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Abstract This paper presents a novel formulation of Multi Agent Collaborative Search,
for multi-objective optimization, based on Tchebycheff decomposition. A population
of agents combines heuristics that aim at exploring the search space both globally
(social moves) and in a neighborhood of each agent (individualistic moves). In this
novel formulation the selection process is based on a combination of Tchebycheff
scalarization and Pareto dominance. Furthermore, while in the previous implementa-
tion, social actions were applied to the whole population of agents and individualistic
actions only to an elite subpopulation, in this novel formulation this mechanism is
inverted. The novel agent-based algorithm is tested at first on a standard benchmark
of difficult problems and then on two specific problems in space trajectory design.
Its performance is compared against a number of state-of-the-art multi-objective op-
timization algorithms. The results demonstrate that this novel agent-based search has
better performance with respect to its predecessor in a number of cases and con-
verges better than the other state-of-the-art algorithms with a better spreading of the
solutions.
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1 Introduction

Multi-Agent Collaborative Search (MACS) has been proposed as a framework for
the implementation of hybrid, population-based, approaches for multi-objective op-
timization Vasile and Zuiani (2010). In this framework a number of heuristics are
blended together in order to achieve a balanced global and local exploration. In par-
ticular, the search for Pareto optimal solutions is carried out by a population of agents
implementing a combination of social and individualistic actions. An external archive
is then used to reconstruct the Pareto optimal set.
The individualistic actions are devised to allow each agent to independently converge
to the Pareto optimal set, thus creating its own partial representation of the Pareto
front. Therefore, they can be regarded as memetic mechanisms associated to a single
individual. The effectiveness of the use of local moves was recently demonstrated
by Schuetze et al (2008); Lara et al (2010) who proposed innovative local search
mechanisms based on mathematical programming.
Other examples of memetic algorithms for multi-objective optimization use local
sampling Knowles and Corne (1999) or gradient-based methods (Ishibuchi and Yoshida,
2002; Rigoni and Poles, 2005; Graña Drummond and Svaiter, 2005; Kumar et al,
2007; Fliege et al, 2009; Sindhya et al, 2009; Erfani and Utyuzhnikov, 2011), gen-
erally building a scalar function to be minimized or hybridizing an evolutionary al-
gorithm with a Normal Boundary Intersection (NBI) technique. The schedule with
which the local search is run is critical and defines the efficiency of the algorithm.
MACS has been applied to a number of standard problems and real applications with
good results, if compared to existing algorithms (Vasile, 2005; Maddock and Vasile,
2008; Sanchez et al, 2009; Vasile and Zuiani, 2011). The algorithm proposed in this
paper is a novel version of Multi-Agent Collaborative Search, for multi-objective op-
timization problems, that implements some key elements of innovation. Most of the
search mechanisms have been simplified but more importantly in this version Pareto
dominance is not the only criterion used to rank and select the outcomes of each
action. Instead, agents are using Tchebycheff decomposition to solve a number of
single objective optimization problems in parallel. Furthermore, opposite to previ-
ous implementations of MACS, here all agents perform individualistic actions while
social actions are performed only by selected sub-populations of agents.
Recent work by Zhang and Li (2007) has demonstrated that Tchebycheff decomposi-
tion can be effectively used to solve difficult multi-objective optimization problems.
Another recent example is Sindhya et al (2009) that uses Tchebycheff scalarization
to introduce a local search mechanisms in NSGA-II. In this paper, it will be demon-
strated how MACS based on Tchebycheff decomposition can achieve very good re-
sults on a number of cases, improving over previous implementations and state-of-
the-art multi-objective optimization (MOO) algorithms.
The new algorithm is here applied to a set of known standard test cases and to two
space mission design problems. The space mission design cases consider spacecraft
equipped with a chemical engine and performing a multi-impulse transfer. They are
part of a test benchmark for multi-impulsive problems that has been extensively stud-
ied in the single objective case but for which only a few comparative studies exist in
the multi-objective case (Minisci and Avanzini, 2009).
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The paper is organized as follows: section two contains the general formulation of the
problem with a brief introduction to Tchebycheff decomposition, the third section
starts with a general introduction to the multi-agent collaborative search algorithm
and heuristics before going into some of the implementation details. Section four
contains a set of comparative tests that demonstrates the effectiveness of the new
heuristics implemented in MACS. The section briefly introduces the performance
metrics and ends with the results of the comparison.

2 Problem Formulation

The focus of this paper is on finding the feasible set of solutions that solves the
following problem:

min
x∈D

f(x) (1)

where D is a hyperrectangle defined as D =
{
xj | xj ∈ [blj buj ] ⊆ R, j = 1, ..., n

}
and f is the vector function:

f : D → Rm, f(x) = [f1(x), f2(x), ..., fm(x)]T (2)

The optimality of a particular solution is defined through the concept of dominance:
with reference to problem (1), a vector y ∈ D is dominated by a vector x ∈ D
if fl(x) ≤ fl(y) for all l = 1, ...,m and there exists k so that fk(x) ̸= fk(y).
The relation x ≺ y states that x dominates y. A decision vector in D that is not
dominated by any other vector in D is said to be Pareto optimal. All non-dominated
decision vectors in D form the Pareto set DP and the corresponding image in criteria
space is the Pareto front
Starting from the concept of dominance, it is possible to associate, to each solution
in a finite set of solutions, the scalar dominance index:

Id(xi) = |{i∗ | i, i∗ ∈ Np ∧ xi∗ ≺ xi}| (3)

where the symbol |.| is used to denote the cardinality of a set and Np is the set of the
indices of all the solutions. All non-dominated and feasible solutions xi ∈ D with
i ∈ Np form the set:

X = {xi ∈ D | Id(xi) = 0} (4)

The set X is a subset of DP , therefore, the solution of problem (1) translates into
finding the elements of X . If DP is made of a collection of compact sets of finite
measure in Rn, then once an element of X is identified it makes sense to explore
its neighborhood to look for other elements of X . On the other hand, the set of non
dominated solutions can be disconnected and its elements can form islands in D.
Hence, multiple parallel exploration can increase the collection of elements of X .



4 Federico Zuiani, Massimiliano Vasile

2.1 Tchebycheff Decomposition

In Tchebycheff’ approach to the solution of problem (1), a number of scalar opti-
mization problems are solved in the form:

min
x∈D

g(f(x), λ, z) = min
x∈D

max
l=1,...,m

{λl|fl(x)− zl|} (5)

where z = [z1, ..., zm]T is the reference objective vector whose components are
zl = minx∈D fl(x), for l = 1, ...,m, and λl is the l-th component of the weight
vector λ. By solving a number of problems (5), with different weight vectors, one
can obtain different Pareto optimal solutions. Although the final goal is always to find
the set Xg , using the solution of problem (5) or index (3) has substantially different
consequences in the way samples are generated and selected. In the following, the
solution to problem (5) will be used as selection criterion in combination with index
(3).

3 MACS with Tchebycheff Decomposition

The key idea underneath multi-agent collaborative search is to combine local and
global search in a coordinated way such that local convergence is improved while
retaining global exploration (Vasile and Locatelli, 2009). This combination of local
and global search is achieved by endowing a set of agents with a repertoire of actions
producing either the sampling of the whole search space or the exploration of a neigh-
borhood of each agent. Actions are classified into two categories: social, or collabo-
rative, and individualistic. In this section, the key heuristics underneath MACS will
be described in details. Compared to previous implementations of MACS (Vasile and
Zuiani, 2010), this paper proposes a number of key innovations. First of all, Tcheby-
cheff decomposition is used in combination with dominance-based ranking to accept
the outcome of an action. The idea is that each agent can either try to improve its
dominance index or can try to improve one particular objective function by working
on a subproblem characterized by a subset of weights λ. This combination extends the
accepted individualistic moves and improves the spreading of the solutions in the cri-
teria space. The second innovation comes from an inversion of the policy to schedule
individualistic and social actions. In previous implementations the whole population
was participating in the implementation of social actions at every generation, while
an elite of agents was implementing individualistic actions. In this paper, this policy
is inverted and now all the agents perform individualistic actions while selected sub-
populations perform social actions either with other agents in the current population
or with elements in the archive. This inversion is quite significant as it translates into a
parallel local search performed by the whole population at each iteration, rather than
having the local search performed by a selected number of individuals at a particular
time of the evolution. More specific heuristics are described in the next sections.
The use of either dominance or Tchebycheff scalarization leads to the selection of dif-
ferent outcomes of the actions executed by the agents. With reference to Fig. 1(a) the
dominance criterion can be used to select a displacement of agent x in the dominating
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region. In this case only strongly dominant solutions are accepted as admissible for
a displacement of agent x. Tchebycheff scalarization, instead, allows for movements
in the region of decreasing g(x) in Fig.1(a).
This region extends the dominating region of Fig.1(a) and includes part of the non-
dominating region. Therefore, Tchebycheff scalarization, as defined in (5) allows for
the selection of weakly efficient solutions. If λ is kept constant the agent would
progressively try to align along the direction ζ (see Fig. 1(b)). The rectilinear line
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ζ divides the criteria space in Fig. 1(b) in two half-planes, one, below ζ, where
λ1|f1(x) − z1| > λ2|f2(x) − z2|, the other, above ζ, where λ1|f1(x) − z1| <
λ2|f2(x) − z2|. The rectilinear line ζ is, therefore, the locus of points, in the cri-
teria space, for which λ1|f1(x) − z1| = λ2|f2(x) − z2|. Fig. 1(b) shows that by
solving problem (5) one would take displacements in any direction that improves f1,
starting from a solution that is under the ζ line. If one of these displacements crosses
the ζ line, the solution of problem (5) would then generate displacements that im-
prove f2. This mechanisms allows for the generation of dominating steps (see Fig.
1(c)) as well as side steps (see Fig.1(d)). Side steps are important to move along the
Pareto front (see Lara et al (2010) for more details on the effect of side steps). In
MACS side steps were generated by accepting displacements in the non-dominating
regions of Fig.1(a) when no dominant solutions were available. In MACS2 instead
side steps are generated by selecting displacements according to Tchebycheff scalar-
ization when strongly dominant solutions are not available. Note however, that al-
though displacements are computed considering a combination of strong dominance
and Tchebycheff scalarization, the archive is filled with all the solutions that have
dominance index Id = 0 and a large reciprocal distance (see section 3.4).

3.1 General Algorithm Description

A population P0 of npop virtual agents, one for each solution vector xi, with i =
1, ..., npop, is deployed in the problem domain D, and is evolved according to Algo-
rithm 1.
The population Ph at iteration h = 0 is initialized using a Latin Hypercube distri-
bution. Each agent then evaluates the associated objective vector fi = f(xi) and all
non-dominated agents are cloned and inserted in the global archive Ag (lines 4 and 5
in Algorithm 1). The archive Ag contains the current best estimation of the target set
Xg . The q-th element of the archive is the vector aq = [ξq ϕq]

T where ξq is a vector
in the parameter space and ϕq is a vector in the criteria space.
Each agent is associated to a neighborhood Dρi with size ρi. The size ρi is initially
set to 1, i.e. representing the entire domain D (line 6 in Algorithm 1).
A set of nλ, m-dimensional unit vectors λk is initialized such that the first m vectors
are mutually orthogonal. The remaining nλ−m have random components instead. In
two dimensions the vectors are initialized with a uniform sampling on a unit circle and
in three dimensions with a uniform sampling on a unit sphere, while in n-dimensions
with a Latin Hypercube sampling plus normalization, such that the length of each
vector is 1 (see line 7 in Algorithm 1). For each vector λk, the value of an associated
utility function Uk is set to 1 (see line 8 in Algorithm 1). The utility function is the
one defined in Zhang et al (2009) and its value is updated every uiter iterations using
Algorithm 5. In this work it was decided to maintain the exact definition and settings
of the utility function as can be found in Zhang et al (2009), the interested reader can
therefore refer to Zhang et al (2009) for further details.
Each λk represents a subproblem in Eq. (5), i.e. it is used to compute the scalar
function gk. A total of nsocial = round(ρpopnpop) λ vectors are inserted in the index
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set Ia. The first m indexes in Ia correspond to the m orthogonal λ vectors, the other
nsocial −m are initially chosen randomly (line 9 of Algorithm 1).
Each λk for k = 1, ..., nλ is associated to the element in Ag that minimizes gk such
that:

ϕ
k
= argmin

ϕq

g(ϕq, λk, z) (6)

where z is the vector containing the minimum values of each of the objective func-
tions. Then, for each λl, with l ∈ Ia and associated vector ϕ

l
, a social agent xq is

selected from the current population Ph such that it minimizes g(fq, λl, z). The in-
dexes of all the selected social agents are inserted in the index set Iλ (see lines 14 to
17 in Algorithm 1). The indexes in Ia and Iλ are updated every uiter iterations.
At the h-th iteration, the population Ph is evolved through two sets of heuristics:
first, every agent xi performs a set of individualistic actions which aims at exploring
a neighborhood Dρi of xi (line 20 of Algorithm 1), the function explore described in
Algorithm 2 is used to implement individualistic actions. All the samples collected
during the execution of individualistic actions are stored in the local archive Al. The
elements of Al and the outcome of social actions are inserted in the global archive
Ag if they are not dominated by any element of Ag (line 22 in Algorithm 1).
Then, a sub-population Iλ of nsocial selected social agents performs a set of social
actions (see line 23 of Algorithm 1). Social actions aim at sharing information among
agents. More details about individualistic and social actions are provided in the fol-
lowing sections. The function com described in Algorithm 3 is used to implement
social actions.
At the end of each iteration the global archive Ag is resized if its size has grown larger
than nA,max (line 25 in Algorithm 1). The resizing is performed by function resize
described in Algorithm 4.
The value nA,max was selected to be the largest number between 1.5nλ and 1.5nA,out,
where nA,out is the desired number of Pareto optimal elements in Ag at the last itera-
tion. This resizing of the archive is done in order to reduce the computational burden
required by operations like the computation of the dominance index. It also provides
an improved distribution of the solutions along the Pareto front as it discards solutions
that are excessively cluttered.
At the end of each iteration the algorithm also checks if the maximum number of
function evaluations nfeval,max, defined by the user, has been reached and if so,
the algorithm terminates. At termination, the archive Ag is resized to nA,out if its
cardinality is bigger than nA,out.

3.2 Individualistic Actions

Individualistic actions perform an independent exploration of the neighborhood Dρi

of each agent. As in the original version of MACS (Vasile, 2005) the neighborhood
is progressively resized so that the exploration is over the entire D when the size
ρi is equal to 1 and becomes progressively more and more local as the neighbor-
hood shrinks down. In this new implementation of MACS each agent performs only
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a simple sampling along the coordinates. The neighborhood Dρi is a hypercube cen-
tered in xi with size defined by ρi such that each edge of the hypercube has length
ρi(b

u − bl). Algorithm 2 describes individualistic actions.
The search is performed along a single component of xi at a time, in a random order:
given an agent xi, a sample y+ is taken within Dρi along the j-th coordinate with
random step size r ∈ U(−1, 1), where U(−1, 1) is a uniform distribution over the
closed interval [-1 1], leaving the other components unchanged. If y+ dominates xi,
y+ replaces xi, otherwise another sample y− is taken in the opposite direction with
step size rr, with rr ∈ U(0, 1). Again, if y− dominates xi, y− replaces xi. If yi is
not dominating and is not dominated by xi and the index i of xi belongs to Iλ, then
yi replaces xi if yi improves the value of the subproblem associated to xi. Whether a
dominant sample or a sample that improves the value of the subproblem is generated
the exploration terminates. This is a key innovation that exploits Tchebycheff decom-
position and allows the agents to perform moves that improve one objective function
at the time. The search terminates also when all the components of xi have been ex-
amined, even if all the generated samples are dominated (see Algorithm 2 lines 3 to
40).
If all children are dominated by their parent, the size of the neighborhood ρi is re-
duced by a factor ηρ. Finally, if ρi is smaller than a tolerance tolconv, it is reset to 1
(see Algorithm 2 lines 41 to 46). In all the tests in this paper ηρ was taken equal to
0.5 as this value provided good results, on average, across all test cases.
All the non-dominated children generated by each agent xi during the exploration
form the local archive Al,i. The elements of Al,i are inserted in the global archive Ag

if they are not dominated by any element in Ag .

3.3 Social Actions

Social actions are performed by each agent whose index is in the set Iλ. Social actions
are meant to improve the subproblem defined by the weight vectors λk in Ia and
associated to the agents xi in Iλ. This is done by exploiting the information carried
by either the other agents in the population Ph or the elements in the archive Ag .
Social actions implement the Differential Evolution (DE) heuristic:

yi = xi +K[(s1 − xi) + F (s2 − s3)] (7)

where the vectors sl, with l = 1, .., 3, are randomly taken from the local social net-
work IT of each social agent xi. The local social network is formed by either the
nsocial agents closest to xi or the nsocial elements of Ag closest to xi. The probabil-
ity of choosing the archive vs. the population is directly proportional to pAvsP (see
line 3 of Algorithm 3). The parameter pAvsP is defined as 1 − e−|Ag|/nsocial . This
means that in the limit case in which the archive is empty, the population is always
selected. on the other hand, if the archive is much larger than the population, it is
more likely to be selected. Note that, if the size of Ag is below 3 elements, then the
population is automatically chosen instead (line 4 of Algorithm 3) as the minimum
number of elements to form the step in (7) is 3. The offspring yi replaces xi if it
improves the subproblem associated to xi otherwise yi is added to the archive Ag
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if it is not dominated by any of the elements of Ag. The value of F in this imple-
mentation is 0.9. Social actions, described in Algorithm 3, dramatically improve the
convergence speed once a promising basin of attraction has been identified. On the
other hand, in some cases social actions lead to a collapse of the subpopulation of so-
cial agents in one or more single points. This is in line with the convergence behavior
of DE dynamics presented in Vasile et al (2011). This drawback is partially miti-
gated by the remaining agents which perform only individualistic actions. Algorithm
3 implements social actions.

3.4 Archive Resizing

If the size of Ag exceeds a specified value (as detailed in Section 3.1), a resizing
procedure is initiated. The resizing procedure progressively selects elements from the
current archive and adds them to the resized archive until its specified maximum size
nA,max is reached. First the normalized Euclidean distances, in the objective space,
between all the elements of the current archive is computed (lines 3-8 of Algorithm
4). Then the l − th element minimizing the l − th objective function, with l =
1, ...,m, is inserted in the resized archive (lines 9 to 12 of Algorithm 4. The remaining
nA,max − m elements are iteratively selected by considering each time the element
of the current archive (excluding those which are already in the resized one) which
has the largest distance from its closet element in the resized archive (lines 13 to
17 of Algorithm 4). This procedure provides a good uniformity in the distribution
of samples. Future work will investigate the comparative performance of different
archiving strategies like the one proposed in Laumanns et al (2002) and Schütze et al
(2010).

3.5 Subproblem Selection

Every uiter iterations the active subproblems in Ia and the associated agents in Iλ
performing social actions are updated. The agents performing social actions are up-
dated through function select described in Algorithm 5.
The improvement γ between ϕ

k
(i.e. the best value of gk at current iteration in the

global archive) and ϕ
old,k

(the best value of gk, uiter iterations before) is calculated.
Then, the utility function Uk associated to λk is updated according to the rule de-
scribed in Zhang et al (2009) and reported in Algorithm 5, lines 2 to 10.
Once a value Uk is associated to each λk, nsocial new subproblems and associated
λ vectors are selected. The first m λ vectors are always the orthogonal ones. The
remaining nsocial−m are selected by taking tsize = round(nλ/60) random indexes
and then choosing the one with the largest value of Uk. This is repeated till Ia is full
(see lines 11 to 17 in Algorithm 5). Note that tsize cannot exceed the size of Itmp in
Algorithm 5 if the number of social agents nsocial is small compared to nλ

Finally, the agent xi, that minimizes the scalar objective function in Eq. (5) is associ-
ated to each λk with index in Ia, and its index is included in the new subset Iλ (lines
18 to 21 in Algorithm 5).
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Algorithm 1 MACS2
1: Set nfeval,max, npop, nsocial = round(ρpopnpop), F , tolconv , nA,out, uiter

2: Set nλ = 100m, nA,max = round(1.5max([nλ, nA,out]))
3: Set nfeval = 0
4: Initialize population Ph, h = 0
5: Insert the non-dominated elements of P0 in the global archive Ag

6: ρi = 1, ∀i ∈ {1, ..., npop}
7: Initialize λk for k ∈ {1, ..., nλ} such that ∥λk∥ = 1
8: Initialize utility function vector Uk = 1,∀k ∈ {1, ..., nλ}
9: Select the nsocial active subproblems λl, and save their indexes l in the index set Ia

10: Initialize δl = maxq ϕq,l −minq ϕq,l, zl = minq ϕq,l, q ∈ {1, ..., |Ag |}, l = 1, ...,m,
11: for all k ∈ {1, ..., nλ} do
12: ϕ

k
= argminϕq

g(ϕq , λk, z), q = 1, ..., |Ag |
13: end for
14: for all λl, l ∈ Ia do
15: Select the [xqfq ] ∈ Ph which minimises g(fq , λl, z), l ∈ Ia
16: and save its index in the list of the social agents Iλ
17: end for
18: while nfeval < nfeval,max do
19: h = h+ 1
20: [Ph, nfeval, Al, ρ] = explore(Ph−1, nfeval, n, ρ,b

l,bu, f , λ, Iλ, Ia)
21: If necessary, update the vector of the best objectives z, with Al

22: Update archive Ag with non dominated elements of Al

23: [y, φ, nfeval, Ph, Ag ] = com(Ph, Ag ,bl,bu, nfeval, n, F, f , λ, Iλ, Ia)
24: if |Ag | > nA,max then
25: Ag = resize(Ag ,m, nA,max)
26: end if
27: if ( mod (h, uiter) = 0) then
28: [Ia, Iλ,U, ϕ] = select(U, λ, ϕ, Pk, Ag , z,m, nsocial, nλ)
29: end if
30: end while
31: Ag = resize(Ag ,m, nA,out)

4 Experimental Results

The new implementation of MACS is here called MACS2. This section presents the
performance of MACS2 on a standard benchmark for multi-objective optimization
algorithms and on some space-related test cases. Through an experimental analysis
an optimal settings for MACS2 is derived. The results obtained with MACS2 will
also be compared with those of MACS and other known multi-objective optimiza-
tion algorithms (Zhang and Suganthan, 2009). The standard benchmark problems
aim at optimizing the UF1-10 functions in the CEC09 test suite (Zhang et al, 2008)
and the test instances ZDT2, ZDT4, ZDT6 (Zitzler et al, 2003) . UF1 to UF7 are
bi-objective test functions with 30 optimization parameters. UF8 to UF10 are tri-
objective functions, again with 30 optimization parameters. The CEC09 competition
rules specified 300000 function evaluations and 100 and 150 elements for the out-
put Pareto fronts for the bi- and tri-objective functions respectively. ZDT2 ZDT4 and
ZDT6 are bi-objective test cases with 30 parameters for the first one and 10 for the
remaining two. They are tested running the algorithm for 25000 evaluations and tak-
ing an output front of 200 elements. The space-related test instances are given by two
trajectory optimization problems as described in Minisci and Avanzini (2009); Vasile
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Algorithm 2 explore - Individualistic Actions
1: ∆ = (bu − bl)/2
2: for all i = 1 : npop do
3: Set Al,i =Ø, pi ∈ Ia
4: Take a random permutation IE of {1, ..., n}
5: for all j ∈ IE do
6: Take a random number r ∈ U(−1, 1)
7: y+ = xi

8: if r > 0 then
9: y+j = min{y+j + rρi∆j , b

u
j }

10: else
11: y+j = max{y+j + rρi∆j , b

l
j}

12: end if
13: if y+ ̸= xi then
14: Evaluate φ+ = f(y+)
15: nfeval = nfeval + 1
16: if (y+ � xi) then
17: Al,i = Al,i ∪ {[y+ φ+]}
18: end if
19: if y+ ≺ xi ∨ (i ∈ Iλ ∧ g(φ+, λpi , z) < g(fi, λpi , z)) then
20: xi = y+; break
21: end if
22: end if
23: y− = xi

24: Take a random number rr ∈ U(0, 1)
25: if r > 0 then
26: y−j = max{y−j − rrρi∆j , b

l
j}

27: else
28: y−j = min{y−j + rrρi∆j , b

u
j }

29: end if
30: if y− ̸= xi then
31: Evaluate φ− = f(y−)
32: nfeval = nfeval + 1
33: if y− � xi then
34: Al,i = Al,i ∪ {[y− φ−]}
35: end if
36: if y− ≺ xi ∨ (i ∈ Iλ ∧ g(φ−, λpi , z) < g(fi, λpi , z)) then
37: xi = y−; break
38: end if
39: end if
40: end for
41: if y− ≻ xi ∧ y+ ≻ xi then
42: ρi = ηρρi
43: if ρi < tolconv then
44: ρi = 1
45: end if
46: end if
47: end for
48: Al =

∪
i=1,...,npop

Al,i

and Zuiani (2011). The former is a 3-impulse transfer between a circular Low Earth
Orbit (LEO) with radius r0 = 7000km to a Geostationary Orbit (GEO) with radius
rf = 42000km. The latter test case, Cassini, describes a trajectory optimization in-
stance from Earth to Jupiter with four intermediate gravity assists at Venus (twice),
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Algorithm 3 com - Social Actions
1: pAvsP = 1− e−|Ag|/nsocial

2: for all i ∈ Iλ do
3: AvsP = r < pAvsP ,r ∈ U(0, 1), pi ∈ Ia
4: if AvsP ∧ |Ag | ≥ 3 then
5: Select the nsocial closest elements of the archive Ag to the agent xi and save their indexes in

the set IT
6: else
7: Select the nsocial closest agents of the population Pk to the agent xi and save their indexes

in the set IT
8: end if
9: K ∈ U(0, 1)

10: Randomly select s1 ̸= s2 ̸= s3 ∈ IT
11: y = xi +K(s3 − xi) +KF (s1 − s2)
12: for all j ∈ {1, ..., n} do
13: r ∈ U(0, 1)
14: if yj < blj then
15: yj = blj + r(yj − blj)
16: else if yj > buj then
17: yj = buj − r(buj − yj)
18: end if
19: end for
20: if y ̸= xi then
21: Evaluate φ = f(y)
22: nfeval = nfeval + 1
23: end if
24: If necessary, update z with φ
25: if g(φ, λpi , z) < g(fi, λpi , z) then
26: fi = φ, xi = y
27: end if
28: Update archive Ag with non-dominated elements of {[y φ]}
29: end for

Algorithm 4 resize - Archive Resizing
1: nA = |Ag |, S =Ø
2: δj = maxi ϕq,j −mini ϕq,j , ∀j = 1, ...,m
3: for all q ∈ {1, ..., (nA − 1)} do
4: for all i ∈ {(q + 1), ..., nA} do
5: dq,i = ∥(ϕq − ϕi)/δ∥
6: di,q = dq,i
7: end for
8: end for
9: for all l ∈ {1, ...,m} do

10: S = S ∪ {argminq(ϕq,l)}
11: end for
12: Sn = {1, ..., nA} \ S
13: for all i ∈ {m+ 1, ..., nA,max} do
14: lS = argmaxl(minq(dq,l)), q ∈ S, l ∈ Sn

15: S = S ∪ {lS}
16: Sn = Sn \ {lS}
17: end for
18: Ag = {ai|∀i ∈ S}
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Algorithm 5 select - Subproblem Selection
1: ϕ

old
= ϕ

2: for all k ∈ {1, ..., nλ} do
3: ϕ

k
= argminϕq

g(ϕq , λk, z), q ∈ {1, ..., |Ag |}
4: γ = (g(ϕ

old,k
, λk, z)− g(ϕ

k
, λk, z))

5: if γ > 0.001 then
6: Uk = 1
7: else
8: Uk = (0.95 + 50γ)Uk

9: end if
10: end for
11: tsize = round(nλ/60)
12: Ia = {1, ...,m}
13: for all i ∈ {m+ 1, ..., nsocial} do
14: Randomly select a subset Isel of tsize elements of {1, .., nλ}
15: k̄ = argmaxk Uk, k ∈ Isel
16: Ia = Ia ∪ {k̄}
17: end for
18: for all λl, l ∈ Ia do
19: Select the [xqfq ] ∈ Ph which minimises g(fq , λl, z), l ∈ Ia
20: and save its index in the list of the social agents Iλ
21: end for

Earth and Jupiter respectively. For both test cases the objective functions to be min-
imized are total ∆V and time of flight. The 3-impulse test case has 5 optimization
parameters and is run for 30000 function evaluations while Cassini has 6 parameters
and is run for 600000 evaluations as it was demonstrated, in the single objective case,
to have multiple nested local minima with a funnel structure (Vasile et al, 2011). The
metrics which will be used in order to evaluate the performance of the algorithms
are chosen so to have a direct comparison of the results in this paper with those in
previous works. Therefore, for the CEC09 test set the IGD performance metric will
be used (Zhang et al, 2008):

IGD(A,P ∗) =
1

|P ∗|
∑
v∈P∗

min
a∈A

∥v − a∥ (8)

where P ∗ is a set of equispaced points on the true Pareto front, in the objective space,
while A is the set of points from the approximation of the Pareto front. As in Zhang
et al (2008), performance will be assessed as mean and standard deviation of the IGD
over 30 independent runs. Note that a second batch of tests was performed taking
200 independent runs but the value of the IGD was providing similar indications.
For the ZDT test set and for the space problems, the success rate on the convergence
Mconv and spreading Mspr metrics are used instead. Note that, the IGD metric has
been preferred for the UF test problems in order to keep consistency with the results
presented in the CEC’09 competition. Convergence and spreading are defined as:

Mconv =
1

|A|
∑
a∈A

min
v∈P∗

∥v − a

δ
∥ (9)
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Mspr =
1

|P ∗|
∑
v∈P∗

min
a∈A

∥v − a

δ
∥ (10)

with δ = maxi af,i −mini af,i. It is clear that Mspr is the IGD but with the solution
difference, in objective space, normalized with respect to the exact (or best-so-far)
solution. In the case of the ZDT test set, the two objective functions range from 0 to
1, therefore no normalization is required and Mspr is in fact the IGD. The success
rates for Mconv and Mspr is defined as pconv = P (Mconv < τconv) and pspr =
P (Mspr < τspr) respectively, or the probability that the indexes Mconv and Mspr

achieve a value less than the threshold τconv and τspr respectively. The success rates
pconv and pspr are computed over 200 independent runs, hence they account for the
number of times Mconv and Mspr are below their respective thresholds. According
to the theory developed in Minisci and Avanzini (2009); Vasile et al (2010), 200 runs
provide a 5% error interval with a 95% confidence level. Values for thresholds for
each test case are reported in Table 1

Table 1 Convergence tolerances.

3-impulse Cassini UF1 UF2 UF3 UF4 UF5 UF6
τconv 5e− 2 7.5e− 3 5e− 3 5e− 3 2e− 2 3.5e− 2 3e− 2 3e− 2
τspr 5e− 2 5e− 2 1e− 2 1e− 2 3e− 2 3.5e− 2 5e− 2 3e− 2

UF7 UF8 UF9 UF10 ZDT2 ZDT4 ZDT6
τconv 5e− 3 2e− 2 3e− 2 3e− 2 1e− 3 1e− 2 1e− 3
τspr 1e− 2 6e− 2 4e− 2 6e− 2 3e− 3 1.5e− 2 3e− 3

MACS2 was initially set with a some arbitrary values reported in Table 2. The size of
the population was set to 60 for all the test cases except for the 3-impulse and ZDT
functions. For these test cases the number of agents was set to 30. In the following,
these values will identify the reference settings.

Table 2 Reference settings for MACS2. Values within parenthesis are for 3-impulse and ZDT test cases.

npop ρpop F Tolconv

60 (30) 0.33 0.5 0.0001

Starting from this reference settings a number of tuning experiments were run to
investigate the reciprocal influence of different parameters and different heuristics
within the algorithm. Different combinations of npop, ρpop, F and Tolconv were con-
sidered. Furthermore, the social moves were activated or de-activated to assess their
impact. The success rates were then used to tune the algorithm in order to improve
the spreading, and therefore the IGD. After an extensive testing of the algorithms, it
was realized that the use of the success rates offers a clearer metric, than the mean
and variance of the IGD, to understand the impact of some user-defined parameters.
In the following, only the most significant results with the most significant metric are
presented.
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Table 3 summarizes the success rates on the Cassini test case for different values of
npop and ρpop but with all the heuristics active.

Table 3 Tuning of npop and ρpop on the Cassini test case

pconv

ρpop\npop 20 60 150
0.2 0.22 0.34 0.76
0.5 0.16 0.41 0.78
0.8 0.35 0.40 0.77
pspr
ρpop\npop 20 60 150
0.2 0.32 0.45 0.31
0.5 0.45 0.48 0.26
0.8 0.37 0.40 0.26

One can see that the best convergence is obtained for npop = 150 and in particular
when combined with ρpop = 0.5. On the other hand, best spreading is obtained
with medium sized populations with npop = 60. A good compromise seems to be
npop = 150 and ρpop = 0.2. Results on the other test cases (as shown in Table 4,
Table 5 and Table 6, with npop = 150 and ρpop = 0.2) show in general that large
populations and small ρpop are preferable. This also means that social actions on a
large quota of the populations are undesirable and it is better to perform social moves
among a restricted circle of agents. Table 4 reports the results of the tuning of MACS2
on the 3-imp and Cassini test cases. Table 5 and Table 6 report the results of the tuning
of MACS2 on the UF and ZDT test sets respectively.
Table 4 shows a marked improvement of pconv on the Cassini when the population
size is 150. Likewise, Table 5 shows that in general, with a population of 150 agents,
there is an improvement in performance, and on pspr in particular, on the UF1, 2,
6, 8 and 9 test cases. Notable exceptions are the ZDT in Table 6, for which the best
performance is obtained for a small population with npop = 20.
The impact of F is uncertain in many cases, however, Table 7 shows for example that
on the UF8 test case a better performance is obtained for a high value of F . Table 5
and Table 6 show that the default value for Tolconv already gives good performance
and it does not seem advantageous to reduce it or make it larger.
The impact of social actions can be seen in Table 4, Table 5 and Table 6. Table 4
shows that on the 3-impulse and Cassini test cases the impact is clearly evident, since

Table 4 Tuning of MACS2 on the 3-impulse and Cassini test cases

3-impulse Cassini
pconv pspr pconv pspr

Reference 0.99 0.99 0.38 0.36
no social 0.47 1 0 0.18
npop = 150, ρpop = 0.2 1 1 0.76 0.31
F = 0.9 0.97 0.99 0.50 0.36
Tolconv = 10−6 0.99 0.99 0.38 0.45
Tolconv = 10−2 0.97 0.99 0.33 0.39
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Table 5 Tuning of MACS2 on the UF test cases

Reference no social npop = 150 npop = 20 Tolconv =
ρpop = 0.2 ρpop = 0.8 10−6

UF1 pconv 1 1 1 1 1
pspr 1 1 1 0.11 1

UF2 pconv 1 1 1 1 1
pspr 1 1 1 0.46 1

UF3 pconv 0.95 0.32 0.99 0.86 0.95
pspr 0.99 0.11 1 0.97 1

UF4 pconv 1 1 1 0.06 1
pspr 1 1 1 0.54 1

UF5 pconv 0.59 0.10 0.62 0.91 0.58
pspr 0.85 0.21 1 0.39 0.85

UF6 pconv 0.58 0.50 0.32 0.54 0.61
pspr 0.40 0.42 0.45 0 0.37

UF7 pconv 1 0.91 1 0.94 1
pspr 0.98 0 0.98 0.74 0.97

UF8 pconv 0.86 0 0.88 0.89 0.88
pspr 0.48 0.01 1 0.04 0.54

UF9 pconv 0.68 0.12 0.84 0.31 0.74
pspr 0.60 0 1 0 0.64

UF10 pconv 0 0.01 0 0.28 0.01
pspr 0 0 0 0 0

Table 6 Tuning of MACS2 on ZDT test cases

ZDT2 ZDT4 ZDT6
τconv = 1e− 3 τconv = 1e− 2 τconv = 1e− 3
τspr = 3e− 3 τspr = 1.5e− 2 τspr = 3e− 3

Reference pconv 1 0 0.93
pspr 1 0 1

no social pconv 1 0 0.91
pspr 1 0 0.98

npop = 150 pconv 0.20 0 0.60
ρpop = 0.2 pspr 0.17 0 1
npop = 20 pconv 1 0.02 0.96
ρpop = 0.8 pspr 1 0.02 1
F = 0.9 pconv 1 0 0.96

pspr 1 0 1
Tolconv = 1e− 6 pconv 1 0 0.96

pspr 1 0 1
MACS2 (Tuned) pconv 1 0 0.96

pspr 1 0 1
MACS pconv 0.82 0.81 0.63

pspr 0 0.93 0.0

Table 7 Tuning of F on the UF8 test cases

UF8
F 0.1 0.5 0.9
IGD 6.75e-2 (3.20e-5) 6.06e-2 (2.56e-5) 5.57e-2 (1.87e-5)



Multi Agent Collaborative Search Based on Tchebycheff Decomposition 17

there is a marked worsening of both pconv and pspr. On the the UF benchmark, see
Table 5, removing social actions induces a sizeable worsening of the performance
metrics. This is true in particular for functions UF1, UF3, UF5, UF6, UF7, UF8 and
UF9. Notable exceptions are UF2, UF4 and UF10. As a results of the tuning test cam-
paign, the settings reported in Table 8 are recommended. Note that the recommended
population size for all the cases except the ZDT functions, is 150 agents, while for
the ZDT functions remains 20 agents.

Table 8 Settings for MACS2 after tuning.

npop ρpop F Tolconv

150(20) 0.2(0.8) 0.9 10−4

With these settings, the performance of MACS2 was compared, on the UF test suite
in Table 9, with that of MACS, Multi objective Evolutionary Algorithm based on
Decomposition (MOEAD, Zhang and Li (2007)), Multiple Trajectory Search (MTS,
Tseng and Chen (2009)) and Dynamical Multi Objective Evolutionary Algorithm
(DMOEADD, Liu et al (2009)). The last three are the best performing algorithms in
the CEC09 competition (Zhang and Suganthan, 2009).

Table 9 Performance comparison on UF test cases: Average IGD (variance within parenthesis)

MACS2 MACS MOEAD MTS DMOEADD
UF1 4.37e-3 (1.67e-8) 1.15e-1 (1.66e-3) 4.35e-3 6.46e-3 1.04e-2
UF2 4.48e-3 (1.16e-8) 5.43e-2 (4.19e-4) 6.79e-3 6.15e-3 6.79e-3
UF3 2.29e-2 (5.21e-6) 6.56e-2 (1.42e-3) 7.42e-3 5.31e-2 3.34e-2
UF4 2.64e-2 (3.48e-7) 3.36e-2 (1.66e-5) 6.39e-2 2.36e-2 4.27e-2
UF5 2.95e-2 (1.56e-5) 6.44e-2 (1.17e-3) 1.81e-1 1.49e-2 3.15e-1
UF6 3.31e-2 (7.42e-4) 2.40e-1 (1.43e-2) 1.76e-1 5.91e-2 6.67e-2
UF7 6.12e-3 (3.14e-6) 1.69e-1 (1.22e-2) 4.44e-3 4.08e-2 1.03e-2
UF8 4.98e-2 (2.05e-6) 2.35e-1 (1.77e-3) 5.84e-2 1.13e-1 6.84e-2
UF9 3.23e-2 (2.68e-6) 2.68e-1 (1.71e-2) 7.90e-2 1.14e-1 4.90e-2
UF10 1.41e-1 (5.59e-5) 1.25 (4.28e-1) 4.74e-1 1.53e-1 3.22e-1

As shown in Table 9, the tuned version of MACS2 outperforms the other algorithms
on UF2, 3, 6, 8, 9 and 10, on UF1 is very close to MOEAD, while it ranks second on
UF5 and 10 and finally third on UF7.
In Table 6 one can find the comparison against the old version MACS on the ZDT
test set. MACS2 results generally better except on the ZDT4 case. Note that Mspr

of MACS for both ZDT2 and ZDT6 is always between 0.6e-2 and 0.9e-2, therefore
always above the chosen threshold τspr.
The poor performance of MACS2 on ZDT4, might be due to the relative ineffective-
ness of the pattern search along the coordinates on this particular test case. In the
attempt to improve performance on ZDT4, a second test set was run with a slightly
modified version of MACS2: the number of components which are explored by each
agent at the h-th iteration was reduced to 1 only, compared to the n in Algorithm 2,
at the same time, all individuals were performing social actions, i.e. nsocial = npop.
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Table 10 Comparison of MACS, MACS2 and MOEAD on 3-impulse and Cassini test cases

3-impulse Cassini
pconv pspr pconv pspr

MACS 0.99 0.99 0.87 0.49
MACS2 (Tuned) 0.99 1 0.77 0.34
MOEAD 1 0.49 0.51 0.01
MTS 0.57 1 0.05 0.32
NSGA-II 0.03 1 0.90 0.26

With this modifications, a success rate of 0.66 both on convergence and spreading is
achieved although the pconv and pspr on ZDT2 drops to 0 and the pconv on ZDT6
drops to 23%.
Table 10 shows a comparison of the performance of MACS2 on 3-impulse and Cassini,
against MACS, MOEAD, MTS and NSGA-II. Both MACS and MACS2 are able to
reliably solve the 3-impulse case, while MOEAD manages to attain good conver-
gence but with only mediocre spreading. On the contrary, both MTS and NSGA-II
achieve good spreading but worse convergence, indicating that their fronts are quite
well distributed but probably too distant from the true Pareto front. Cassini is a rather
difficult problem and this is reflected by the generally lower metrics achieved by most
algorithms. Only MACS, MACS2 and NSGA-II reach a high convergence ratio, but
for the last two, their spreading is still rather low. After inspection of each of the
200 Pareto fronts one can see that such a low spreading implies that the algorithm
did not converge to the global Pareto front. Fig.1 illustrates the difference between
MACS and NSGA-II. The behavior of MACS2 is similar to the one of NSGA-II.
MACS achieves the best known value for objective function ∆v. Both NSGA-II and
MACS2 instead fall in the basin of attraction of the second best value for objective
function ∆v (Vasile et al, 2009).
The performance of MOEAD and MTS on Cassini is rather poor, with the former
attaining only 50% convergence but with almost zero pspr; conversely, only one third
of the latter’s runs are below the spreading threshold and almost none meets the con-
vergence criterion.

5 Conclusions

This paper has presented a version of Multi-Agent Collaborative Search based on
Tchebycheff decomposition. Compared to the previous version of MACS a number
of heuristics has been revised and in particular there was an inversion of the per-
centage of agents performing social and individualistic moves. The new version, de-
nominated MACS2, demonstrated remarkable performance on known difficult bench-
marks outperforming known algorithms. On the Cassini real case application, and on
benchmark function ZDT4, MACS2 falls back behind its predecessor. In both cases
there are multiple local Pareto fronts corresponding to strong attractors. From a first
analysis it seems that the simple pattern search implemented in MACS2 is not suf-
ficient and is limited by its search along the coordinates only. In MACS the search
included random directions and directions derived from DE and PSO heuristics. It
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Fig. 1 Comparison of Pareto fronts for the Cassini case

seems reasonable to assume that a more flexible set of individualistic moves might
improve MACS2. This is the subject of current developments. Also, from the tests
performed so far the actual contribution of the utility function is uncertain and more
investigations are underway.
The use of a selection operator based on Tchebycheff decomposition, instead, appears
to be beneficial in a number of cases. In MACS2, in particular, agents operating at
the extreme of the range of each of each objective are always preserved and forced
to improve a subproblem. A better solution of the subproblems is expected to further
improve convergence. One possibility currently under investigation is to make some
agents use a directed search exploiting the directions defined by the λ vectors.
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