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The early diagnosis of Alzheimer’s disease (AD) is particularly challenging. Mild Cognitive Impairment (MCI) has been linked to AD
and electroencephalogram (EEG) recordings are able to measure brain activity directly with high temporal resolution. In this context, with
appropriate processing, the EEG recordings can be used to construct a graph representative of brain functional connectivity. Here, we study a
functional network created from a non-linear measure of coupling of beta-filtered EEG recordings during a short-term memory binding task.
We show that the values of the small world characteristic and eccentricity are, respectively, lower and higher in MCI patients than in controls.
The results show how MCI leads to EEG functional connectivity changes. We expect that the network differences between MCIs and control
subjects could be used to gain insight into the early stages of AD.

1. Introduction: It is useful to identify people with mild
cognitive impairment (MCI) as they would be at higher risks of
developing Alzheimer’s disease (AD). This is important given that,
nowadays, 35.6 million people live with dementia worldwide [1],
posing a big strain on the economy and society. Furthermore, as the
world has an aging population, the number of people affected by
dementia is expected to increase significantly in the future [1].

Further understanding of MCI could contribute to developing
an earlier diagnosis of AD, something that could help dementia
patients and their caregivers to make better, informed decisions
about their lives. An earlier diagnosis means earlier access to
information and support [2]. There are medical benefits of an early
diagnosis of dementia too. The patient can obtain earlier access to
therapies to improve their quality of life. The earlier diagnosis also
means that patients can take part in further research [2].

The analysis of brain activity via the processing of
electroencephalogram (EEG) recordings is a promising avenue to
characterise MCI and early AD. In an EEG, electrodes are placed
on the surface of the scalp to record the electrical activity generated
by groups of neurons in the brain. When a neuron is activated, an
electrical signal is transmitted between nerve cells at the synapse.
From here, the signal is conducted to the cell body, along the axon
and finally to the axon terminal where the neuron synapses with a
new cell. For this conduction to happen, ion channels transport ions
through the cell membrane, both at the axon and at the synapse [3].
As the Electrodes are placed on the patient’s scalp, larger groups
of active neurons will produce EEG signals that can be seen in
recordings [3]. EEG signals were chosen as the way to measure
electrical signals, due to being a non-invasive method, and being
a portable method to use. EEG recordings also have very high
temporal resolution which is desirable for detecting rapid changes
in brain activity [4].

Some frequency bands of the EEG signals are of particular
interest in different applications. Among them, we focus on the
alpha band at 8-13Hz, and the beta band at 13-30Hz. Alpha activity

has been prominent in the study of AD and higher frequency bands
(e.g., beta) have been associated with cognitive processes.

Brain graphs (or networks) are mathematical representations
of (structural or functional) interactions in the brain [5]. Such
networks can be produced from EEG recordings. Here each
electrode can be represented as a node in the network. The edges
between the nodes are defined by coupling between the EEG
signals. Networks are a way to represent complex systems, which
the brain’s structural and functional systems can be considered [6].
The production of brain graphs enables the analysis of EEG signals
due to the generalizability and interpretability of brain graphs [5].
When analysing brain graphs, network parameters are compared.

Indeed, there have been several findings of how network
parameters in brain graphs have been linked to various diseases.
The ones of most interest to this study are ones concerning MCI
and dementia, of which the latter many studies have been done with
focus on AD.

There are numerous network parameters. Some of the most
commonly used are clustering coefficient, characteristic path
length, small world phenomenon, and eccentricity. The clustering
coefficient indicates how much the nodes of the network tend
to create tightly related groups. It measures the proportion of
neighbours of a node that are also direct neighbours of each
other. The characteristic path length is the average shortest path
length of the network. Thus, well integrated networks have low
characteristic path lengths. Networks are deemed to exhibit small
world phenomenon when they are seen to have a high clustering
coefficient and a comparatively smaller characteristic path length,
when compared to a random network [7]. Thus, the small world
characteristic is a measure of the balance between segregation and
integration in a network. Eccentricity is the maximum shortest path
length between any two nodes in the network [8].

In previous studies, brain networks of AD patients, compared
to controls, have been reported to have longer characteristic path
lengths in the beta band and lower small world characteristics [9];
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and lower small world characteristics in networks based on cortical
thickness [10]. Eccentricity in the alpha band was reported to be
higher amongst AD patients than Subjective Cognitive Decline
patients [11], which has been hypothesized as an earlier indication
of AD than MCI [12]. In a study comparing AD and patients with
frontotemporal lobar degeneration (FTLD) and control subjects,
a lower clustering coefficient was seen in the lower alpha and
beta band of AD compared to other subjects. The characteristic
path length was shorter in the alpha band of AD patients. The
AD patients were seen to have lower small world characteristics
than the control and FTLD subjects [13]. In a study looking at
magnetoencephalogram (MEG) recordings of AD patients during a
no-task, eyes-closed condition, it was found that AD patients had
a lower clustering coefficient in the lower alpha band and path
length than control patients [14]. It has however been seen that
eccentricity has become higher in the frontal and temporal regions
for Parkinson’s disease patients as the disease progressed when
looking at the alpha band [15]. As Parkinson’s disease patients are
more likely to develop dementia [16], the results of this study may
be of interest.

The main objective of this study was to find whether any
differences in the beta band could be seen between the MCI
and control subjects during a relevant short-term memory binding
task. The dataset used has been previously described [17]. These
differences were then evaluated from a network point of view.
The brain networks are produced by applying a nonlinear coupling
algorithm to the signals.

2. EEG recordings: The data analysed in this study comes
from EEG recordings of patients subjected to a test. The subjects
consisted of 13 patients with MCI. There were also 19 control
subjects who did not have MCI. Five of these subjects’ data were
removed from analysis as the recordings were deemed noisy when
used for other purposes. This leaves a control group of 14 control
subjects.

The EEG recordings used in this study are of when these patients
were asked to recall an image they had been shown previously in
a visual short-term memory binding tasks [17]. Of the experiment,
we consider the binding condition. For additional details, the reader
is referred to [17]. The recordings were achieved using an EEG
montage with 128 channels.

The recordings were sampled at a frequency of 256Hz over 1.40s,
with 0.2s pre-stimuli. This pre-stimulus section was removed to
focus only on the activity elicited by the task, which leaves 1.20s of
data. The EEG recordings were epoched with the number of epochs
ranging from 23 to 87 for each subject.

The recordings were preprocessed using standard toolboxes [18]
in order to remove artefacts and noisy epochs. The same dataset has
been used before and is further described there [17].

Each sample in a channel was averaged across the epochs for
the subject. After this, the beta band of the EEG recordings was
extracted through filtering. The recordings were cascaded through
a high pass and low pass Butterworth IIR filter. Butterworth IIR
filters were used due to their maximally flat passbands in order
to minimise distortions to the signal as distortions in the passband
could affect the nonlinear coupling between the signals. In addition,
a zero-phase delay was achieved for each filter by two-pass filtering
[19]. The signal is firstly two-pass filtered through a Butterworth
IIR high pass filter of filter order 4 and a half power frequency of
9Hz. The output from the high pass filter is then two-pass filtered
through a Butterworth IIR low pass filter of filter order 8 and half
power frequency of 34Hz.

3. Methods: The Joint Distribution Entropy Method [20] was
used to find the coupling between each two channels in order to
produce an adjacency matrix representing the network. Thus, the
adjacency matrix produced is a square matrix corresponding to the
coupling between the 128 channels.

Non-linear methods can detect coupling in physiological
systems, but many require long time series, which the EEG
recordings used here are not, particularly when recorded during
tasks such as the visual short-term memory binding. However,
the joint distribution entropy method has shown promising results
in detecting weak coupling in short physiological series [20].
Therefore, this method was used. The method is briefly described
below. For additional details, the reader is referred to [20].

The filtered data in each channel are firstly rescaled according to

uϕ(i) =
uϕ(i)−min(uϕ)

max(uϕ)−min(uϕ)
(1)

where uϕ(i) denotes the rescaled signal data of a temporal sample
i, and ϕ denotes the channel that is being looked at. The filtered
data of a temporal sample in a channel before being rescaled is
denoted as uϕ(i) and min(uϕ) and max(uϕ) are the minimum and
maximum values within the data channel uϕ across all temporal
samples. This rescaling leads to the data in each channel being in
the range 0 to 1.

The state-space can then be constructed. The state-space Xϕ(i)
is given by

Xϕ(i) = [uϕ(i), uϕ(i+ τϕ), ..., uϕ(i+ (mϕ − 1)τϕ)] (2)

where mϕ is the embedding dimension and τϕ is the time delay
of the channel. Each channel’s rescaled samples are delayed. The
delay is needed to reconstruct the attractor of the signal recorded
at that channel following Takens theorem [21]. The delay ranges
from 0 to ((mϕ − 1)τϕ) across the samples. The Bivariate State-
Space Reconstruction considers the fact that there may be a time
delay between related signals, as it takes time for different parts
of the brain to communicate with each other. In this case, τϕ
was considered to be 1 sample, and mϕ has been set to 2. These
parameters were chosen since they have been seen to work in
nonlinear analysis of EEG signals in AD with the similar methods
SampEn and ApEn [22].
Xϕ(i) is performed for samples (i= 1, 2, 3, ..., N − n) where

N is the total number of samples. The constant n is determined in
the following manner: n=max(mϕ)max(τϕ).

3.1. Joint Distance Matrix Construction: Firstly distance matrices
are found for each of the channels. A distance matrix Dϕ for
channel ϕ is defined by

Dϕ = {‖Xϕ(i), Xϕ(j) ‖ for i, j = 1, 2, ..., (N − n)} (3)

where || · || denotes the maximum norm. Dϕ gives the maximum
distance between all samples within the specified channel.

The maximum distance is found between two columns of the
state-space matrix assuming that the columns of the matrix contains
the rescaled value at a sample i to i+ (mϕ − 1)τϕ, i.e., the
column contains the rescaled value at that sample as well as
the corresponding delays. The maximum distance is then found
between two such columns of the state-space matrix. This is
done by: ‖Xϕ(i), Xϕ(j) ‖=max[max(Xϕ(i))−min(Xϕ(j)),
max(Xϕ(j))−min(Xϕ(i))] for a single sample i and sample j.
This distance matrix is produced for each channel such that a joint
distance matrix can be produced between two channels.

A symmetric distance matrix, called the Joint Distance Matrix
JD, for two channels is given by

JD= J −
√

(J −D1)(J −D2) (4)

where D1 and D2 are distance matrices of two channels and J is
an all-ones matrix of same size as Dϕ. JD is created for all pairs
of channels. This represents the joint distance between the pairs of
channels.
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3.2. Probability density estimation: The next step is to produce
a probability density estimation from the distance of all elements
except the diagonal in the Joint Distance Matrix. The diagonal is
excluded from this calculation as this represents connections the
sample has with itself.

Firstly, the number of bins is calculated using Doane’s formula:

B = 1 + log2 nobv + log2

(
(1 +

| g1 |
σg1

)
(5)

whereB is the number of histogram bins, g1 is the skewness of JD
and nobv is the number of observations. The number of observations
nobv is given by

nobv = (N − n)2 − (N − n) . (6)

σg1 is defined as:

σg1 =

√
6 (nobv − 2)

(nobv + 1) (nobv + 3)
. (7)

The number of bins, B, is rounded to the nearest integer, called
Bins. This is then used to create a histogram JDhist of the
elements of JD with the number of bins calculated, Bins. When
doing this, the elements of JD are excluding the diagonal.

This is then normalized to the sum of the histogram values.

3.3. JDistEn Calculation: Using the normalized JDhist, called ρ,
the joint distribution entropy, JDistEn, given by

JDistEn=

(
−1

log2Bins

Bins∑
t=1

ρt × log2 ρt

)
(8)

can be found. It is also ensured that ρ 6= 0 within this calculation, as
this will give an invalid answer due to the logarithm.

The range of JDistEn is 0≤ JDistEn≤ 1, where 0 means the
two channels are not coupled at all and 1 means they are fully
coupled.

The JDistEn results of all channels to each other are stored in
a 128 by 128 matrix corresponding to the coupling between all
128 channels. This is a weighted adjacency matrix with values
theoretically ranging between 0 and 1.

3.4. Constructing Binary Adjacency Matrices: For simpler
analysis these adjacency matrices were turned into binary adjacency
matrices. The ranges of the coupling values in the different MCI
and control subjects’ adjacency matrices varied. This can be seen
in Figure 1 and Figure 2. Therefore, a fixed density method is
used to produce a threshold. By this meaning that the proportion
being coupled for each subject remains the same. A threshold was
set such that the the top 10% of each adjacency matrix values
were considered coupled, being 1, and the remaining proportion not
considered coupled, being 0.

3.5. Network parameter analysis: Once networks had been
produced for the MCI and control subjects, network parameters can
be looked at. The network parameters looked at were the clustering
coefficient and characteristic path length, the level of small world
network characteristics, and the eccentricity. Small-world networks
can be defined by the clustering coefficient and the average shortest
path length (also known as the characteristic path length) [7]. The
small-world phenomenon can be quantified into one parameter in
the following manner:

Q=
( Cactual
Crandom

)

( Lactual
Lrandom

)
. (9)

Here Cactual and Lactual are the clustering coefficient and
characteristic path length of the network produced using the
previously described method.

Crandom and Lrandom are the clustering coefficient and
characteristic path length of random networks produced. Random
networks of the same size were produced with the top 10% of the
adjacency matrix being considered coupled in the same manner as
the MCI and control subjects’ adjacency matrices were done. Ten
networks were created. The clustering coefficient and characteristic
path length of the random networks were found. These values were
averaged for the ten networks. The averaged values were considered
Crandom and Lrandom.

Eccentricity was measured.

3.6. Statistical Analysis: The validity of the differences seen
between the MCI and control subject sets were tested. Firstly it is
checked whether the data are normally distributed through the use
of a Jarque-Bera test. If the data are normally distributed then an
unpaired two-sample student’s t-test can be used. This tests the null
hypothesis that the two independent sets come from distributions
with the same mean. Simply put, the t-test described indicates
whether the two sets may be coming from the same distribution.
The exact p-value is calculated. It is checked whether the null
hypothesis is rejected at the 5% significance level. If one or both
of the sets are seen to not be normally distributed, a Wilcoxon rank
sum test was used instead, as the student’s t-test work under the
assumption that the distribution is normally distributed. This tests
a similar null hypothesis which is that the two independent sets
come from distributions with equal medians. Similar to the t-test,
the exact p-value is calculated and it is checked whether the null
hypothesis is rejected at the 5% significance level.
All results were also checked for outliers using Chauvenet’s Criteria
and an interquartile range (IQR) test.

Figure 1: Histogram distribution fits of control subject coupling
values

Figure 2: Histogram distribution fits of MCI subject coupling values

Healthcare Technology Letters, pp. 3–5 3
c© The Institution of Engineering and Technology 2012



Table 1 Comparison of network parameters of beta filtered MCI and control subjects
MCI (n=13) controls (n=14) rank sum

Network parameter Mean SD Mean SD p
Clustering 0.572475 0.094392 0.645624 0.09575 0.04938
Characteristic path length 1.940423 0.116031 1.886695 0.071737 0.13886
Small world phenomenon 6.334746 1.080554 7.329532 1.038798 0.01860
Eccentricity 2.888048 0.468259 2.486873 0.453488 0.01630

4. Results: The histogram distribution fits for the individual
subjects can be seen in Figure 1 and Figure 2. The distribution
plots included only the values in the lower triangle of the adjacency
matrices as the adjacency matrices are symmetric. The differing
ranges of values for different subjects led to the decision of using a
fixed density method for thresholding to produce a binary adjacency
matrix.

The results can be seen in Table 1. The result from the Jarque-
Bera test showed that none of the networks parameters looked
at were normally distributed for both the MCI and control set.
Therefore, only the rank sum results are shown in Table 1. The
results that upheld the 95% certainty threshold were considered to
be statistically significant. The statistically significant results are
highlighted in bold.

Three differences between the MCI and control group were seen
to be statistically significant. Firstly, clustering was seen to be lower
in beta filtered MCI subjects than in beta filtered control subjects.
The small world phenomenon which is connected to clustering
according to Equation 9, also showed a significant difference
between the subject groups. The small world phenomenon was
seen to be less prominent in beta filtered MCI subjects than in the
beta filtered control subjects. Lastly, there was seen to be higher
eccentricity in beta filtered MCI subjects than in the beta filtered
control subjects.

5. Discussion: Network parameters in the beta band of MCI and
control subjects during a visual short-term memory binding task
have been compared. The EEG signals were filtered to retrieve
the beta band. A joint distribution entropy method was used to
produce adjacency matrices for each subject. The choice of method
was particularly important given the short recordings acquired
during rapid memory tasks. The non-binary adjacency matrices
were transformed into binary adjacency matrices by defining the
top 10% in terms of values in each matrix to be coupled and the
rest to be non-coupled. The clustering coefficient, characteristic
path length, small world phenomenon, and eccentricity network
parameters were then looked at and compared between the MCI
subject set and control subject set.

The preliminary results found which are discussed in this
article agree with some of the results seen in other studies.
Lower small world characteristics have been seen in beta filtered
AD patients when compared to controls [9]. Lower small world
characteristics for subjects with AD were found as well as presented
in the introduction [10] [13]. The preliminary result of higher
eccentricity in beta filtered MCI subjects is an interesting result
that had not previously been analyzed much in relation to AD
or dementia patients. There may be a correlation between the
increased eccentricity that was also seen amongst Parkinson’s
disease patients [15]. The lower clustering coefficient amongst beta
filtered MCI subjects was supported by some of the other studies.
Two studies showed lower clustering coefficient for AD patients in
the lower alpha band [13] [14]. So whilst the preliminary result of a
lower clustering coefficient in the beta band of MCI subjects sounds
promising, it has not been found in the other studies to the best of
our knowledge. However, it is crucial to bear in mind that a key
characteristic of this study is that we analysed data recorded during
a visual short-term memory binding task.

There were some limitations with the method used. One potential
limitation may be that when producing the adjacency matrices,

the number of edges was fixed across subjects, as being 10% of
the nodes, excluding connections of nodes to themselves. This
fixed edge distribution, means that quantity of particular network
parameters may not be comparable across subjects, as this may
be merely caused by the fixed density approach. However, it was
deemed that this fixed density approach would produce appropriate
sparse networks for topological network analysis. However, the
selection of a binarising threshold is an active area of research in the
analysis of brain functional networks and other alternatives could
be considered in the future [23]. Another effect of using the cut-off
approach used here is that certain network parameters could not be
evaluated.

The results seen give several opportunities for future work. As the
difference in eccentricity of beta filtered MCI and control subjects
was statistically significant, it may be interesting to look further
into the locations of high or low eccentricity. This way eccentricity
could be used to view centrality as well. Instead of averaging
eccentricity across nodes, it could be seen which points had lower
and higher eccentricity.
It would also be of interest to see if a classifier, which could
determine if the subject was an MCI subject, could be formed from
the results found in this study. Such a classifier would likely include
a combination of the network parameters found in this report.
As patients with MCI are more likely to develop dementia, the
approach in this study could potentially be evaluated in the early
detection of dementia which has been highlighted to be of utmost
importance in recent years [2]. However, our results are preliminary
and limited by the small sample size. Therefore, the algorithms
should firstly be applied to a larger sample to verify the results.
If such results were to agree with the ones presented here, then it
would be of interest to compare these when the same method is
applied to patients with confirmed dementia. This would lead to a
better understanding of how dementia develops and the relationship
between MCI and dementia.

6. Conclusion: Network parameters of beta filtered MCI
subjects can be seen to be different from those of control subjects
during a visual short-term memory binding task. The small-world
characteristics were seen to be smaller in MCI subjects and the
eccentricity was seen to be higher. This study contributes to the
understanding of EEG activity in MCI during a visual short-term
memory binding task.
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