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Orbits in a Generalized Two-Body Problem

Colin R. McInnes¤

University of Glasgow, Glasgow, Scotland G12 8QQ, United Kingdom

The two-body problem is a well-known case of the general central force problem with an attractive, inverse
square force. However, there are forms of spacecraft propulsion, such as solar sails and minimagnetospheric
plasma propulsion, which generate a repulsive, inverse square force. Because this force can be modulated, a more
general central force problem is then formed. Such a problem is investigated and the families of orbits available
using both forward integration and an inverse approach are explored. Both are used to explore various modes of
transfer between circular coplanar orbits and to determine strategies for escape.

Nomenclature
a = orbit semimajor axis
e = orbit eccentricity
G = gravitational constant
h = speci� c orbital angular momentum
m = mass
r = orbit radius
T = orbit period
t = time
u = inverse of orbit radius
W = Wronskian
¯ = lightness number
µ = polar angle
¸ = spiral parameter
¹ = gravitational parameter, G.m1 C m2/
¿ = transfer duration
! = argument of perigee

Introduction

B OTH solar sail propulsion1 and minimagnetospheric plasma
propulsion2 (M2P2) generate thrust-induced forces that vary

as the inverse square of heliocentric distance (as do so-called mag-
netic sails3/. For a solar sail, a � xed-sail area will intercept a � ux
of photons that diminishes as the inverse square of heliocentric dis-
tance, whereas for M2P2 propulsion, the power available to drive
the system diminishesas the inverse square of heliocentricdistance.
(Although an M2P2 system using a nuclear power source would
provide constant thrust.) The M2P2 system provides an essentially
radial thrust as its magnetic � eld de� ects the solar wind plasma,
whereas a large, high-performancesolar sail is well suited to deliv-
ering a radial thrust because sun pointing can be achieved passively
if the sail has a slightly conical formwith the apexdirectedsunward.
This is a differentmode of operationfrom articulatedsolar sails that
can direct the sail thrust vector within 90 deg of the sun line. How-
ever, high performancesails may be unsuited to such articulationto
minimize loads on their gossamer structure.

In addition to the inverse square form of these propulsive forces,
the thrust magnitude can in principle be modulated between limits.
For the M2P2 system, the thrust can be modulated by in� ating or
de� ating its bubble of magnetic � eld, whereas a solar sail can in
principle alter its effective area. This can be achieved by partly
restowingthe sail, or rotatingpanelsof a segmentedsail.More likely,
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for a high-performance spin-stabilized disk sail, a variation of the
coning angle of the angular velocity vector will lead to an averaged,
modulated radial thrust. The main constraint on such systems is
that the inverse square thrust is always directed along the sun line,
radiallyaway from the sun. In addition,therewill be somemaximum
available thrust available, determined by the sail area or the M2P2
sizing.

The dynamicsof low-thrustpropulsionwith constantradial thrust
has previously been considered by a number of authors.4¡8 Here,
the related problem of a modulated, inverse square radial thrust is
posed and solved with speci� c application to solar sail and M2P2
propulsion. As will be seen, large families of orbits can be inves-
tigated using analytical methods resulting in both closed and open
orbits. The general central force problem with the force scaling as
r N (integer N / has long been investigated, for example, see Ref. 9.
Here, however, we present the thrust modulation as a function of
polar angle and exploit such general force laws for speci� c applica-
tions such as orbit transfer.Although there is clear applicationof the
open orbits to escapemissions, such as fast trips to the heliopause,10

closed orbits may also � nd applicationsfor space physics missions
that monitor and explore the structure of the solar wind plasma.

Central Force Problem
The equationsofmotionfor a spacecraftwith a modulated,inverse

square radial thrust may be written in plane polar coordinates (r; µ )
as1

Rr .t/ ¡ r .t/ Pµ.t/2 D ¡[1 ¡ ¯.µ/]
¹

r.t/2
(1a)

1
r.t/

d

dt
[r.t/2 Pµ.t/] D 0 (1b)

where r .t/ is the heliocentric distance of the spacecraft (m2/ from
the sun (m1/ and µ is the polar angle of the spacecraft, measured
anticlockwise from some reference direction, as de� ned in Fig. 1.
Because both the spacecraft thrust and solar gravity have an inverse
square variation, the induced thrust can be parameterized by the
lightness number ¯ , de� ned as the ratio of the thrust force to solar
gravitational force acting on the spacecraft. For the case of a solar
sail, a sail with a � xed surface area will have a constant lightness
number,whereas for M2P2 propulsion,a � xed input power will also
lead to a constant lightnessnumber. However, the effective sail area
and M2P2 thrust can be modulated, so that ¯ can be a function of µ ,
with the constraintthat 0 · ¯ · Q̄ where Q̄ is the maximum lightness
number attainable.

The equations of motion may now be reduced because a central
force problem is still being considered, and so orbital angular mo-
mentum is conserved. Integrating Eq. (1b) yields r 2 Pµ D h, where h
is the speci� c orbital angular momentum. Then, Eq. (1a) may be
written as

Rr.t/ ¡ h2=r.t/3 D ¡[1 ¡ ¯.µ/][¹=r.t/2] (2)
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Fig. 1 Central force problem.

When the substitution u.µ/ D 1=r .µ/ is made, and conservation of
angularmomentum is used to change the independentvariable from
time t to polar angle µ , it can be seen that Eq. (2) is transformed to

u 00.µ/ C u.µ/ D .¹=h2/[1 ¡ ¯.µ/] (3)

where the prime indicatesa derivativewith respect to polar angle µ .
Because¯.µ/ canbe speci� ed a priori,with theconstraint0 · ¯ · Q̄,
Eq. (3) can in principle be solved in closed form to determine the
resulting spacecraft orbit r.µ/. To solve Eq. (3), the associated ho-
mogeneous equation, de� ned by

u00.µ/ C u.µ / D 0 (4)

must be solved. The general solution of this homogeneousequation
u H .µ/ is then given by

u H .µ/ D C1u1.µ/ C C2u2.µ / (5)

where C1 and C2 are arbitraryconstants,determined from the initial
conditionsof the problem,and u1.µ/ and u2.µ / are linearly indepen-
dent solutions to Eq. (4). It is clear that two solutions to Eq. (4) are
u1.µ / D cosµ and u2.µ/ D sin µ , the fundamental set of solutions
to Eq. (3). The linear independenceof these two solutions,although
clear, can be veri� ed by calculating the Wronskian W .µ/ so that

W .µ/ D
­­­­
u1.µ/ u2.µ/

u0
1.µ/ u 0

2.µ/

­­­­D 1 (6)

Given that Eq. (3) has no dependence on u 0.µ/, it is expected
that W 0.µ/ D 0. Now that the general solution to the associated
homogeneous equation has been determined, the general solution
to Eq. (3) can be found by � nding a second, particular solution
u P .µ /. This particular solution can be found using the method
of variation of parameters, by proposing a solution of the form
u P .µ / D v1.µ/u1.µ/ C v2.µ /u2.µ/. It canbe shown that theunknown
functions v1.µ / and v2.µ/ must satisfy

v 0
1.µ/u1.µ/ C v 0

2.µ/u2.µ/ D 0 (7a)

v 0
1.µ/u0

1.µ/ C v0
2.µ/u 0

2.µ/ D .¹=h2/[1 ¡ ¯.µ /] (7b)

When it is noted that W .µ/ D 1, the solution to this set of simulta-
neous, � rst-order differential equations is then given by

v1.µ/ D ¡ ¹

h2

Z
u2.µ/[1 ¡ ¯.µ/] dµ (8a)

v2.µ/ D ¹

h2

Z
u1.µ/[1 ¡ ¯.µ/] dµ (8b)

so that the particular solution to Eq. (3) may be written as

u P .µ/ D ¡ ¹

h2
u1.µ/

Z
u2.µ /[1 ¡ ¯.µ/] dµ

C
¹

h2
u2.µ/

Z
u1.µ/[1 ¡ ¯.µ/] dµ (9)

Finally, the general solution to Eq. (3) is given by u.µ/ D uH .µ/ C
u P .µ/ so that

u.µ/ D C1 cosµ C C2 sin µ ¡
¹

h2
cos µ

Z
sinµ [1 ¡ ¯.µ/] dµ

C ¹

h2
sin µ

Z
cos µ [1 ¡ ¯.µ/] dµ (10)

For closed periodic orbits u.µ/, the orbit period T can now be ob-
tained, de� ned here as the time between successive periapsis pas-
sages (at µO and µP /. The orbit period can be obtained in closed
form by a quadrature using r 2 Pµ D h so that

T D
1
h

Z
µP

µO

dµ

u2.µ/
(11)

If ¯.µ/ is now de� ned from a large class of elementary functions,
the integrals in Eq. (10) can be performed and u.µ/ obtained and,
thus, so can the orbit r.µ/.

For example, if the lightness number is modulated according to
¯.µ/ D cos2 µ , so that 0 · ¯ · 1, the described methodologyyields

u.µ/ D .uO =6/[3 C .6C1=u O / cos µ C cos 2µ C .6C2=uO / sin µ ]

(12)

Then, if the initial conditionsof the problemare chosensuch that the
spacecraftbeginsona circularorbitwith u.0/ D u O andu 0.0/ D 0, so
that ¹=h2 D uO , the constantsare found to be C1 D u0=3 and C2 D 0.
Therefore, because uO D 1=rO , where rO is the initial circular orbit
radius, and r.µ/ D u.µ /¡1, it can be seen that the resulting orbit is
de� ned by

r.µ/ D 6rO

3 C 2 cosµ C cos 2µ
(13)

where rO · r.µ / · 4rO , as shown in Fig. 2. The orbit period is then
obtained from Eq. (11) as

T D
¡
r

3
2

O

¯p
¹

¢£
3

3
4

p
2
¡
3 C

p
3
¢
¼

¤
(14)

It has been shown then that the classical two-body problem can be
extended to a more generalized central force problem applicable to

Fig. 2 Closed orbit for ¯ = cos2 µ.



MCINNES 745

spacecraft that are able to generate an inverse square radial, mod-
ulated thrust. If the spacecraft lightness number can be de� ned as
a function of polar angle, the resulting orbit and orbit period can
in general be determined in closed form. Applications to both solar
sail and M2P2 propulsion will be explored later.

Inverse Problem
Now that the forward integration problem has been investigated

andsolved, the inverseproblemwill be considered.From Eq. (3) it is
clear that, if u.µ / is suf� cientlysmooth, then the required functional
formof the lightnessnumber can bedeterminedin closed form using

¯.µ/ D 1 ¡ .h2=¹/[u 00.µ / C u.µ/] (15)

Therefore, with the constraint 0 · ¯ · Q̄ imposed, large families of
orbitscan bede� ned a prioriand the requiredlightnessnumbermod-
ulation determined using Eq. (15). The key constraint on Eq. (15)
is that ¯ ¸ 0. Again, if it is assumed that u.0/ D uO and u 0.0/ D 0,
then ¹=h2 D uO , which implies that

u00.µ/ C u.µ/ · uO (16)

This constraint will be used later to determine bounds on admissi-
ble orbits that possess the property that ¯ ¸ 0. Now that the inverse
problem has been de� ned, several individual cases will be consid-
ered.

Circular Orbit
For a closedcircularorbit of radius R, the orbit equationis simply

r .µ/ D R so that Eq. (15) yields

¯ D 1 ¡ h2=¹R (17)

It can be seen that the minimum distance at which a circular orbit
can be sustained is constrained by the orbit angular momentum h.
Therefore, in order that ¯ ¸ 0, it is clear that there is a minimum
orbit radius such that R ¸ h2=¹. The orbit period can also obtained
from Eq. (11) as

T D .2¼=h/R2 (18)

so that there is a minimum orbit period such that T ¸ 2¼h4=¹2.
Transfer between circular orbits will be consideredlater when these
constraints will be of some importance. Note that such orbits are
non-Keplerian and that the orbit period is decoupled from the orbit
radius, as can be seen by solving Eq. (17) for h and substituting in
Eq. (18).7

Rectilinear Orbit
For an open rectilinear orbit, the orbit equation can be de� ned in

plane polar coordinates using

r.µ/ D rO sec µ (19)

where rO is the minimum orbit radius at µ D 0. Then, transforming
to u.µ/ D 1=r.µ/ and using Eq. (15) yields ¯ D 1, which is expected
becausethere can be no net force acting in this case. Similarly, when
Eq. (11) is used, it is clear that T ! 1, again as expected.

Logarithmic Spiral Orbit
As a further example of the inverse problem, an open logarithmic

spiral orbit can be de� ned using

r.µ/ D rO exp.¸µ/ (20)

for some constant ¸ Â 0; thus, transforming to u.µ/ D 1=r.µ/ and
using Eq. (15) yields

¯.µ/ D 1 ¡ .h2=¹/uO .1 C ¸2/ exp.¡¸µ/ (21)

where again uO D 1=rO . It can be seen that ¯.µ/ ! 1 as µ ! 1,
as shown in Fig. 3 (with rO D 1), where the orbit number is de-
� ned as µ=2¼ . In addition, it can be seen that for ¯.0/ D 0, and so

Fig. 3a Logarithmic spiral orbit.

Fig. 3b Required lightness number for a logarithmic spiral orbit.

0 · ¯.µ/ · 1, the orbital angular momentum h2 D ¹rO .1 C ¸2/¡1.
Therefore, theorbitangularmomentumh2 < ¹rO and so is not equal
to the orbital angular momentum of a circular Keplerian orbit at
r D rO . This is also the case for solar sail logarithmic spirals with a
� xed, nonradial,sail pitch angle.1 The constraintde� ned by Eq. (16)
can now be used to obtain

¸2 · uO =u.µ/ ¡ 1 (22)

Therefore, if u.µ/ ¸ u O 8 µ [r.µ/ · rO ], then ¸2 · 0 and so such or-
bits are forbidden,whereas if u.µ/ · uO 8 µ [r.µ/ ¸ rO ], then ¸2 ¸ 0
and so logarithmic spiral orbits exist in this case. It is, therefore,
concluded from Eq. (16) that inward spirals are always forbidden
whereas outward spirals are allowed.

Last, conservation of angular momentum can be used to obtain
the trajectory along the logarithmic spiral orbit. Since r.µ/2 Pµ D h,
where r .µ/ is de� ned by Eq. (20), the time t at polar angle µ (with
µ = 0 at t D 0) can be obtained by integration as

t .µ/ D
¡
r 2

O

¯
2¸h

¢
[exp.2¸µ/ ¡ 1] (23)

so that the trajectory along the logarithmic spiral orbit is de� ned as
a parametric curve of the form

r.t/ D rO

q
1 C 2h¸t

¯
r 2

O (24a)

µ.t/ D .1=2¸/ log
£
1 C

¡
2h¸

¯
r 2

O

¢
t
¤

(24b)
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In addition, note that, because ¯.µ/ scales as the inverse of the
radial distance from the sun, the total radial force acting on the
spacecraft scales as the inverse cube of the radial distance from the
sun. It is known that an inverse cube force law will generate spiral
trajectories.9;11

Doubly Periodic Orbit
In addition to standard families of closed and open orbits, more

complex, doubly periodic orbits can also be considered such as

r.µ / D rO [1 C p sin.µ=4/q ] (25)

where p andq are constantsthatparameterizetheorbit.The required
lightness number can then be obtained from Eq. (15), as shown in
Fig. 4 (with rO D 1, p D 0.5 and q D 4), although it is not listed here
for brevity.

The extremal values of the required lightness number can also be
obtained from Eq. (15) by calculating ¯ 0.µ / D 0, where

¯ 0.µ/ D ¡.h2=¹/[u 000.µ/ C u 0.µ /] (26)

From Eq. (25) it can then be shown that extremal values of ¯.µ /
occur when µ D 2¼ K , for some integer K . The minimum lightness
number ¯¡ and maximum lightness number ¯C required are then

Fig. 4a Doubly periodic orbit; p = 0.5 and q = 4.

Fig. 4b Required lightness number for a doubly periodic orbit.

found to be

¯¡ D 1 ¡
h2

¹rO
(27a)

¯C D 1 ¡
h2

¹rO

µ
pq

16.1 C q/2
C 1

1 C q

¶
(27b)

so that ¯¡ D 0 if the initial conditions are representative of a
Keplerian circular orbit of radius rO with h2 D ¹rO . Last, the orbit
periodcan be obtained from Eq. (11),where the limits of integration
for the orbit apsides must be set to [0; 4¼/, so that

T D
4
p

¼r 2
O

h

»
p

¼ C
2q0[.1 C p/=2]

0.1 C p=2/
C

q20
¡

1
2

C p
¢

0.1 C p/

¼
(28)

where 0 is the Euler gamma function. Now that a range of open-
and closed-,periodicorbitshave been presentedby way of example,
transfer between circular coplanar orbits will be investigated.

Transfer Orbits
For a spacecraftwith a maximum attainable lightness number Q̄,

a circular orbit can be sustained over a range of orbit radii, but with
a non-Keplerian orbit period. If the initial conditions are represen-
tative of a circular orbit of radius rO , the orbital angularmomentum
is given by h2 D ¹rO , as discussed earlier. Therefore, the maximum
orbit radius Qr at which a circular orbit can be sustained is de� ned
by Eq. (17) as

Qr D rO =.1 ¡ Q̄/ (29)

so that the reachable domain for circular orbit transfer is rO · r · Qr
with 0 · ¯ · Q̄. It can be seen that the constraint¯ ¸ 0 implies that
r ¸ rO , whereas Qr ! 1 as Q̄ ! 1. Whereas these circular orbits are
possible over a range of orbit radii, again note that the orbit period
will be non-Keplerian, as demonstrated by Eq. (18).

Inverse Transfer Orbit
Because it has been shown that orbits can be de� ned a priori,with

the constraint 0 · ¯ · Q̄, the problem of transfer between circular
orbits can be consideredas an inverse problem.Perhaps the simplest
functional form for u.µ / that satis� es the boundary conditions for a
transfer between circular orbits is the cubic polynomial

u.µ/ D uO C 3.u f ¡ uO /.µ=µ f /
2 ¡ 2.u f ¡ uO /.µ=µ f /

3 (30)

where µ f is the transfer angle. Clearly, any choice of orbit u.µ/
that satis� es the boundary conditions of the problem must also
satisfy Eq. (16). It can be shown that u.0/ D uO and u.µ f / D u f ,
whereas u 0.0/ D u 0.µ f / D 0. The required lightness number can be
determined using the proceduredetailed earlier. In addition, the ex-
tremal valuesof the requiredlightnessnumber can be obtained from
Eq. (15) by calculating ¯ 0.µ / D 0. This then results in a quadratic
equation of the form

µ 2 ¡ µµ f C 2 D 0 (31)

which yields the polar angles at which the minimum and maximum
lightness numbers occurs. When the quadratic is solved, the mini-
mum and maximum lightness numbers are found to occur at

µ¡ D µ f =2 ¡
q

µ 2
f

¯
4 ¡ 2 (32a)

µC D µ f =2 C
q

µ 2
f

¯
4 ¡ 2 (32b)

Then, substituting for µ¡ and µC, and assuming a 360-deg transfer
(µ f D 2¼/ yields the minimum and maximum required lightness
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numbers, which are found to be

¯¡ D
¡

1
2

¡
p

¼ 2 ¡ 2=2¼ C
p

¼ 2 ¡ 2=¼ 3
¢

£ .1 ¡ u f =uO / » 0:144.1 ¡ u f =uO / (33a)

¯C D
¡

1
2

C
p

¼ 2 ¡ 2=2¼ ¡
p

¼ 2 ¡ 2=¼ 3
¢

£ .1 ¡ u f =uO / » 0:856.1 ¡ u f =uO / (33b)

so that ¯¡ ¸ 0 if r f ¸ rO . Therefore, as with the logarithmic spiral,
inward transfers are forbidden whereas outward transfers are al-
lowed. In addition, as u f ! 0 (r f ! 1/, the maximum required
lightness number is of order 0.856. An example circle-to-circle
transfer with µ f D 2¼ is shown in Fig. 5 (with rO D 1 and r f D 2),
where the extremal values of ¯, de� ned by Eqs. (33), can be seen.

Elliptical Transfer Orbit
Whereas the use of inverse methods allows the boundary condi-

tions for circle-to-circletransfer to be satis� ed by de� ning a transfer
orbit apriori, other approaches can also be considered. For exam-
ple, an elliptical orbit can be sought that connects the initial and
� nal circular orbits in a quasi-Hohmann fashion. For initial and � -
nal circular orbit radii rO and r f , the required semimajor axis of the
transfer ellipse a is .rO C r f /=2. Then, the speed v on the transfer

Fig. 5a Cubic transfer orbit.

Fig. 5b Required lightness number for a cubic transfer orbit.

ellipse at orbit radius r is given by

v2 D ¹.1 ¡ ¯/[2=r ¡ 2=.rO C r f /] (34)

Matching the speed on the transfer ellipse at orbit radius rO with
the speed on the initial circular orbit

p
.¹=rO / yields the required

lightness number for the transfer as

¯ D 1
2 .1 ¡ rO =r f / (35)

As can be seen fromEq. (17), this is one-halfof the lightnessnumber
required to sustain a circular orbit at orbit radius r f . The transfer
duration ¿ can also be found from Eq. (11) as one-half of the orbit
period of the transfer ellipse so that

¿ D ¼
p

a3=¹.1 ¡ ¯/; a D 1
2
.rO C r f / (36)

where ¯ is de� ned by Eq. (35). In summary, the transfer begins
with ¯ D 0 at the initial circular orbit of radius rO . An intermediate
lightness number of .1 ¡ rO =r f /=2 is then required for one-half of
the transferellipse,to transferto the � nal circularorbit at radiusr f in
duration¿ . Last, the lightnessnumber is increasedto .1 ¡ rO =r f / to
inject the spacecraftinto the � nal circularorbit,with a non-Keplerian
orbit period.

Bielliptic Transfer Orbit
An alternative mode of transfer is to construct a transfer com-

posed of two ellipses, an initial arc with the maximum lightness
number .1 ¡ rO =r f / (as required for a circular orbit at orbit radius
r f / followed by a coast arc. The osculating semimajor axis and
eccentricity at the end of the powered arc must correspond to an
apocenter radius on the coast arc equal to the � nal circular orbit
radius. The length of the initial powered arc must, therefore, be
chosen to satisfy this condition.To investigate this requirement, the
variational equations for the problem must be formed. Because the
effect of the spacecraft thrust is to perturb an osculating two-body
ellipse with a radial, inverse square force, the variational equations
may be written as1

da

dµ
D 2ae

1 ¡ e2
¯.µ/ sin µ (37a)

de

dµ
D ¯.µ/ sinµ (37b)

d!

dµ
D ¡1

e
¯.µ/ cos µ; e 6D 0 (37c)

where! is theosculatingargumentof perigee.To proceed,the space-
craft will begin on a circular orbit with e D 0 and a D aO (aO D rO ,
the initial circularorbit radius).Then, when Eqs. (37a) and (37b) are
integrated over some arc length 1µ , with a � xed lightness number
¯ , the resulting elements are given by

e.1µ/ D ¯.1 ¡ cos 1µ/ (38a)

a.1µ/ D aO

¯
[1 ¡ ¯2.1 ¡ cos 1µ/2] (38b)

where Eq. (38b) may be obtained by integratingEq. (37a), or more
easily by using Eq. (38a) in combination with conservation of an-
gular momentum h2 D ¹a.1 ¡ e2/. The osculatingapocentre radius
ra D a.1 C e/ can then be formed from Eqs. (38) as

ra.1µ / D aO
1 C ¯.1 ¡ cos 1µ/

1 ¡ ¯2.1 ¡ cos 1µ/2
(39)

Then, when r p D r f , the condition for orbit transfer becomes

cos2 1µ ¡
³

2½¯2 ¡ ¯

½¯2

´
cos 1µ C

³
1 C ¯ ¡ ½ C ½¯2

½¯2

´
D 0 (40)



748 MCINNES

Fig. 6 Transfer duration for elliptic and bielliptic transfer modes.

where ½ D r f =:rO . The admissible solution to this quadratic is then
found to be

cos 1µ D 1 C .1 ¡ ½/=½¯ (41)

If Eq. (35) is used to substitute for ¯ as .1 ¡ rO =r f /=2, it is then
found that 1µ D ¼ , as expected. However, if a maximum lightness
number of .1 ¡ rO =r f / is substituted, it is found that 1µ D ¼=2.
Therefore, the transfer is composed of two ellipses, each of arc
length ¼=2.

In summary, the transfer begins with ¯ D 0 at the initial circular
orbit of radius rO . A lightness number of .1 ¡ rO =r f / is then re-
quired for 1µ D ¼=2 to attain the osculating elements required for
a coast arc to the � nal circular orbit at radius r f . Last, a lightness
number of .1 ¡ rO =r f / is again required, to inject the spacecraft
into the � nal circular orbit. The transfer duration can then be ob-
tained by integrating Eq. (11). Although this can be carried out
analytically, the full result is not listed here for brevity. A com-
parison of the transfer duration for the elliptic and bielliptic trans-
fer modes is shown in Fig. 6. Note that in the limit r f ! rO it is
found that ¿ ! ¼

p
.r 3

O =¹/. This is a limiting process that results
from the formulation of the problem, as can be seen from Eqs. (35)
and (36).

Escape Orbits
To reach escape, a switching strategy is required to increase the

orbit energy, while the orbit angular momentum is conserved. Be-
cause angular momentum is conserved, there will be a curve within
the a–e plane along which the transfer to escape will occur. From
Eqs. (37a) and (37b), it can be seen that

da

de
D

2ae

1 ¡ e2
(42)

which integrates to a.1 ¡ e2/ D aO .1 ¡ e2
O /, which is of course a

statement of conservation of angular momentum. The curve in the
a–e plane for a spacecraft starting from a circular heliocentricorbit
with aO D 1 is shown in Fig. 7. As the orbit energy is increased, the
orbit semimajor axis is also increased, leading to an increasein orbit
eccentricityuntil escape at e D 1. If eO D 0, then, from conservation
of angular momentum, the orbit pericenter and apocenter radii can
be obtained as

ra D aO =.1 ¡ e/ (43a)

r p D aO =.1 C e/ (43b)

Fig. 7 Curve in a–e space to escape: ², steps along escape ladder with
~̄ = 0.1.

so that in the limitas e ! 1 thepericenterradiusr p ! aO =2, whereas
ra ! 1. The spacecraft is, therefore, limited to pericenter radii
r p Â aO =2.

It can be seen from Eq. (37a) that a strategy to increase the orbit
energy is provided by the following switching law:

¯.µ/ D
» Q̄ if 0 Á µ Á ¼

0 if ¼ · µ · 2¼ (44)

where Q̄ is again the maximum attainable lightness number. Maxi-
mum thrust is, therefore, applied on the outward arc, whereas null
thrust is required on the inward arc. From Eqs. (38), this results in
the following change in orbital elements in the a–e plane

1e D 2 Q̄ (45a)

1a D aO

¯
.1 ¡ 4 Q̄2/ (45b)

Immediately, it can be seen that escape can be reached on the � rst-
half orbit if Q̄ D 1

2
, since 1e D 1. If Q̄ Á 1

2
, then at least one complete

orbit is required before escape can be reached. Similarly, if Q̄ Â 1
2 ,

then on the � rst arc 1e Â 1 and so the orbit semimajor axis a Á 0
as the orbit becomes hyperbolic because the orbit angular momen-
tum h2 D ¹a.1 ¡ e2/ is conserved.When Eq. (45) is used, an escape
ladder can then be formed along the curve of constant angular mo-
mentum in the a–e plane such that

e j D 2 j Q̄ (46a)

a j D aO

¯
[1 ¡ .2 j Q̄/2] (46b)

where j D 0 ¡ M is the numberof orbits completed.The steps along
the escape ladder from a circular orbit with aO D 1 and Q̄ D 0:1 are
shown in Fig. 7, whereas the resulting escape trajectory is shown in
Fig. 8 with r p Â 1

2 .
The use of multiple loops for spacecraft with Q̄ Á 1

2 can lead
to lengthy escape trajectories.However, future solar sail and M2P2
systems may enable Q̄ Â 1, which allows direct escape along a hy-
perbolic path. Note, however, that the hyperbola does not contain
the sun at its focus because the net inverse square force is repulsive.
In fact, the sun is located at the center of the two opposing hyper-
bolas that de� ne the classical conic section. If the initial conditions
are representativeof a circular of radius rO , Eq. (10) then provides
the orbit equation as

r .µ / D rO =[1 ¡ Q̄.1 ¡ cos µ/] (47)
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Fig. 8 Escape trajectory with ~̄ = 0.1.

Fig. 9 Family of escape hyperbolas.

so that the orbit has an asymptote at µ1 (as r ! 1/ given by
cosµ1 D 1 ¡ 1= Q̄. It can be seen that Eq. (19) is recovered if Q̄ D 1.
In addition, Eq. (11) provides time t as a function of polar angle as

t .µ/ D
r

3
2

Op
¹

2. Q̄ ¡ 1/[1 ¡ Q̄.1 ¡ cos µ/] tanh¡1
£p

2 Q̄ ¡ 1 tan.µ=2/
¤

C Q̄
p

2 Q̄ ¡ 1 sin µ

.2 Q̄ ¡ 1/[1 ¡ Q̄.1 ¡ cos µ/]
(48)

Last, equating the energy at the beginning of the orbit arc [v2
O =2 ¡

¹.1 ¡ Q̄/=rO ] to the energy as r ! (v2
1=2/ yields the hyperbolic

excess speed v1 as

v1 D vO

q
2 Q̄ ¡ 1 (49)

where vO D
p

.¹=rO / is the speed on the initial circular orbit at
radius rO . A range of escape hyperbolas are shown in Fig. 9 with
rO D 1. It can be seen that a rectilinear orbit, de� ned by Eq. (19),
will have an asymptotewith µ1 D ¼=2, whereasµ1 ! 0 as ¯ ! 1.

Conclusions
An extension of the classical two-body problem has been inves-

tigated that considers the addition of a modulated, radial, inverse
square force. The force is assumed to be the modulated thrust from
a solar sail or M2P2 system. It has been shown that the forward
integration problem can be solved in closed form, whereas an in-
verse problem can be constructed that allows orbits to de� ned a
priori. Both of these approacheshave been used to investigatetrans-
fer between circular, coplanar orbits and open escape orbits. For
escape orbits, a switching strategy has been de� ned that allows mo-
tion along an escape ladder in the a–e plane, allowing energy gain,
while orbital angular momentum is conserved.

Acknowledgments
Aspects of this work were supported by funding from the Lev-

erhulme Trust and the Lockheed Martin Corporation, to whom the
author expresses his thanks.

References
1McInnes, C. R., Solar Sailing: Technology, Dynamics and Mission Ap-

plications, Springer-Verlag, London, 1999, pp. 56–111.
2Winglee, R. M., Slough, J., Ziemba, T., and Goodson, A., “Mini-

Magnetospheric Plasma Propulsion: Tapping the Energy of the Solar Wind
for Spacecraft Propulsion,” Journal of Geophysics Research, Vol. 105,
No. A9, 2000, pp. 21067–21077.

3Zubrin,R., and Andrews, D., “MagneticSails and Interplanetary Travel,”
Journal of Spacecraft and Rockets, Vol. 28, No. 2, 1991, pp. 197–203.

4Tsien, H. S., “Take-Off from Satellite Orbit,” Journal of the American
Rocket Society, Vol. 23, No. 4, 1953, pp. 233–236.

5Battin, R. H., An Introduction to the Mathematics and Methodsof Astro-
dynamics, AIAA Education Series, AIAA, New York, 1987, pp. 408–415.

6Modi, V. J., “On the Semi-Passive Attitude Control and Propulsion of
Space Vehicles Using Solar Radiation Pressure,” Acta Astronautica, Vol. 35,
No. 2/3, 1995, pp. 231–246.

7Prussing, J. E., and Coverstone-Carroll, V., “Constant Radial Thrust Ac-
celeration Redux,” Journal of Guidance, Control, and Dynamics, Vol. 21,
No. 3, 1998, pp. 516–518.

8Akella, M. R., “On the Existence of Almost Periodic Orbits in Low
Radial Thrust Spacecraft Motion,” Advances in the Astronautical Sciences,
Vol. 106, 2000, pp. 41–52.

9Broucke, R., “Notes on the Central Force rN ,” Astrophysics and Space
Science, Vol. 27, No. 1, 1980, pp. 33–53.

10Sweetser, T. H., and Sauer, C. G., “Advanced Propulsion Options
for Missions to the Kuiper Belt,” Advances in the Astronautical Sciences,
Vol. 109, 2001, pp. 2297–2306.

11Fowles, G. R., AnalyticalMechanics, Holt-Saunders International,New
York, 1977, pp. 164–165.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-4650^281991^2928:2L.197[aid=1449244]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0731-5090^281998^2921:3L.516[aid=2359488]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0731-5090^281998^2921:3L.516[aid=2359488]



