Ẍ = f(X, Ẋ) + u, the problem of feedback linearization consists of finding, if
possible, a change of coordinates of the form Z = Φ(X) and a static state feedback control u = (X,ν), such
that the new control input ν satisfy a linear time-invariant relation Ż = AZ + Bν where the pair (A, B)
is controllable. This technique is completely different from a Jacobian linearization, on which linear control
is based. From equation (1) the motion of the hybrid solar sail in the CRTBP is described by the scalar
equations in the form

ξ̈ = 2η̇ + (xLi
+ ξ) − (1 − µ)

(xLi
+ ξ) + µ

r3
1

− µ
(xLi

+ ξ) − 1 + µ

r3
2

+ aξ + uξ, (32)

η̈ = −2ξ̇ + η −

(

1 − µ

r3
1

+
µ

r3
2

)

η + aη + uη, (33)

ζ̈ = −

(

1 − µ

r3
1

+
µ

r3
2

)

ζ + aζ + uζ , (34)
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where the vector

u(t) =
[

uξ uη uζ

]T

(35)

is the applied control acceleration due to the SEP thruster, such that u(t) , aSEP .
To develop a feedback linearization scheme, the motion of the hybrid solar sail moving in the CRTBP is

separated into linear and nonlinear components, such that

ξ̈ = fξ
Non−Linear + fξ

Linear + aξ + uξ, (36)

η̈ = fη
Non−Linear + fη

Linear + aη + uη, (37)

ζ̈ = fζ
Non−Linear + fζ

Linear + aζ + uζ , (38)

where the f functions are defined as the linear and the nonlinear terms in the equations (32), (33) and (34)

fξ
Non−Linear = −(1 − µ)

(xLi
+ ξ) + µ

r3
1

− µ
(xLi

+ ξ) − 1 + µ

r3
2

,

fξ
Linear = 2η̇ + (xLi

+ ξ),

fη
Non−Linear = −

(

1 − µ

r3
1

+
µ

r3
2

)

η,

fη
Linear = −2ξ̇ + η, (39)

fζ
Non−Linear = −

(

1 − µ

r3
1

+
µ

r3
2

)

ζ,

fζ
Linear = 0,

with r1 =
√

((xLi
+ ξ) + µ)2 + η2 + ζ2 and r2 =

√

((xLi
+ ξ) − 1 + µ)2 + η2 + ζ2.

The solar sail acceleration components are given in equations (19), (20) and (21). We then select the
SEP control u(t) such that

u(t) =







uξ

uη

uζ






= U(t) + ũ(t), (40)

where

U(t) = −

















(xL2
+ ξ) − (1 − µ)

(xL2
+ξ)+µ

r3

1

− µ
(xL2

+ξ)−1+µ

r3

2

− Uo
xxξ

−

(

1−µ
r3

1

+ µ
r3

2

)

η − Uo
yyη

−

(

1−µ
r3

1

+ µ
r3

2

)

ζ − Uo
zzζ

















(41)

is the canceling term and ũ(t) the stabilizing term.
The equations (32), (33) and (34) then become

ξ̈ = 2η̇ + Uo
xxξ + a0 cos(ω⋆t) cos3(γ) + ũξ, (42)

η̈ = −2ξ̇ + Uo
yyη − a0 sin(ω⋆t) cos3(γ) + ũη, (43)

ζ̈ = Uo
zzζ + a0 cos2(γ) sin(γ) + ũζ . (44)

By removing the nonlinear dynamics from the system, the control acceleration vector ũ(t) is determined
such that the desired response characteristics of the linear time-invariant dynamics are produced and so Eq.
(42) - (44) are identical to the linear system defined by Eq. (16) - (18). In particular, it can be ensured that
the displacement distance of the periodic orbit is constant, which provides key advantages for lunar polar
telecommunications.
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IV. Tracking a Reference Trajectory

IV.A. Linear Feedback Control

Let us consider nonlinear system described by

ẍ = f(x, ẋ) + u, (45)

where x ∈ R
3 is the position. Let e(t) = x(t) − xref (t) denote the position error relative to some reference

solution, where the reference trajectory

xref (t) =
[

ξref ηref ζref

]T

(46)

is given by the analytical solution

ξref (t) = ξ0 cos(ω⋆t), (47)

ηref (t) = η0 sin(ω⋆t), (48)

ζref (t) = ζ0. (49)

We then differentiate e(t) until the control appears so that

e(t) = x(t) − xref (t), (50)

ė(t) = ẋ(t) − ẋref (t), (51)

ë(t) = ẍ(t) − ẍref (t),

= f(x, ẋ) + u − ẍref (t),

= −λ1ė − λ2e, (52)

and so, we have
u(t) = −f(x, ẋ) + ẍref (t) − λ1ė − λ2e, (53)

where

f =







fξ
Non−Linear

fη
Non−Linear

fζ
Non−Linear






(54)

and −λ1ė − λ2e is the stabilizing term.

IV.B. Trajectory Tracking

Consider the system given by equation (45), where our objective is to make the output x ∈ R
3 track a desired

trajectory given by the reference trajectory xref ∈ R
3 while keeping the position bounded. Therefore, we

want to find a control law for the input ũ ∈ R
3 such that, starting from any initial position in a domain

D ⊂ R
3, the tracking error e(t) = x(t) − xref (t) goes to zero. Hence, asymptotic tracking will be achieved

if we design a state feedback control law to ensure that e(t) is bounded and converges to zero as t tends to
infinity. Thus, the control law

ũ = −λ1ė − λ2e (55)

yields the tracking error equation

ë + λ1ė + λ2e = 0, (56)

where λ1 and λ2 are chosen positive constants.
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V. Evaluation of Hybrid Sail Performance

V.A. Evaluation

In this section we investigate the performance of the hybrid sail system, constituted by a solar sail combined
with solar electric propulsion. The simulation was performed around the collinear libration point L2 for a
period of one month. Thus, the control acceleration effort U(t) required to track the reference orbit while
rejecting the nonlinearities varies up to 0.014 mm/s2 about the L2 point. The control accelerations are
continous smooth signals. The acceleration derived from the solar sail (denoted by aξ, aη, aζ) is plotted in
terms of components for one-month orbits in Figure 2 (a) about L2, and the SEP acceleration components
appears in Figure 2 (b) about L2. The control acceleration effort derived from the thruster (denoted by Uξ,
Uη, Uζ) is order of 10−3 - 10−4 mm/s2, while the acceleration derived from the solar sail is approximately
10−2 mm/s2. The small control acceleration from the SEP thruster is then applied to ensure that the
displacement of the periodic orbit is constant. The solar sail provides a constant out-of-plane force. Figure 3
(critically damped motion) illustrates the position error components, denoted by eξ, eη, eζ under the nonlinear
control and the SEP thruster around L2. These Figures show that the motion is bounded and periodic. This
observation implies that the augmented thrust acceleration ensures a constant displacement orbit.
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Figure 2. (a) Acceleration derived from the solar sail about the L2 point; (b) Acceleration derived from the SEP thruster
about the L2 point.

The parameters of the reference trajectory used for the simulations are summarized in Table 1.
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Figure 3. Position error components about the L2 point with e(0) = (28.26,−552.52, 175)T km (Critically damped motion):
(a), (b) and (c).

Table 1. Parameters of Reference Trajectory.

ξ0[km] η0[km] ζ0[km] a0[mms−2]

L2 282.613 -5525.23 1750 0.10
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V.B. Propellant Usage

Propellant usage for the SEP thruster is proportional to the total ∆V , which is the integration over time of
the magnitude of the control acceleration acceleration produced by using the SEP thruster so that

∆V =

∫ 2π/ω⋆

0

|u|dt. (57)

The total ∆VTotal over a 5 year mission is given by

∆VTotal = ∆V per orbit × no, (58)

where no is the total number of orbits. Once the total ∆V is computed, the propellant usage can be
found using the rocket equation.

Let us define the mass m of the system at a time t, as a function of the initial mass mi, ∆V and the
effective exhaust velocity ve = Isp · g,

m = mie
−∆V/g·Isp . (59)

The mass of propellant is then the difference between the initial and the final masses

mprop = mi − m = mi(1 − e−∆VT otal/g·Isp), (60)

where Isp is the specific impulse (≈ 3000 sec for an electric thruster).
Assume a specific impulse of Isp = 3000 sec and an initial mass of mi = 500 kg, we have the average ∆V

per orbit of approximately 23 m/s for motion about L2. Then, the total ∆V per orbit over 5 years is 1536
m/s. The consumed propellant mass is then mprop = 25 kg. The parameters are summarized in Table 2.

Table 2. Summary of Parameters.

Parameter Description Value
mi (kg) Initial Mass 500

Isp (sec) Specific Impulse 3000

∆VTotal (m/s) Total ∆V over 5 years 1536

mprop(kg) Propellant Mass Consummed 25

VI. Conclusions

A hybrid concept for displaced periodic orbits in the Earth-Moon system has been developed. A feedback
linearization was used to perform stabilization and trajectory tracking for the nonlinear system. The idea of
this control is to transform a given nonlinear system into a linear system by use of a nonlinear coordinate
transformation and nonlinear feedback. The augmented thrust acceleration is than applied to ensure a
constant displacement periodic orbit, which provides key advantages for lunar polar telecommunications. A
stabilizing approach is then introduced to increase the damping in the system and to allow a higher gain
in the controller. Theoretical and simulation results show good performance, with modest propellant mass
requirements.
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