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ABSTRACT  

The effectiveness of a scatter correction approach based on decoupling absorption and scattering 

effects through the use of the radiative transfer theory to invert a suitable set of measurements is studied 

by considering a model multi-component suspension. The method was used in conjunction with partial 

least squares regression to build calibration models for estimating the concentration of two types of 

analytes: an absorbing (non-scattering) species and a particulate (absorbing and scattering) species. The 

performances of the models built by this approach were compared with those obtained by applying 
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empirical scatter correction approaches to diffuse reflectance, diffuse transmittance and collimated 

transmittance measurements. It was found that the method provided appreciable improvement in model 

performance for the prediction of both the types of analytes. The study indicates that as long as the bulk 

absorption spectra is accurately extracted, no further empirical pre-processing to remove light scattering 

effects is required. 

 

KEYWORDS: Scatter correction, Multivariate calibration, Near-infrared spectroscopy, Multiple 

scattering, Radiative transfer equation, Adding-doubling method. 

 

INTRODUCTION 

Development of robust and accurate calibration models for predicting analyte concentration in a 

particulate sample (e.g. powder mixtures, tissue, blood and other suspensions) using near infrared (NIR) 

spectroscopy poses a significant challenge due to complications arising from the competing effects of 

absorption and scattering and the nonlinear nature of sample-to-sample variations in scattering. Various 

empirical 
1-6

 and semi-empirical 
7
 approaches to remove scattering effects from spectra can be found in 

the literature. However, these approaches have not been adequate for situations where the sample-to-

sample variations in light scattering are very large. Therefore, approaches based on separating 

absorption and scattering effects using fundamentals of light propagation are gaining greater impetus in 

the field of spectroscopic quantitative analysis of highly scattering samples 
8-12

. Recently 
13

, a method 

for removing multiple scattering effects using the radiative transfer theory in order to improve the 

performance of multivariate calibration models was proposed and tested on a model two component 

(polystyrene-water) system. This method consisted of decoupling the absorption and scattering effects 

by extracting the bulk absorption (μa) and scattering (μs) using the radiative transfer equation (RTE) and 

building a Partial least squares (PLS) regression model using μa to predict the concentration of the 

analyte of interest. Using simulations, it was shown that this approach in theory should not require any 

additional pre-processing for removing non-chemical variations due to multiple scattering by the 
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particles in the suspension. However, when the method was applied to a polystyrene-water system to 

build a model for predicting the concentration of polystyrene particles, two issues arose: (1) Additional 

pre-processing of the extracted bulk absorption spectra was required to obtain the best performing 

calibration model with this approach. (2) Calibration built using the total diffuse transmittance (Td) led 

to a better performing calibration model. It was argued that the first issue was due to light losses from 

the sides of the cuvette at low particle concentrations.  The second issue was attributed to an effect 

specific to the two-component system used. Since polystyrene particles absorb and scatter light, changes 

in photon path length will be correlated to the particle concentrations in a two-component system. This 

information would be removed by the decoupling step where the bulk absorption spectra (μa) are 

extracted whereas in the diffuse transmittance measurements (Td), this information is retained. It was 

argued that this effect is unique to a two-component system and thus when multi-component samples are 

considered, calibration models built on μa should perform significantly better than when Td 

measurements are used. 

In this paper, the effectiveness of this scatter correction approach based on the RTE is evaluated using 

a model multi-component system. The objectives of this study were (1) to determine if eliminating light 

losses from the sides of the cuvette will indeed remove the need for additional pre-processing, (2) to 

evaluate the performance of calibration models built after extracting the bulk absorption spectra for a 

multi-component suspension for predicting (a) the concentration of a particulate species that absorbs and 

scatters light and (b) the concentration of a purely absorbing (non-scattering) species. 

 

MATERIALS AND METHODS 

Decoupling of scattering and absorption effects 

The methodology for estimation of concentrations of chemical components in suspensions considered 

here consists of two steps namely, decoupling of the scattering and absorption effects using radiative 

transfer theory and then building the calibration model for estimating the concentration of the analyte of 

interest using the extracted bulk absorption spectra. The critical step in this methodology is the 
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decoupling of absorption and scattering effects. This is achieved by inverting an appropriate set of 

measurements using the radiative transfer equation (RTE) which, for a specific wavelength λ is given 

by: 
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where ,,rI s   is the specific intensity at a distance r from source along the directional vector s, Ba(λ) 

(cm
-1

)B is the bulk absorption coefficient, Bs(λ)B (cm
-1

) is the bulk scattering coefficient, 

)()()( sat is the total extinction coefficient, ,ˆ,p ss is the phase function, which is a 

measure of the angular distribution of scattered light and  is the solid angle. The phase function is 

represented as a function of the anisotropy factor g(λ) through the use of Henyey-Greenstein 

approximation 
14

 .(see eq. (6) in Ref. 13). 

 

Through the inversion of (1), the parameters Ba(λ), Bs(λ) and g(λ) for a sample are obtained from the 

measurements. This is carried out for all wavelengths at which the measurements are made resulting in a 

spectrum of these parameters which are denoted as vectors Ba, Bs and g. The inversion will then result in 

the decoupling of absorption and scattering effects with Bs and g containing the effects due to scattering 

and Ba representing the absorption properties of the sample. Further the bulk absorption is related 

linearly to the concentration of the individual species present in the sample 
13

.  

 

In order to extract the bulk optical properties by inverting the RTE, at least three measurements at 

each wavelength are required. The three measurements used in this study for extraction of the optical 

properties were: total diffuse transmittance (Td), total diffuse reflectance (Rd) and collimated 

transmittance (Tc), the bold letters indicating that these are vectors of measurements at several 

wavelengths. In this work, an inverse Adding-Doubling algorithm (IAD) was used to extract the bulk 
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optical parameters 
15,16

. The extracted bulk absorption spectra are used for building a multivariate 

calibration model for estimating the concentration of the chemical component of interest.  

 

EXPERIMENT 

Design of Experiments 

The model multi-component system constructed for this study was a four-component system 

consisting of water, deuterium oxide, ethanol and polystyrene particles. The model system was chosen 

such that we can study the problem of predicting the concentration of an analyte in a suspension for two 

commonly occurring situations namely, the case where the analyte (a) is an absorbing species and (b) is 

a species that both absorbs and scatters light (i.e. a particulate species). In this study, the prediction of 

ethanol concentration will correspond to case (a) and the prediction of the concentration of polystyrene 

particles will correspond to case (b). By having 4 chemical components, we can ensure that in the 

dataset collected, the concentrations of the two analytes of interest are not correlated to one another or to 

other components in the sample. 

Ethanol (99.8% purity) was purchased from Fisher Scientific, heavy water (99.9% purity) was 

purchased from Qmx Laboratories and polystyrene latex suspensions (10% by weight of particles) of 

different particle sizes were bought from Duke Scientific. The three absorbing components ethanol, 

water and heavy water are fully miscible and they do not dilute or swell polystyrene particles at the 

concentrations used in this study 

.  

There are three variables of interest from the point of view of experimental design for attaining the 

objectives of this study, namely, ethanol concentration, polystyrene concentration and particle size. The 

range of particle size and concentration had to be chosen such that the following conditions were 

satisfied: stable suspension, multiple scattering and sufficient signals in all three measurements. A 

stability test, during which the change in transmittance was observed in time, revealed that the rate of 

settlement for polystyrene particles larger than 500 nm is appreciable. Therefore 500nm was chosen as 
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the upper limit for particle diameter. The highest concentration of particles was set to 5 %wt., beyond 

which the signal in the transmission mode gets too low for samples with 500 nm diameter particles i.e. 

we get into the zone of low signal-to-noise ratio and nonlinear detector response. The lower limits for 

particle size (100nm diameter) and concentration (1% by weight) were chosen so that for the 

measurement configurations used the light losses through the sides of the cuvette 
17-19

 were negligible. 

Five particle sizes of mean diameters 100, 200, 300, 430 and 500 nm, five particle concentrations 

centered around 1, 2, 3, 4 and 5 %wt. and five concentrations of ethanol centered around 2, 4, 6, 8 and 

10 %wt. were used to build a dataset consisting of a total of 44 samples. These were prepared using 

various combinations of the concentrations of the components and particle sizes in a manner to ensure 

that in the resulting dataset the correlation between ethanol concentration and the other components and 

the correlation between polystyrene concentration and the other components were negligible.  

Since the number of components is fairly small, it is not possible to get zero correlation between any 

pair of components because of the closure condition i.e. 1w
i

i where wi represents concentration of 

the i
th

 analyte in the sample expressed as weight fraction.  However, the concentrations of the analytes in 

the dataset can be chosen such that the correlation between the components of interest (ethanol and 

polystyrene concentrations) and the rest is negligible by allowing the correlation between the 

components that are not of direct interest for the current study, namely water and deuterated water to be 

as high as necessary to achieve this goal. The correlation matrix for variables for this dataset is given in 

Table 1 showing that the correlations involving ethanol and polystyrene concentrations are negligible. 

Samples were prepared by weighing the actual masses of species added and then calculating the 

concentrations as % wt. Mass concentrations were then converted into volumetric concentrations for 

calibration and prediction (the density of water, heavy water, ethanol and polystyrene were taken as 

1 kg/m
3
, 1.106 kg/m

3
, 0.789 kg/m

3
 and 1.05 kg/m

3
 respectively). Just prior to making the spectroscopic 

measurements the samples were mildly shaken to ensure that polystyrene particles are uniformly 

distributed in the sample/suspension. The order of measurements of the samples was randomised to 
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avoid any possible correlations of the concentrations with experimental conditions (ambient 

temperature, instrument drift etc.). 

 

Measurement set up 

The measurement set up used was the same as the one used in previous studies for extracting bulk 

optical properties 
13,20,21

. Three measurements T Bc B, T BdB and RBdB were taken for each sample which was 

placed in a 1mm path length cuvette made of special optical glass (100.099-OS, Hellma) using a 

scanning spectrophotometer (CARY 5000, Varian Inc.) fitted with a diffuse reflectance accessory 

(DRA-2500). For this study a fixed spectral bandwidth of 7 nm was used for the whole wavelength 

region. Spectral data was collected in the wavelength region 1500-1880 nm at 2 nm intervals with an 

integration time of 10 seconds resulting in measurements at 191 discrete wavelengths per spectrum. This 

wavelength range was chosen because the first overtone peaks of polystyrene and ethanol due to C-H 

stretching vibrations occur in this region.  

 

Extraction of bulk optical properties 

The inverse adding-doubling (IAD) method 
18

 was used to extract the bulk optical properties μa, μs 

and g from the measurements of Td, Rd, and Tc. The inversion algorithm used the collimated 

transmittance measurements as a soft constraint as described in 
13

. In addition to the measurements and 

the sample thickness, there are additional inputs required for the inversion. These are the refractive 

indices of the cuvette, air and the sample. The refractive index of the cuvette was provided by the 

manufacturer (Hellma) and that of air was taken as 1. The sample refractive index will be dependent on 

the concentrations of the components in the sample. Thus it would change from sample-to-sample. One 

way to calculate the refractive index of the sample is to use a weighted sum of the refractive indices of 

the individual components where the weights are the weight fractions of the components in the sample. 

However, in practice, for future samples on which the calibration model will be applied these values will 

not be known. A plausible approach will be to use typical values of refractive index for the mixture. In 
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this work, since water was the major component, the refractive index of the sample could be set equal to 

the refractive index of water. The inversion was run with both approaches i.e. using a weighted sum of 

the refractive index and using just the refractive index of water. The real refractive indices of water, 

ethanol, polystyrene and the glass of the measurement cell in the chosen wavelength range change little 

i.e.: from 1.3121 to 1.2993, from 1.3540 to 1.3535, from 1.5558 to 1.5529 and from 1.507 to 1.5027 

respectively over the wavelength range considered. The refractive indices of ethanol and heavy water 

were taken from the refractive index database available 
22

. 

 

Calibration 

Multivariate calibration was carried out using PLS regression. The performance of the PLS models 

were evaluated using root mean square error of cross validation (RMSECV). Cross validation was 

carried out using the „leave-one-out‟ method. Further, all the raw spectra were smoothed using Savitsky-

Golay filter with the window width 9 and the polynomial order 3 to remove noise in the measurements. 

For all models, the spectra were mean-centered. The computations were carried out using Matlab P

®
P and 

the PLS models were built using PLS_Toolbox by Eigenvectors Research Inc.  

 

RESULTS AND DISCUSSION 

The three measurements (diffuse reflectance, diffuse transmittance and collimated transmittance) and 

the extracted bulk absorption spectra for the samples are presented in figure 1. It is seen that the 

magnitudes of variation in the dataset are much larger in the measurements (diffuse reflectance, diffuse 

transmittance and collimated transmittance) than in the extracted Ba B where the variations due to multiple 

light scattering have been removed. However, there is still some “spread” in the data which is due to the 

fact that that while Ba represents the absorption properties of the sample, it still contains a contribution 

from the particulate species which are particle-size dependent. Compared to the polystyrene-water 

system that was considered in Ref. 12, the spread in this multi-component data is much larger because 

the range of particle concentrations spanned in the current study is twice as large. 
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An important point to note in figure 1 is the broad peak in the wavelength region 1600-1750 nm 

centered around 1670nm which can be seen most clearly in figures 1 (b) and (d). This peak does not 

appear in the absorption spectra of the pure components. This indicates that the absorption spectra of the 

mixtures for the range of concentrations considered here are not additive and that a new absorption peak 

may be forming due to interactions. To find out which of the components interacted to form this new 

peak different binary mixtures, namely, ethanol-water, ethanol-D2O and water-D2O, were examined. It 

was found that spectra of H2O – D2O mixtures exhibited this peak. It appears neither in the absorption 

spectrum of pure water nor in the absorption spectrum of deuterium oxide. Figure 2(a) shows the spectra 

of H2O – D2O mixtures of different composition. The peaks centered around 1450, 1790 and 1900 nm 

are the first overtones of O–H (from H2O), while a comparatively weak and broad band of O–D (from 

D2O) is seen centered approximately around 1600nm. Figure 2(b) shows the absorbance at 3 different 

wavelengths: 1670 nm which is approximately the centre of the broad peak in the 1600-1750 nm and 

1500 nm and 1800 nm which lie on either side of this peak. At the latter wavelengths which include 

absorption due to both O-H and O-D overtones, the absorption changes linearly with concentration of 

water. The absorbance at 1670nm increases as the ratio of D2O to H2O is increased and then drops when 

the % vol. of water becomes greater than about 55-60% by volume reaching the value of absorbance of 

pure water at 100% by volume. As indicated in the figure, the absorbance at this wavelength is non-

linear with the points being fitted well with a second order polynomial with respect to the water 

concentration. This suggests that the peak is probably due to the formation of H2O – D2O dimers.  

Studies of water, D2O and HDO dimers have been extensively carried out in the past by researchers
23-27

 

which have shown that dimers with H2O.DOD and D2O.HOH structures are formed with the dimer 

preferring the former structure 
23,24

. From the point of view of building a PLS model for predicting 

analyte concentrations in this model system, this effect will manifest itself as an extra latent variable 

(LV) in a calibration model for analyte concentrations. 
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(a) Prediction of concentration of absorbing-only (non-scattering) species  

In the model four-component system considered in this study, ethanol corresponds to an absorbing-

only species as the analyte of interest. In the wavelength region considered, the first overtone bands of 

ethanol are found at around 1680nm (C-H), 1684nm and 1692nm (C-H3) and bands due to asymmetric 

vibrations of CH2 and CH3 at around1714nm and 1719nm
28

. Calibration models were built using PLS 

regression both with and without applying pre-processing. The following pre-processing methods were 

tried: multiplicative scatter correction, standard normal variate, extended multiplicative scatter 

correction and first and second derivatives. Only the results for pre-processing method that provided the 

best performing model for each of the measurement set are reported here along with the performance of 

the corresponding model built without pre-processing. Figure 3(a) shows the RMSECV curves for the 

models built using different data sets i.e. Td, Rd, Tc and μa. As mentioned earlier, the bulk absorption 

spectra μa were extracted using two different values for the refractive index of the sample. In figure 3(a), 

the curve labeled μa denotes the RMSECV curve for the model built with μa extracted by taking the 

sample refractive index to be the weighted sum of the refractive indices of the individual components in 

the sample. The curve labeled „μa using ns,w‟ denotes the model built with μa extracted by approximating 

the refractive index of the samples to be that of pure water. It can be seen from figure 3(a) and Table 2 

that the differences in the results are negligible indicating that approximating the refractive index of the 

sample with that of pure water will not adversely affect the final results. It can be seen that the best 

results are obtained by using μa without pre-processing with an RMSECV of 0.47 vol% using a PLS 

model having six latent variables. Since there are 4 components in the samples plus the effect due to the 

formation of H2O-D2O dimers and the effect of particle sizes, this is the number of latent variables that 

would be expected if the large non-linearities arising from photon path length variations due to multiple 

scattering have been removed. Predicted versus actual values of ethanol concentration for the best PLS 

model i.e. the one built on a, are plotted in figure 3(b). Note that the RMSECV obtained using 

collimated transmittance (Tc) measurements also is the same as that obtained when using μa though it 

leads to a model with 10 latent variables compared to 6 for the model built on μa. The low RMSECV for 
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the model using Tc is not surprising since this measurement contains largely unscattered light at low 

particle concentrations. As the particle concentration increases, this measurement will be increasingly 

contaminated with scattered light as well as facing a rapid reduction in signal-to-noise. At moderate to 

high concentrations this measurement will not be feasible due to lack of sufficient signal and other 

configurations such as diffuse reflectance or diffuse transmittance measurements will have to be used.  

It is seen that for diffuse transmittance and diffuse reflectance data, empirical pre-processing can lead 

to appreciable drop in RMSECV compared to building a model without any pre-processing. The best 

pre-processing method for these data among the ones considered was the version of extended 

multiplicative scatter correction method (EMSCL) which models wavelength dependence as a 

logarithmic function 
2
.  

 

(b) Prediction of concentration of scattering-absorbing (particulate) species 

In the model system considered in this study, polystyrene latex particles correspond to a scattering-

absorbing species as the analyte of interest. In the wavelength range considered, first overtone peaks of 

polystyrene are centered around 1680nm (C-H). Figure 4(a) shows the RMSECV curves for the models 

built using different data sets i.e. Td, Rd, Tc and μa. Table 3 summarizes the performance of the models. 

As in the case with absorbing-only species, the best performance was achieved by the model built on the 

extracted bulk absorption spectra μa. In this case one more latent variable than that required for the 

absorbing-only case was needed i.e. 7 latent variables were needed. The increase could be due to a small 

amount of particle concentration dependent scattering effect being embedded in the extracted μa. 

Predicted versus actual values of polystyrene concentration for the best PLS model i.e. the one built on 

a, are plotted in figure 4 (b). 

As mentioned earlier, for the two component (polystyrene-water) system studied in an earlier work 
13

, 

the model built using Td performed much better than the one built on μa. It was hypothesized that this 

result was due to the secondary correlations existing between the polystyrene concentration and photon 

path lengths which was removed when extracting μa. Since in a multi-component system this correlation 
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would not exist, it was predicted that there will be degradation in the performance of models built on Td 

for estimating particle concentrations in such a system compared to using μa. The result reported here 

confirms this hypothesis.  

Again, no significant difference is observed between the two different values used for the refractive 

index of sample, suggesting that not accounting for the small changes in refractive index due to 

variations in the composition of the samples will not adversely affect the performance of the calibration 

models built using μa extracted by inverting the radiative transfer equation.  

Comparing the results in predicting the two types of species i.e. the absorbing and the scattering-

absorbing species, using the empirically pre-processed measurements, one can notice that in the first 

case a better performance was obtained using Rd pre-processed with EMSCL and in the second case 

using Td pre-processed with EMSCL. 

 

CONCLUSIONS 

Through the use of a model multi-component system, this study demonstrates the effectiveness of 

decoupling the scattering and absorption effects using the radiative transfer equation in appreciably 

improving the performance of multivariate calibration models for particulate systems for two commonly 

occurring situations namely when the analyte of interest is an absorbing species which does not scatter 

light and when the analyte of interest is a absorbing species which scatters light i.e. it is a particle. The 

study indicates that as long as the bulk absorption spectra are accurately extracted, no further empirical 

pre-processing to remove light scattering effects is required. In this study the required set of 

measurements for this purpose was obtained using an integrating sphere setup and the use of the adding-

doubling method for solving the radiative transfer equation. The range of concentrations that can be 

studied is limited by light losses that are not accounted for by the adding-doubling method as well as the 

signal that will be available in the transmission mode at high particle concentrations. The first issue 

could be addressed by the use of monte carlo simulations to solve the radiative transfer equation so that 

light losses can be taken into account. The second issue can be addressed by considering alternative sets 
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of measurements such as spatially resolved measurements where reflectances from the sample at 

different distances from the incident beam are collected.     
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Table 1. Correlation matrix between variables (concentrations of analytes and particle diameters) in the 

dataset. 

Variable Ethanol 

Concentration 

Polystyrene 

Concentration 

Particle 

Diameter 

Water 

Concentration 

D2O 

Concentration 

Ethanol 

Concentration 
1.00 0 0 0.14 0.12 

Polystyrene 

Concentration 
0 1.00 0 0.09 0.04 

Particle 

Diameter 
0 0 1.00 0.26 0.26 

Water 

Concentration 
0.14 0.09 0.26 1.00 0.96 

D2O 

Concentration 
0.12 0.04 0.26 0.96 1.00 
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Table 2. Performance of calibration models for estimating concentration of absorbing-only species 

(ethanol). 

Data 
Pre-

processing 
LVs RMSECV (% vol.) 

Rd 

None 7 0.94 

EMSCL 5 0.63 

Td 

None 5 1.83 

EMSCL 8 0.81 

Tc None 10 0.48 

a None 6 0.48 

a using ns,w None 6 0.47 

 



 

17 

Table 3. Performance of calibration models for estimating concentration of scattering-absorbing species 

(polystyrene). 

Data 
Pre-

processing 
LVs RMSECV (% vol.) 

Rd 

None 7 0.52 

EMSCL 5 0.57 

Td 

None 7 0.76 

EMSCL 7 0.43 

Tc None 7 0.47 

a None 7 0.31 

a using nsw None 7 0.31 
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Figure 1.  Collimated transmittance, total transmittance, total reflectance and bulk absorption spectra of 

the 4 component model system for different compositions. 
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Figure 2. (a) Absorption spectra of H2O-D2O mixtures; (b) Dependence of absorption on  H2O-D2O 

composition: 1500 nm (triangle), 1880 nm (square) and 1670 nm (cross); the blue line is the fit. 
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Figure 3. (a) RMSECV curves for prediction of ethanol concentration; (b) Predicted versus actual 

values of ethanol concentration.  
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Figure 4. (a) RMSECV curves for prediction of concentration of polystyrene particles; (b) Predicted 

versus actual values of concentration of polystyrene. 
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